Akshayram1 commited on
Commit
d897b8a
·
verified ·
1 Parent(s): 669bcbe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -49
app.py CHANGED
@@ -4,9 +4,8 @@ import google.generativeai as genai
4
  from pytube import Search
5
  import speech_recognition as sr
6
  import tempfile
7
- from pydub import AudioSegment
8
  import numpy as np
9
- from streamlit_webrtc import webrtc_streamer, WebRtcMode, AudioProcessorBase
10
 
11
  # Load sentiment analysis model using PyTorch backend
12
  mood_classifier = pipeline("sentiment-analysis", framework="pt")
@@ -21,32 +20,41 @@ def detect_mood(text):
21
  else:
22
  return "neutral"
23
 
24
- def speech_to_text(audio_bytes):
25
  # Initialize recognizer
26
  r = sr.Recognizer()
27
 
28
  # Create a temporary file to store the recorded audio
29
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as fp:
30
- # Save audio bytes to temporary file
31
- fp.write(audio_bytes)
32
- temp_filename = fp.name
 
 
 
33
 
34
- # Read the audio file
35
- with sr.AudioFile(temp_filename) as source:
36
- # Adjust for ambient noise and record
37
- r.adjust_for_ambient_noise(source)
38
- audio = r.record(source)
39
 
40
- try:
41
- # Use Google Speech Recognition
42
- text = r.recognize_google(audio)
43
- return text
44
- except sr.UnknownValueError:
45
- st.error("Could not understand the audio")
46
- return None
47
- except sr.RequestError:
48
- st.error("Could not request results from speech recognition service")
49
- return None
 
 
 
 
 
 
 
50
 
51
  def get_song_recommendations(mood, api_key):
52
  try:
@@ -93,49 +101,34 @@ gemini_api_key = st.sidebar.text_input("Enter your Gemini API Key:", type="passw
93
  # Add option to choose between text and speech input
94
  input_method = st.sidebar.radio("Choose input method:", ["Text", "Speech"])
95
 
 
 
 
 
96
  if input_method == "Text":
97
  # Text input
98
  user_mood = st.sidebar.selectbox("Select your mood:", mood_options)
 
99
  else:
100
  # Speech input
101
  st.write("📢 Tell me about your day...")
 
102
 
103
- # Use streamlit-webrtc for audio recording
104
- webrtc_ctx = webrtc_streamer(
105
- key="speech-to-text",
106
- mode=WebRtcMode.SENDONLY,
107
- audio_receiver_size=1024,
108
- media_stream_constraints={"audio": True, "video": False},
109
- )
110
-
111
- if webrtc_ctx.audio_receiver:
112
- audio_frames = webrtc_ctx.audio_receiver.get_frames(timeout=5)
113
- if audio_frames:
114
- audio_bytes = b"".join([frame.to_ndarray().tobytes() for frame in audio_frames])
115
- spoken_text = speech_to_text(audio_bytes)
116
-
117
- if spoken_text:
118
- st.write(f"You said: {spoken_text}")
119
- user_mood = detect_mood(spoken_text)
120
- else:
121
- user_mood = None
122
- else:
123
- st.warning("No audio frames received. Please try again.")
124
- user_mood = None
125
- else:
126
- user_mood = None
127
 
128
  # Playlist
129
  if 'playlist' not in st.session_state:
130
  st.session_state.playlist = []
131
 
132
  # Main content
133
- if (user_mood or spoken_text) and gemini_api_key:
134
- mood = detect_mood(user_mood if user_mood else spoken_text)
135
- st.write(f"🎭 Detected Mood: **{mood}**")
136
 
137
  st.write("🎵 Recommended Songs:")
138
- recommendations = get_song_recommendations(mood, gemini_api_key)
139
  if recommendations:
140
  st.write(recommendations)
141
 
 
4
  from pytube import Search
5
  import speech_recognition as sr
6
  import tempfile
7
+ from audio_recorder_streamlit import audio_recorder
8
  import numpy as np
 
9
 
10
  # Load sentiment analysis model using PyTorch backend
11
  mood_classifier = pipeline("sentiment-analysis", framework="pt")
 
20
  else:
21
  return "neutral"
22
 
23
+ def speech_to_text():
24
  # Initialize recognizer
25
  r = sr.Recognizer()
26
 
27
  # Create a temporary file to store the recorded audio
28
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as fp:
29
+ # Add audio recording widget
30
+ audio_bytes = audio_recorder(
31
+ text="Click to record",
32
+ recording_color="#e8b62c",
33
+ neutral_color="#6aa36f"
34
+ )
35
 
36
+ if audio_bytes:
37
+ # Save audio bytes to temporary file
38
+ fp.write(audio_bytes)
39
+ temp_filename = fp.name
 
40
 
41
+ # Read the audio file
42
+ with sr.AudioFile(temp_filename) as source:
43
+ # Adjust for ambient noise and record
44
+ r.adjust_for_ambient_noise(source)
45
+ audio = r.record(source)
46
+
47
+ try:
48
+ # Use Google Speech Recognition
49
+ text = r.recognize_google(audio)
50
+ return text
51
+ except sr.UnknownValueError:
52
+ st.error("Could not understand the audio")
53
+ return None
54
+ except sr.RequestError:
55
+ st.error("Could not request results from speech recognition service")
56
+ return None
57
+ return None
58
 
59
  def get_song_recommendations(mood, api_key):
60
  try:
 
101
  # Add option to choose between text and speech input
102
  input_method = st.sidebar.radio("Choose input method:", ["Text", "Speech"])
103
 
104
+ # Initialize user_mood as None
105
+ user_mood = None
106
+ user_text = None
107
+
108
  if input_method == "Text":
109
  # Text input
110
  user_mood = st.sidebar.selectbox("Select your mood:", mood_options)
111
+ user_text = user_mood
112
  else:
113
  # Speech input
114
  st.write("📢 Tell me about your day...")
115
+ user_text = speech_to_text()
116
 
117
+ if user_text:
118
+ st.write(f"You said: {user_text}")
119
+ user_mood = detect_mood(user_text)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
 
121
  # Playlist
122
  if 'playlist' not in st.session_state:
123
  st.session_state.playlist = []
124
 
125
  # Main content
126
+ if user_text and gemini_api_key:
127
+ detected_mood = detect_mood(user_text)
128
+ st.write(f"🎭 Detected Mood: **{detected_mood}**")
129
 
130
  st.write("🎵 Recommended Songs:")
131
+ recommendations = get_song_recommendations(detected_mood, gemini_api_key)
132
  if recommendations:
133
  st.write(recommendations)
134