Update app.py
Browse files
app.py
CHANGED
@@ -6,11 +6,24 @@ import speech_recognition as sr
|
|
6 |
import tempfile
|
7 |
from audio_recorder_streamlit import audio_recorder
|
8 |
import numpy as np
|
|
|
|
|
9 |
|
10 |
# Load sentiment analysis model using PyTorch backend
|
11 |
mood_classifier = pipeline("sentiment-analysis", framework="pt")
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def detect_mood(text):
|
15 |
result = mood_classifier(text)[0]
|
16 |
if result['label'] == 'POSITIVE':
|
@@ -24,36 +37,42 @@ def speech_to_text():
|
|
24 |
# Initialize recognizer
|
25 |
r = sr.Recognizer()
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
# Adjust for ambient noise and record
|
44 |
-
r.adjust_for_ambient_noise(source)
|
45 |
-
audio = r.record(source)
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
return None
|
58 |
|
59 |
def get_song_recommendations(mood, api_key):
|
@@ -111,12 +130,13 @@ if input_method == "Text":
|
|
111 |
user_text = user_mood
|
112 |
else:
|
113 |
# Speech input
|
114 |
-
st.write("📢
|
115 |
user_text = speech_to_text()
|
116 |
|
117 |
if user_text:
|
118 |
-
st.
|
119 |
user_mood = detect_mood(user_text)
|
|
|
120 |
|
121 |
# Playlist
|
122 |
if 'playlist' not in st.session_state:
|
|
|
6 |
import tempfile
|
7 |
from audio_recorder_streamlit import audio_recorder
|
8 |
import numpy as np
|
9 |
+
import wave
|
10 |
+
import io
|
11 |
|
12 |
# Load sentiment analysis model using PyTorch backend
|
13 |
mood_classifier = pipeline("sentiment-analysis", framework="pt")
|
14 |
|
15 |
+
def convert_audio_to_wav(audio_bytes):
|
16 |
+
# Create a wave file in memory
|
17 |
+
wav_buffer = io.BytesIO()
|
18 |
+
|
19 |
+
with wave.open(wav_buffer, 'wb') as wav_file:
|
20 |
+
wav_file.setnchannels(1) # Mono
|
21 |
+
wav_file.setsampwidth(2) # 2 bytes per sample
|
22 |
+
wav_file.setframerate(44100) # Sample rate
|
23 |
+
wav_file.writeframes(audio_bytes)
|
24 |
+
|
25 |
+
return wav_buffer.getvalue()
|
26 |
+
|
27 |
def detect_mood(text):
|
28 |
result = mood_classifier(text)[0]
|
29 |
if result['label'] == 'POSITIVE':
|
|
|
37 |
# Initialize recognizer
|
38 |
r = sr.Recognizer()
|
39 |
|
40 |
+
# Add audio recording widget
|
41 |
+
audio_bytes = audio_recorder(
|
42 |
+
text="Click to record your mood",
|
43 |
+
recording_color="#e8b62c",
|
44 |
+
neutral_color="#6aa36f",
|
45 |
+
pause_threshold=2.0 # Automatically stop after 2 seconds of silence
|
46 |
+
)
|
47 |
+
|
48 |
+
if audio_bytes:
|
49 |
+
try:
|
50 |
+
# Create a temporary WAV file
|
51 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
|
52 |
+
# Convert and write audio bytes to WAV format
|
53 |
+
wav_bytes = convert_audio_to_wav(audio_bytes)
|
54 |
+
temp_audio.write(wav_bytes)
|
55 |
+
temp_audio.flush()
|
|
|
|
|
|
|
56 |
|
57 |
+
# Use the temporary file for speech recognition
|
58 |
+
with sr.AudioFile(temp_audio.name) as source:
|
59 |
+
# Record the audio file
|
60 |
+
audio = r.record(source)
|
61 |
+
|
62 |
+
try:
|
63 |
+
# Attempt speech recognition
|
64 |
+
text = r.recognize_google(audio)
|
65 |
+
st.success("Speech recognized successfully!")
|
66 |
+
return text
|
67 |
+
except sr.UnknownValueError:
|
68 |
+
st.error("Could not understand the audio. Please try speaking clearly and try again.")
|
69 |
+
return None
|
70 |
+
except sr.RequestError as e:
|
71 |
+
st.error(f"Could not request results from speech recognition service; {e}")
|
72 |
+
return None
|
73 |
+
except Exception as e:
|
74 |
+
st.error(f"Error processing audio: {e}")
|
75 |
+
return None
|
76 |
return None
|
77 |
|
78 |
def get_song_recommendations(mood, api_key):
|
|
|
130 |
user_text = user_mood
|
131 |
else:
|
132 |
# Speech input
|
133 |
+
st.write("📢 Click the button below and tell me about your day...")
|
134 |
user_text = speech_to_text()
|
135 |
|
136 |
if user_text:
|
137 |
+
st.info(f"You said: '{user_text}'")
|
138 |
user_mood = detect_mood(user_text)
|
139 |
+
st.write(f"Based on what you said, I detect your mood as: **{user_mood}**")
|
140 |
|
141 |
# Playlist
|
142 |
if 'playlist' not in st.session_state:
|