File size: 11,360 Bytes
f5fbd23 007d795 f5fbd23 9d6df4b 5b475af 8ad7e0c 007d795 9d6df4b 007d795 e25cab4 5f52218 9d6df4b 5f52218 e25cab4 007d795 e25cab4 007d795 9d6df4b 007d795 e25cab4 007d795 9d6df4b 5f52218 007d795 5f52218 e25cab4 5f52218 007d795 5f52218 e25cab4 5f52218 007d795 e25cab4 007d795 e25cab4 5f52218 007d795 8ad7e0c 007d795 8ad7e0c 007d795 8ad7e0c 007d795 e25cab4 007d795 e25cab4 007d795 e25cab4 007d795 8ad7e0c 007d795 8ad7e0c 007d795 9d6df4b 8ad7e0c 5f52218 007d795 e25cab4 007d795 5f52218 007d795 8ad7e0c e25cab4 007d795 5f52218 007d795 5f52218 007d795 5f52218 007d795 5f52218 e25cab4 5f52218 007d795 e25cab4 007d795 5f52218 007d795 5f52218 007d795 f5fbd23 007d795 f5fbd23 007d795 f5fbd23 007d795 f5fbd23 5b475af e25cab4 5b475af 007d795 5b475af 007d795 f5fbd23 5b475af 007d795 f5fbd23 007d795 f5fbd23 9d6df4b 007d795 f5fbd23 007d795 f5fbd23 d8bea64 007d795 f5fbd23 007d795 f5fbd23 007d795 d8bea64 007d795 f5fbd23 007d795 f5fbd23 e25cab4 007d795 e25cab4 f5fbd23 007d795 f5fbd23 007d795 f5fbd23 007d795 f5fbd23 e25cab4 f5fbd23 d8bea64 e25cab4 d8bea64 f5fbd23 007d795 f5fbd23 007d795 f5fbd23 d8bea64 f5fbd23 9d6df4b 007d795 f5fbd23 9d6df4b f5fbd23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import cv2
import numpy as np
from transformers import CLIPProcessor, CLIPModel, Blip2Processor, Blip2ForConditionalGeneration
import torch
from PIL import Image
import faiss
from typing import List, Dict, Tuple
import logging
import gradio as gr
import tempfile
import os
import shutil
from tqdm import tqdm
from pathlib import Path
from moviepy.video.io.VideoFileClip import VideoFileClip
class VideoRAGSystem:
def __init__(self):
self.logger = self.setup_logger()
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.logger.info(f"Using device: {self.device}")
# Initialize models
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(self.device)
self.clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
self.blip_processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
self.blip_model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to(self.device)
# Vector store setup
self.frame_index = None
self.frame_data = []
self.target_size = (224, 224)
# Create directories for storing processed data
self.temp_dir = tempfile.mkdtemp()
self.frames_dir = os.path.join(self.temp_dir, "frames")
os.makedirs(self.frames_dir, exist_ok=True)
def setup_logger(self) -> logging.Logger:
logger = logging.getLogger('VideoRAGSystem')
if logger.handlers:
logger.handlers.clear()
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger
def split_video(self, video_path: str, timestamp_ms: int, context_seconds: int = 3) -> str:
"""Extract a clip around the specified timestamp"""
timestamp_sec = timestamp_ms / 1000
output_path = os.path.join(self.temp_dir, "clip.mp4")
with VideoFileClip(video_path) as video:
duration = video.duration
start_time = max(timestamp_sec - context_seconds, 0)
end_time = min(timestamp_sec + context_seconds, duration)
clip = video.subclip(start_time, end_time)
clip.write_videofile(output_path, audio_codec='aac')
return output_path
@torch.no_grad()
def analyze_frame(self, image: Image.Image) -> Dict:
"""Comprehensive frame analysis"""
try:
# Generate caption
inputs = self.blip_processor(image, return_tensors="pt").to(self.device)
if self.device.type == "cuda":
inputs = {k: v.half() if v.dtype == torch.float32 else v for k, v in inputs.items()}
caption = self.blip_model.generate(**inputs, max_length=50)
caption_text = self.blip_processor.decode(caption[0], skip_special_tokens=True)
# Get visual features
clip_inputs = self.clip_processor(images=image, return_tensors="pt").to(self.device)
if self.device.type == "cuda":
clip_inputs = {k: v.half() if v.dtype == torch.float32 else v for k, v in clip_inputs.items()}
features = self.clip_model.get_image_features(**clip_inputs)
return {
"caption": caption_text,
"features": features.cpu().numpy()
}
except Exception as e:
self.logger.error(f"Frame analysis error: {str(e)}")
return None
def extract_keyframes(self, video_path: str, max_frames: int = 15) -> List[Dict]:
"""Extract and analyze key frames"""
cap = cv2.VideoCapture(video_path)
frames_info = []
frame_count = 0
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
interval = max(1, total_frames // max_frames)
with tqdm(total=max_frames, desc="Analyzing frames") as pbar:
while len(frames_info) < max_frames and cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if frame_count % interval == 0:
# Save frame
frame_path = os.path.join(self.frames_dir, f"frame_{frame_count}.jpg")
cv2.imwrite(frame_path, frame)
# Analyze frame
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image = Image.fromarray(frame_rgb).resize(self.target_size, Image.LANCZOS)
analysis = self.analyze_frame(image)
if analysis is not None:
frames_info.append({
"frame_number": frame_count,
"timestamp": frame_count / cap.get(cv2.CAP_PROP_FPS),
"path": frame_path,
"caption": analysis["caption"],
"features": analysis["features"]
})
pbar.update(1)
frame_count += 1
cap.release()
return frames_info
def process_video(self, video_path: str):
"""Process video and build search index"""
self.logger.info(f"Processing video: {video_path}")
try:
# Extract and analyze frames
frames_info = self.extract_keyframes(video_path)
self.frame_data = frames_info
# Build FAISS index
if frames_info:
features = np.vstack([frame["features"] for frame in frames_info])
self.frame_index = faiss.IndexFlatL2(features.shape[1])
self.frame_index.add(features)
self.logger.info(f"Processed {len(frames_info)} frames successfully")
return True
except Exception as e:
self.logger.error(f"Video processing error: {str(e)}")
return False
@torch.no_grad()
def search_frames(self, query: str, k: int = 4) -> List[Dict]:
"""Search for relevant frames based on the query"""
try:
# Process query
inputs = self.clip_processor(text=[query], return_tensors="pt").to(self.device)
if self.device.type == "cuda":
inputs = {k: v.half() if v.dtype == torch.float32 else v for k, v in inputs.items()}
query_features = self.clip_model.get_text_features(**inputs)
# Search
distances, indices = self.frame_index.search(
query_features.cpu().numpy(),
k
)
# Prepare results
results = []
for distance, idx in zip(distances[0], indices[0]):
frame_info = self.frame_data[idx].copy()
frame_info["relevance"] = float(1 / (1 + distance))
results.append(frame_info)
return results
except Exception as e:
self.logger.error(f"Search error: {str(e)}")
return []
class VideoQAInterface:
def __init__(self):
self.rag_system = VideoRAGSystem()
self.current_video = None
self.processed = False
def process_video(self, video_file):
"""Handle video upload and processing"""
try:
if video_file is None:
return "Please upload a video first.", gr.Progress(0)
self.current_video = video_file.name
success = self.rag_system.process_video(self.current_video)
if success:
self.processed = True
return "Video processed successfully! You can now ask questions.", gr.Progress(100)
else:
return "Error processing video. Please try again.", gr.Progress(0)
except Exception as e:
self.processed = False
return f"Error: {str(e)}", gr.Progress(0)
def answer_question(self, query):
"""Handle question answering"""
if not self.processed:
return None, "Please process a video first."
try:
# Search for relevant frames
results = self.rag_system.search_frames(query)
if not results:
return None, "No relevant frames found."
# Prepare output
frames = []
descriptions = []
for result in results:
# Load frame
frame = Image.open(result["path"])
frames.append(frame)
# Prepare description
desc = f"Timestamp: {result['timestamp']:.2f}s\n"
desc += f"Scene Description: {result['caption']}\n"
desc += f"Relevance Score: {result['relevance']:.2f}"
descriptions.append(desc)
# Combine descriptions
combined_desc = "\n\nFrame Analysis:\n\n"
for i, desc in enumerate(descriptions, 1):
combined_desc += f"Frame {i}:\n{desc}\n\n"
return frames, combined_desc
except Exception as e:
return None, f"Error: {str(e)}"
def create_interface(self):
"""Create Gradio interface"""
with gr.Blocks(title="Advanced Video Question Answering") as interface:
gr.Markdown("# Advanced Video Question Answering")
gr.Markdown("Upload a video and ask questions about any aspect of its content!")
with gr.Row():
video_input = gr.File(
label="Upload Video",
file_types=["video"],
)
process_button = gr.Button("Process Video")
status_output = gr.Textbox(
label="Status",
interactive=False
)
with gr.Row():
query_input = gr.Textbox(
label="Ask about the video",
placeholder="What's happening in the video?"
)
query_button = gr.Button("Search")
gallery = gr.Gallery(
label="Retrieved Frames",
show_label=True,
columns=[2],
rows=[2],
height="auto"
)
descriptions = gr.Textbox(
label="Scene Analysis",
interactive=False,
lines=10
)
process_button.click(
fn=self.process_video,
inputs=[video_input],
outputs=[status_output]
)
query_button.click(
fn=self.answer_question,
inputs=[query_input],
outputs=[gallery, descriptions]
)
return interface
# Initialize and create the interface
app = VideoQAInterface()
interface = app.create_interface()
# Launch the app
if __name__ == "__main__":
interface.launch() |