Update app.py
Browse files
app.py
CHANGED
|
@@ -2,9 +2,13 @@ import streamlit as st
|
|
| 2 |
from transformers import pipeline
|
| 3 |
import google.generativeai as genai
|
| 4 |
from pytube import Search
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Load sentiment analysis model using PyTorch backend
|
| 7 |
-
mood_classifier = pipeline("sentiment-analysis", framework="pt")
|
| 8 |
|
| 9 |
# Functions
|
| 10 |
def detect_mood(text):
|
|
@@ -16,11 +20,46 @@ def detect_mood(text):
|
|
| 16 |
else:
|
| 17 |
return "neutral"
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
def get_song_recommendations(mood, api_key):
|
| 20 |
try:
|
| 21 |
genai.configure(api_key=api_key)
|
| 22 |
model = genai.GenerativeModel('gemini-pro')
|
| 23 |
-
|
| 24 |
# System prompt to guide the AI
|
| 25 |
system_prompt = """
|
| 26 |
You are a music recommendation assistant specialized in Indian songs. Your task is to suggest popular Indian songs based on the user's mood.
|
|
@@ -59,16 +98,30 @@ mood_options = ["happy", "sad", "energetic", "romantic", "calm"]
|
|
| 59 |
# Input for Gemini API key
|
| 60 |
gemini_api_key = st.sidebar.text_input("Enter your Gemini API Key:", type="password")
|
| 61 |
|
| 62 |
-
# Add
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
# Playlist
|
| 66 |
if 'playlist' not in st.session_state:
|
| 67 |
st.session_state.playlist = []
|
| 68 |
|
| 69 |
# Main content
|
| 70 |
-
if user_mood and gemini_api_key:
|
| 71 |
-
mood = detect_mood(user_mood)
|
| 72 |
st.write(f"🎭 Detected Mood: **{mood}**")
|
| 73 |
|
| 74 |
st.write("🎵 Recommended Songs:")
|
|
|
|
| 2 |
from transformers import pipeline
|
| 3 |
import google.generativeai as genai
|
| 4 |
from pytube import Search
|
| 5 |
+
import speech_recognition as sr
|
| 6 |
+
import tempfile
|
| 7 |
+
from pydub import AudioSegment
|
| 8 |
+
import numpy as np
|
| 9 |
|
| 10 |
# Load sentiment analysis model using PyTorch backend
|
| 11 |
+
mood_classifier = pipeline("sentiment-analysis", framework="pt")
|
| 12 |
|
| 13 |
# Functions
|
| 14 |
def detect_mood(text):
|
|
|
|
| 20 |
else:
|
| 21 |
return "neutral"
|
| 22 |
|
| 23 |
+
def speech_to_text():
|
| 24 |
+
# Initialize recognizer
|
| 25 |
+
r = sr.Recognizer()
|
| 26 |
+
|
| 27 |
+
# Create a temporary file to store the recorded audio
|
| 28 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as fp:
|
| 29 |
+
# Add audio recording widget
|
| 30 |
+
audio_bytes = st.audio_recorder(
|
| 31 |
+
text="Click to record your mood",
|
| 32 |
+
recording_color="#e8b62c",
|
| 33 |
+
neutral_color="#6aa36f"
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
if audio_bytes:
|
| 37 |
+
# Save audio bytes to temporary file
|
| 38 |
+
fp.write(audio_bytes)
|
| 39 |
+
temp_filename = fp.name
|
| 40 |
+
|
| 41 |
+
# Read the audio file
|
| 42 |
+
with sr.AudioFile(temp_filename) as source:
|
| 43 |
+
# Adjust for ambient noise and record
|
| 44 |
+
r.adjust_for_ambient_noise(source)
|
| 45 |
+
audio = r.record(source)
|
| 46 |
+
|
| 47 |
+
try:
|
| 48 |
+
# Use Google Speech Recognition
|
| 49 |
+
text = r.recognize_google(audio)
|
| 50 |
+
return text
|
| 51 |
+
except sr.UnknownValueError:
|
| 52 |
+
st.error("Could not understand the audio")
|
| 53 |
+
return None
|
| 54 |
+
except sr.RequestError:
|
| 55 |
+
st.error("Could not request results from speech recognition service")
|
| 56 |
+
return None
|
| 57 |
+
return None
|
| 58 |
+
|
| 59 |
def get_song_recommendations(mood, api_key):
|
| 60 |
try:
|
| 61 |
genai.configure(api_key=api_key)
|
| 62 |
model = genai.GenerativeModel('gemini-pro')
|
|
|
|
| 63 |
# System prompt to guide the AI
|
| 64 |
system_prompt = """
|
| 65 |
You are a music recommendation assistant specialized in Indian songs. Your task is to suggest popular Indian songs based on the user's mood.
|
|
|
|
| 98 |
# Input for Gemini API key
|
| 99 |
gemini_api_key = st.sidebar.text_input("Enter your Gemini API Key:", type="password")
|
| 100 |
|
| 101 |
+
# Add option to choose between text and speech input
|
| 102 |
+
input_method = st.sidebar.radio("Choose input method:", ["Text", "Speech"])
|
| 103 |
+
|
| 104 |
+
if input_method == "Text":
|
| 105 |
+
# Text input
|
| 106 |
+
user_mood = st.sidebar.selectbox("Select your mood:", mood_options)
|
| 107 |
+
else:
|
| 108 |
+
# Speech input
|
| 109 |
+
st.write("📢 Tell me about your day...")
|
| 110 |
+
spoken_text = speech_to_text()
|
| 111 |
+
|
| 112 |
+
if spoken_text:
|
| 113 |
+
st.write(f"You said: {spoken_text}")
|
| 114 |
+
user_mood = detect_mood(spoken_text)
|
| 115 |
+
else:
|
| 116 |
+
user_mood = None
|
| 117 |
|
| 118 |
# Playlist
|
| 119 |
if 'playlist' not in st.session_state:
|
| 120 |
st.session_state.playlist = []
|
| 121 |
|
| 122 |
# Main content
|
| 123 |
+
if (user_mood or spoken_text) and gemini_api_key:
|
| 124 |
+
mood = detect_mood(user_mood if user_mood else spoken_text)
|
| 125 |
st.write(f"🎭 Detected Mood: **{mood}**")
|
| 126 |
|
| 127 |
st.write("🎵 Recommended Songs:")
|