Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,11 @@
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
import faiss
|
@@ -11,233 +16,247 @@ import tempfile
|
|
11 |
import os
|
12 |
import shutil
|
13 |
from tqdm import tqdm
|
14 |
-
import math
|
15 |
|
16 |
-
class
|
17 |
-
def __init__(self
|
18 |
-
blip_model_name: str = "Salesforce/blip-image-captioning-base"):
|
19 |
-
"""Initialize with performance optimizations."""
|
20 |
-
# Setup logger first to avoid the attribute error
|
21 |
self.logger = self.setup_logger()
|
22 |
-
|
23 |
-
self.logger.info("Initializing VideoRAGTool...")
|
24 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
self.logger.info(f"Using device: {self.device}")
|
26 |
-
|
27 |
-
# Initialize
|
28 |
-
self.
|
29 |
-
self.
|
30 |
-
self.
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
self.
|
35 |
-
self.
|
36 |
-
|
37 |
-
|
38 |
-
self.
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
40 |
self.frame_index = None
|
41 |
self.frame_data = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def setup_logger(self) -> logging.Logger:
|
44 |
-
|
45 |
-
logger = logging.getLogger('VideoRAGTool')
|
46 |
-
|
47 |
-
# Clear any existing handlers
|
48 |
if logger.handlers:
|
49 |
logger.handlers.clear()
|
50 |
-
|
51 |
logger.setLevel(logging.INFO)
|
52 |
handler = logging.StreamHandler()
|
53 |
-
formatter = logging.Formatter('%(asctime)s - %(
|
54 |
handler.setFormatter(formatter)
|
55 |
logger.addHandler(handler)
|
56 |
return logger
|
57 |
|
58 |
@torch.no_grad()
|
59 |
-
def
|
60 |
-
"""
|
61 |
try:
|
62 |
-
|
63 |
-
|
64 |
-
caption = self.
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
except Exception as e:
|
67 |
-
self.logger.error(f"Error
|
68 |
-
return "
|
69 |
|
70 |
-
def
|
71 |
-
"""
|
72 |
cap = cv2.VideoCapture(video_path)
|
73 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
74 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
cap.release()
|
76 |
-
return
|
77 |
-
|
78 |
-
def preprocess_frame(self, frame: np.ndarray, target_size: Tuple[int, int] = (224, 224)) -> Image.Image:
|
79 |
-
"""Preprocess frame with resizing for efficiency."""
|
80 |
-
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
81 |
-
image = Image.fromarray(frame_rgb)
|
82 |
-
return image.resize(target_size, Image.LANCZOS)
|
83 |
|
84 |
@torch.no_grad()
|
85 |
-
def
|
86 |
-
"""Process
|
87 |
-
try:
|
88 |
-
# CLIP processing
|
89 |
-
clip_inputs = self.clip_processor(images=frames, return_tensors="pt", padding=True).to(self.device)
|
90 |
-
image_features = self.clip_model.get_image_features(**clip_inputs)
|
91 |
-
|
92 |
-
# BLIP processing
|
93 |
-
captions = []
|
94 |
-
for frame in frames:
|
95 |
-
caption = self.generate_caption(frame)
|
96 |
-
captions.append(caption)
|
97 |
-
|
98 |
-
return image_features.cpu().numpy(), captions
|
99 |
-
except Exception as e:
|
100 |
-
self.logger.error(f"Error processing batch: {str(e)}")
|
101 |
-
raise
|
102 |
-
|
103 |
-
def process_video(self, video_path: str, frame_interval: int = 30) -> None:
|
104 |
-
"""Optimized video processing with batching and progress tracking."""
|
105 |
self.logger.info(f"Processing video: {video_path}")
|
|
|
|
|
106 |
|
107 |
try:
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
# Calculate total batches for progress bar
|
112 |
-
frames_to_process = total_frames // frame_interval
|
113 |
-
total_batches = math.ceil(frames_to_process / self.batch_size)
|
114 |
-
|
115 |
-
current_batch = []
|
116 |
-
features_list = []
|
117 |
-
frame_count = 0
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
processed_frame = self.preprocess_frame(frame)
|
128 |
-
current_batch.append(processed_frame)
|
129 |
-
|
130 |
-
# Process batch when it reaches batch_size
|
131 |
-
if len(current_batch) == self.batch_size:
|
132 |
-
batch_features, batch_captions = self.process_batch(current_batch)
|
133 |
-
|
134 |
-
# Store results
|
135 |
-
for i, (features, caption) in enumerate(zip(batch_features, batch_captions)):
|
136 |
-
batch_frame_number = frame_count - (self.batch_size - i - 1) * frame_interval
|
137 |
-
self.frame_data.append({
|
138 |
-
'frame_number': batch_frame_number,
|
139 |
-
'timestamp': batch_frame_number / fps,
|
140 |
-
'caption': caption
|
141 |
-
})
|
142 |
-
features_list.append(features)
|
143 |
-
|
144 |
-
current_batch = []
|
145 |
-
pbar.update(self.batch_size)
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
if not features_list:
|
164 |
-
raise ValueError("No frames were processed from the video")
|
165 |
-
|
166 |
# Create FAISS index
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
172 |
|
173 |
except Exception as e:
|
174 |
self.logger.error(f"Error processing video: {str(e)}")
|
175 |
raise
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
try:
|
182 |
-
|
183 |
-
|
|
|
184 |
|
|
|
185 |
distances, indices = self.frame_index.search(
|
186 |
-
text_features.cpu().
|
187 |
k
|
188 |
)
|
189 |
|
|
|
190 |
results = []
|
191 |
-
for
|
192 |
frame_info = self.frame_data[idx].copy()
|
|
|
|
|
193 |
frame_info['relevance_score'] = float(1 / (1 + distance))
|
194 |
-
results.append(frame_info)
|
195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
return results
|
|
|
197 |
except Exception as e:
|
198 |
self.logger.error(f"Error querying video: {str(e)}")
|
199 |
raise
|
200 |
|
201 |
-
class
|
202 |
def __init__(self):
|
203 |
-
self.
|
204 |
self.current_video_path = None
|
205 |
self.processed = False
|
206 |
self.temp_dir = tempfile.mkdtemp()
|
207 |
|
208 |
def __del__(self):
|
209 |
-
"""Cleanup temporary files on deletion"""
|
210 |
if hasattr(self, 'temp_dir') and os.path.exists(self.temp_dir):
|
211 |
shutil.rmtree(self.temp_dir, ignore_errors=True)
|
212 |
|
213 |
def process_video(self, video_file):
|
214 |
-
"""Process
|
215 |
try:
|
216 |
if video_file is None:
|
217 |
-
return "Please upload a video first."
|
218 |
|
219 |
video_path = video_file.name
|
220 |
temp_video_path = os.path.join(self.temp_dir, "current_video.mp4")
|
221 |
shutil.copy2(video_path, temp_video_path)
|
222 |
|
223 |
self.current_video_path = temp_video_path
|
224 |
-
|
225 |
-
self.rag_tool.process_video(self.current_video_path)
|
226 |
self.processed = True
|
227 |
-
|
|
|
228 |
|
229 |
except Exception as e:
|
230 |
self.processed = False
|
231 |
-
return f"Error processing video: {str(e)}"
|
232 |
|
233 |
def query_video(self, query_text):
|
234 |
-
"""Query
|
235 |
if not self.processed:
|
236 |
return None, "Please process a video first."
|
237 |
|
238 |
try:
|
239 |
-
results = self.
|
240 |
-
|
241 |
frames = []
|
242 |
descriptions = []
|
243 |
|
@@ -254,13 +273,14 @@ class VideoRAGApp:
|
|
254 |
|
255 |
description = f"Timestamp: {result['timestamp']:.2f}s\n"
|
256 |
description += f"Scene Description: {result['caption']}\n"
|
|
|
|
|
257 |
description += f"Relevance Score: {result['relevance_score']:.2f}"
|
258 |
descriptions.append(description)
|
259 |
|
260 |
cap.release()
|
261 |
|
262 |
-
|
263 |
-
combined_description = "\n\nFrame Analysis:\n\n"
|
264 |
for i, desc in enumerate(descriptions, 1):
|
265 |
combined_description += f"Frame {i}:\n{desc}\n\n"
|
266 |
|
@@ -270,42 +290,43 @@ class VideoRAGApp:
|
|
270 |
return None, f"Error querying video: {str(e)}"
|
271 |
|
272 |
def create_interface(self):
|
273 |
-
"""Create
|
274 |
-
with gr.Blocks(title="Video
|
275 |
-
gr.Markdown("# Video
|
276 |
-
gr.Markdown("Upload a video and ask questions about its content!")
|
277 |
|
278 |
with gr.Row():
|
279 |
video_input = gr.File(
|
280 |
-
label="Upload Video",
|
281 |
file_types=["video"],
|
282 |
)
|
283 |
process_button = gr.Button("Process Video")
|
284 |
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
|
|
|
|
289 |
|
290 |
with gr.Row():
|
291 |
query_input = gr.Textbox(
|
292 |
-
label="Ask about the video",
|
293 |
placeholder="What's happening in the video?"
|
294 |
)
|
295 |
query_button = gr.Button("Search")
|
296 |
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
)
|
306 |
|
307 |
descriptions = gr.Textbox(
|
308 |
-
label="Scene
|
309 |
interactive=False,
|
310 |
lines=10
|
311 |
)
|
@@ -313,7 +334,7 @@ class VideoRAGApp:
|
|
313 |
process_button.click(
|
314 |
fn=self.process_video,
|
315 |
inputs=[video_input],
|
316 |
-
outputs=[status_output]
|
317 |
)
|
318 |
|
319 |
query_button.click(
|
@@ -325,7 +346,7 @@ class VideoRAGApp:
|
|
325 |
return interface
|
326 |
|
327 |
# Initialize and create the interface
|
328 |
-
app =
|
329 |
interface = app.create_interface()
|
330 |
|
331 |
# Launch the app
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
+
from transformers import (
|
4 |
+
CLIPProcessor, CLIPModel,
|
5 |
+
BlipProcessor, BlipForConditionalGeneration,
|
6 |
+
Blip2Processor, Blip2ForConditionalGeneration,
|
7 |
+
AutoProcessor, AutoModelForObjectDetection
|
8 |
+
)
|
9 |
import torch
|
10 |
from PIL import Image
|
11 |
import faiss
|
|
|
16 |
import os
|
17 |
import shutil
|
18 |
from tqdm import tqdm
|
|
|
19 |
|
20 |
+
class EnhancedVideoAnalyzer:
|
21 |
+
def __init__(self):
|
|
|
|
|
|
|
22 |
self.logger = self.setup_logger()
|
|
|
|
|
23 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
self.logger.info(f"Using device: {self.device}")
|
25 |
+
|
26 |
+
# Initialize CLIP for general scene understanding
|
27 |
+
self.logger.info("Loading CLIP model...")
|
28 |
+
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14").to(self.device)
|
29 |
+
self.clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
30 |
+
|
31 |
+
# Initialize BLIP-2 for detailed scene description
|
32 |
+
self.logger.info("Loading BLIP-2 model...")
|
33 |
+
self.blip2_processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
34 |
+
self.blip2_model = Blip2ForConditionalGeneration.from_pretrained(
|
35 |
+
"Salesforce/blip2-opt-2.7b",
|
36 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
37 |
+
).to(self.device)
|
38 |
+
|
39 |
+
# Initialize Object Detection model
|
40 |
+
self.logger.info("Loading object detection model...")
|
41 |
+
self.obj_processor = AutoProcessor.from_pretrained("microsoft/table-transformer-detection")
|
42 |
+
self.obj_model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection").to(self.device)
|
43 |
+
|
44 |
self.frame_index = None
|
45 |
self.frame_data = []
|
46 |
+
self.target_size = (384, 384) # Increased size for better detail recognition
|
47 |
+
self.batch_size = 4
|
48 |
+
|
49 |
+
# Set all models to evaluation mode
|
50 |
+
self.clip_model.eval()
|
51 |
+
self.blip2_model.eval()
|
52 |
+
self.obj_model.eval()
|
53 |
|
54 |
def setup_logger(self) -> logging.Logger:
|
55 |
+
logger = logging.getLogger('EnhancedVideoAnalyzer')
|
|
|
|
|
|
|
56 |
if logger.handlers:
|
57 |
logger.handlers.clear()
|
|
|
58 |
logger.setLevel(logging.INFO)
|
59 |
handler = logging.StreamHandler()
|
60 |
+
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
61 |
handler.setFormatter(formatter)
|
62 |
logger.addHandler(handler)
|
63 |
return logger
|
64 |
|
65 |
@torch.no_grad()
|
66 |
+
def analyze_frame(self, image: Image.Image) -> Dict:
|
67 |
+
"""Comprehensive frame analysis"""
|
68 |
try:
|
69 |
+
# 1. Generate detailed caption using BLIP-2
|
70 |
+
inputs = self.blip2_processor(image, return_tensors="pt").to(self.device, torch.float16)
|
71 |
+
caption = self.blip2_model.generate(**inputs, max_new_tokens=50)
|
72 |
+
caption_text = self.blip2_processor.decode(caption[0], skip_special_tokens=True)
|
73 |
+
|
74 |
+
# 2. Detect objects
|
75 |
+
obj_inputs = self.obj_processor(images=image, return_tensors="pt").to(self.device)
|
76 |
+
obj_outputs = self.obj_model(**obj_inputs)
|
77 |
+
|
78 |
+
# Process object detection results
|
79 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
80 |
+
results = self.obj_processor.post_process_object_detection(
|
81 |
+
obj_outputs, threshold=0.5, target_sizes=target_sizes
|
82 |
+
)[0]
|
83 |
+
|
84 |
+
detected_objects = []
|
85 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
86 |
+
detected_objects.append({
|
87 |
+
"label": self.obj_processor.model.config.id2label[label.item()],
|
88 |
+
"confidence": score.item()
|
89 |
+
})
|
90 |
+
|
91 |
+
return {
|
92 |
+
"caption": caption_text,
|
93 |
+
"objects": detected_objects
|
94 |
+
}
|
95 |
+
|
96 |
except Exception as e:
|
97 |
+
self.logger.error(f"Error in frame analysis: {str(e)}")
|
98 |
+
return {"caption": "Error analyzing frame", "objects": []}
|
99 |
|
100 |
+
def extract_keyframes(self, video_path: str, max_frames: int = 15) -> List[Tuple[int, np.ndarray]]:
|
101 |
+
"""Extract key frames using scene detection"""
|
102 |
cap = cv2.VideoCapture(video_path)
|
103 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
104 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
105 |
+
|
106 |
+
# Calculate frame interval to get approximately max_frames
|
107 |
+
frame_interval = max(1, total_frames // max_frames)
|
108 |
+
|
109 |
+
frames = []
|
110 |
+
frame_positions = []
|
111 |
+
prev_gray = None
|
112 |
+
|
113 |
+
with tqdm(total=total_frames, desc="Extracting frames") as pbar:
|
114 |
+
while cap.isOpened() and len(frames) < max_frames:
|
115 |
+
ret, frame = cap.read()
|
116 |
+
if not ret:
|
117 |
+
break
|
118 |
+
|
119 |
+
# Convert to grayscale for scene detection
|
120 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
121 |
+
|
122 |
+
if prev_gray is not None:
|
123 |
+
# Calculate frame difference
|
124 |
+
diff = cv2.absdiff(gray, prev_gray)
|
125 |
+
mean_diff = np.mean(diff)
|
126 |
+
|
127 |
+
# If significant change or first/last frame
|
128 |
+
if mean_diff > 30 or len(frames) == 0:
|
129 |
+
frames.append(frame)
|
130 |
+
frame_positions.append(cap.get(cv2.CAP_PROP_POS_FRAMES))
|
131 |
+
|
132 |
+
prev_gray = gray
|
133 |
+
pbar.update(1)
|
134 |
+
|
135 |
cap.release()
|
136 |
+
return list(zip(frame_positions, frames))
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
@torch.no_grad()
|
139 |
+
def process_video(self, video_path: str) -> None:
|
140 |
+
"""Process video with comprehensive analysis"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
self.logger.info(f"Processing video: {video_path}")
|
142 |
+
self.frame_data = []
|
143 |
+
features_list = []
|
144 |
|
145 |
try:
|
146 |
+
# Extract key frames
|
147 |
+
keyframes = self.extract_keyframes(video_path)
|
148 |
+
self.logger.info(f"Extracted {len(keyframes)} key frames")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
+
# Process frames with progress bar
|
151 |
+
with tqdm(total=len(keyframes), desc="Analyzing frames") as pbar:
|
152 |
+
for frame_pos, frame in keyframes:
|
153 |
+
# Convert frame to PIL Image
|
154 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
155 |
+
image = Image.fromarray(frame_rgb).resize(self.target_size, Image.LANCZOS)
|
156 |
|
157 |
+
# Analyze frame
|
158 |
+
analysis = self.analyze_frame(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
+
# Get CLIP features
|
161 |
+
clip_inputs = self.clip_processor(images=image, return_tensors="pt").to(self.device)
|
162 |
+
image_features = self.clip_model.get_image_features(**clip_inputs)
|
163 |
+
|
164 |
+
# Store results
|
165 |
+
self.frame_data.append({
|
166 |
+
'frame_number': int(frame_pos),
|
167 |
+
'timestamp': frame_pos / 30.0, # Approximate timestamp
|
168 |
+
'caption': analysis['caption'],
|
169 |
+
'objects': analysis['objects']
|
170 |
+
})
|
171 |
+
|
172 |
+
features_list.append(image_features.cpu().numpy())
|
173 |
+
pbar.update(1)
|
174 |
+
|
|
|
|
|
|
|
|
|
175 |
# Create FAISS index
|
176 |
+
if features_list:
|
177 |
+
features_array = np.vstack(features_list)
|
178 |
+
self.frame_index = faiss.IndexFlatL2(features_array.shape[1])
|
179 |
+
self.frame_index.add(features_array)
|
180 |
+
|
181 |
+
self.logger.info("Video processing completed successfully")
|
182 |
|
183 |
except Exception as e:
|
184 |
self.logger.error(f"Error processing video: {str(e)}")
|
185 |
raise
|
186 |
|
187 |
+
@torch.no_grad()
|
188 |
+
def query_video(self, query_text: str, k: int = 4) -> List[Dict]:
|
189 |
+
"""Enhanced query processing"""
|
|
|
190 |
try:
|
191 |
+
# Process query with CLIP
|
192 |
+
text_inputs = self.clip_processor(text=[query_text], return_tensors="pt").to(self.device)
|
193 |
+
text_features = self.clip_model.get_text_features(**text_inputs)
|
194 |
|
195 |
+
# Search for relevant frames
|
196 |
distances, indices = self.frame_index.search(
|
197 |
+
text_features.cpu().numpy(),
|
198 |
k
|
199 |
)
|
200 |
|
201 |
+
# Prepare results with enhanced information
|
202 |
results = []
|
203 |
+
for distance, idx in zip(distances[0], indices[0]):
|
204 |
frame_info = self.frame_data[idx].copy()
|
205 |
+
|
206 |
+
# Add relevance score
|
207 |
frame_info['relevance_score'] = float(1 / (1 + distance))
|
|
|
208 |
|
209 |
+
# Add object summary
|
210 |
+
obj_summary = ", ".join(obj["label"] for obj in frame_info['objects'][:3])
|
211 |
+
if obj_summary:
|
212 |
+
frame_info['object_summary'] = f"Objects detected: {obj_summary}"
|
213 |
+
|
214 |
+
results.append(frame_info)
|
215 |
+
|
216 |
return results
|
217 |
+
|
218 |
except Exception as e:
|
219 |
self.logger.error(f"Error querying video: {str(e)}")
|
220 |
raise
|
221 |
|
222 |
+
class VideoQAApp:
|
223 |
def __init__(self):
|
224 |
+
self.analyzer = EnhancedVideoAnalyzer()
|
225 |
self.current_video_path = None
|
226 |
self.processed = False
|
227 |
self.temp_dir = tempfile.mkdtemp()
|
228 |
|
229 |
def __del__(self):
|
|
|
230 |
if hasattr(self, 'temp_dir') and os.path.exists(self.temp_dir):
|
231 |
shutil.rmtree(self.temp_dir, ignore_errors=True)
|
232 |
|
233 |
def process_video(self, video_file):
|
234 |
+
"""Process video with progress updates"""
|
235 |
try:
|
236 |
if video_file is None:
|
237 |
+
return "Please upload a video first.", gr.Progress(0)
|
238 |
|
239 |
video_path = video_file.name
|
240 |
temp_video_path = os.path.join(self.temp_dir, "current_video.mp4")
|
241 |
shutil.copy2(video_path, temp_video_path)
|
242 |
|
243 |
self.current_video_path = temp_video_path
|
244 |
+
self.analyzer.process_video(self.current_video_path)
|
|
|
245 |
self.processed = True
|
246 |
+
|
247 |
+
return "Video processed successfully! You can now ask questions about the video.", gr.Progress(100)
|
248 |
|
249 |
except Exception as e:
|
250 |
self.processed = False
|
251 |
+
return f"Error processing video: {str(e)}", gr.Progress(0)
|
252 |
|
253 |
def query_video(self, query_text):
|
254 |
+
"""Query video with comprehensive results"""
|
255 |
if not self.processed:
|
256 |
return None, "Please process a video first."
|
257 |
|
258 |
try:
|
259 |
+
results = self.analyzer.query_video(query_text)
|
|
|
260 |
frames = []
|
261 |
descriptions = []
|
262 |
|
|
|
273 |
|
274 |
description = f"Timestamp: {result['timestamp']:.2f}s\n"
|
275 |
description += f"Scene Description: {result['caption']}\n"
|
276 |
+
if 'object_summary' in result:
|
277 |
+
description += f"{result['object_summary']}\n"
|
278 |
description += f"Relevance Score: {result['relevance_score']:.2f}"
|
279 |
descriptions.append(description)
|
280 |
|
281 |
cap.release()
|
282 |
|
283 |
+
combined_description = "\n\nScene Analysis:\n\n"
|
|
|
284 |
for i, desc in enumerate(descriptions, 1):
|
285 |
combined_description += f"Frame {i}:\n{desc}\n\n"
|
286 |
|
|
|
290 |
return None, f"Error querying video: {str(e)}"
|
291 |
|
292 |
def create_interface(self):
|
293 |
+
"""Create Gradio interface"""
|
294 |
+
with gr.Blocks(title="Video Question Answering") as interface:
|
295 |
+
gr.Markdown("# Advanced Video Question Answering")
|
296 |
+
gr.Markdown("Upload a video and ask questions about any aspect of its content!")
|
297 |
|
298 |
with gr.Row():
|
299 |
video_input = gr.File(
|
300 |
+
label="Upload Video (Recommended: 30 seconds to 5 minutes)",
|
301 |
file_types=["video"],
|
302 |
)
|
303 |
process_button = gr.Button("Process Video")
|
304 |
|
305 |
+
with gr.Row():
|
306 |
+
status_output = gr.Textbox(
|
307 |
+
label="Status",
|
308 |
+
interactive=False
|
309 |
+
)
|
310 |
+
progress = gr.Progress()
|
311 |
|
312 |
with gr.Row():
|
313 |
query_input = gr.Textbox(
|
314 |
+
label="Ask anything about the video",
|
315 |
placeholder="What's happening in the video?"
|
316 |
)
|
317 |
query_button = gr.Button("Search")
|
318 |
|
319 |
+
gallery = gr.Gallery(
|
320 |
+
label="Retrieved Frames",
|
321 |
+
show_label=True,
|
322 |
+
elem_id="gallery",
|
323 |
+
columns=[2],
|
324 |
+
rows=[2],
|
325 |
+
height="auto"
|
326 |
+
)
|
|
|
327 |
|
328 |
descriptions = gr.Textbox(
|
329 |
+
label="Scene Analysis",
|
330 |
interactive=False,
|
331 |
lines=10
|
332 |
)
|
|
|
334 |
process_button.click(
|
335 |
fn=self.process_video,
|
336 |
inputs=[video_input],
|
337 |
+
outputs=[status_output, progress]
|
338 |
)
|
339 |
|
340 |
query_button.click(
|
|
|
346 |
return interface
|
347 |
|
348 |
# Initialize and create the interface
|
349 |
+
app = VideoQAApp()
|
350 |
interface = app.create_interface()
|
351 |
|
352 |
# Launch the app
|