Akshayram1 commited on
Commit
d89bac8
·
verified ·
1 Parent(s): d897b8a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -32
app.py CHANGED
@@ -6,11 +6,24 @@ import speech_recognition as sr
6
  import tempfile
7
  from audio_recorder_streamlit import audio_recorder
8
  import numpy as np
 
 
9
 
10
  # Load sentiment analysis model using PyTorch backend
11
  mood_classifier = pipeline("sentiment-analysis", framework="pt")
12
 
13
- # Functions
 
 
 
 
 
 
 
 
 
 
 
14
  def detect_mood(text):
15
  result = mood_classifier(text)[0]
16
  if result['label'] == 'POSITIVE':
@@ -24,36 +37,42 @@ def speech_to_text():
24
  # Initialize recognizer
25
  r = sr.Recognizer()
26
 
27
- # Create a temporary file to store the recorded audio
28
- with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as fp:
29
- # Add audio recording widget
30
- audio_bytes = audio_recorder(
31
- text="Click to record",
32
- recording_color="#e8b62c",
33
- neutral_color="#6aa36f"
34
- )
35
-
36
- if audio_bytes:
37
- # Save audio bytes to temporary file
38
- fp.write(audio_bytes)
39
- temp_filename = fp.name
40
-
41
- # Read the audio file
42
- with sr.AudioFile(temp_filename) as source:
43
- # Adjust for ambient noise and record
44
- r.adjust_for_ambient_noise(source)
45
- audio = r.record(source)
46
 
47
- try:
48
- # Use Google Speech Recognition
49
- text = r.recognize_google(audio)
50
- return text
51
- except sr.UnknownValueError:
52
- st.error("Could not understand the audio")
53
- return None
54
- except sr.RequestError:
55
- st.error("Could not request results from speech recognition service")
56
- return None
 
 
 
 
 
 
 
 
 
57
  return None
58
 
59
  def get_song_recommendations(mood, api_key):
@@ -111,12 +130,13 @@ if input_method == "Text":
111
  user_text = user_mood
112
  else:
113
  # Speech input
114
- st.write("📢 Tell me about your day...")
115
  user_text = speech_to_text()
116
 
117
  if user_text:
118
- st.write(f"You said: {user_text}")
119
  user_mood = detect_mood(user_text)
 
120
 
121
  # Playlist
122
  if 'playlist' not in st.session_state:
 
6
  import tempfile
7
  from audio_recorder_streamlit import audio_recorder
8
  import numpy as np
9
+ import wave
10
+ import io
11
 
12
  # Load sentiment analysis model using PyTorch backend
13
  mood_classifier = pipeline("sentiment-analysis", framework="pt")
14
 
15
+ def convert_audio_to_wav(audio_bytes):
16
+ # Create a wave file in memory
17
+ wav_buffer = io.BytesIO()
18
+
19
+ with wave.open(wav_buffer, 'wb') as wav_file:
20
+ wav_file.setnchannels(1) # Mono
21
+ wav_file.setsampwidth(2) # 2 bytes per sample
22
+ wav_file.setframerate(44100) # Sample rate
23
+ wav_file.writeframes(audio_bytes)
24
+
25
+ return wav_buffer.getvalue()
26
+
27
  def detect_mood(text):
28
  result = mood_classifier(text)[0]
29
  if result['label'] == 'POSITIVE':
 
37
  # Initialize recognizer
38
  r = sr.Recognizer()
39
 
40
+ # Add audio recording widget
41
+ audio_bytes = audio_recorder(
42
+ text="Click to record your mood",
43
+ recording_color="#e8b62c",
44
+ neutral_color="#6aa36f",
45
+ pause_threshold=2.0 # Automatically stop after 2 seconds of silence
46
+ )
47
+
48
+ if audio_bytes:
49
+ try:
50
+ # Create a temporary WAV file
51
+ with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
52
+ # Convert and write audio bytes to WAV format
53
+ wav_bytes = convert_audio_to_wav(audio_bytes)
54
+ temp_audio.write(wav_bytes)
55
+ temp_audio.flush()
 
 
 
56
 
57
+ # Use the temporary file for speech recognition
58
+ with sr.AudioFile(temp_audio.name) as source:
59
+ # Record the audio file
60
+ audio = r.record(source)
61
+
62
+ try:
63
+ # Attempt speech recognition
64
+ text = r.recognize_google(audio)
65
+ st.success("Speech recognized successfully!")
66
+ return text
67
+ except sr.UnknownValueError:
68
+ st.error("Could not understand the audio. Please try speaking clearly and try again.")
69
+ return None
70
+ except sr.RequestError as e:
71
+ st.error(f"Could not request results from speech recognition service; {e}")
72
+ return None
73
+ except Exception as e:
74
+ st.error(f"Error processing audio: {e}")
75
+ return None
76
  return None
77
 
78
  def get_song_recommendations(mood, api_key):
 
130
  user_text = user_mood
131
  else:
132
  # Speech input
133
+ st.write("📢 Click the button below and tell me about your day...")
134
  user_text = speech_to_text()
135
 
136
  if user_text:
137
+ st.info(f"You said: '{user_text}'")
138
  user_mood = detect_mood(user_text)
139
+ st.write(f"Based on what you said, I detect your mood as: **{user_mood}**")
140
 
141
  # Playlist
142
  if 'playlist' not in st.session_state: