capradeepgujaran commited on
Commit
f5fbd23
·
verified ·
1 Parent(s): 63b2f85

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +132 -0
app.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from video_rag_tool import VideoRAGTool
3
+ import tempfile
4
+ import os
5
+ from PIL import Image
6
+ import cv2
7
+ import numpy as np
8
+ import torch
9
+
10
+ class VideoRAGApp:
11
+ def __init__(self):
12
+ self.rag_tool = VideoRAGTool()
13
+ self.current_video_path = None
14
+ self.processed = False
15
+
16
+ def process_video(self, video_file):
17
+ """Process uploaded video and return status message"""
18
+ if video_file is None:
19
+ return "Please upload a video first."
20
+
21
+ # Save uploaded video to temporary file
22
+ temp_dir = tempfile.mkdtemp()
23
+ temp_path = os.path.join(temp_dir, "uploaded_video.mp4")
24
+
25
+ with open(temp_path, "wb") as f:
26
+ f.write(video_file)
27
+
28
+ self.current_video_path = temp_path
29
+
30
+ try:
31
+ self.rag_tool.process_video(temp_path)
32
+ self.processed = True
33
+ return "Video processed successfully! You can now ask questions about the video."
34
+ except Exception as e:
35
+ return f"Error processing video: {str(e)}"
36
+
37
+ def query_video(self, query_text):
38
+ """Query the video and return relevant frames with descriptions"""
39
+ if not self.processed:
40
+ return "Please process a video first."
41
+
42
+ try:
43
+ results = self.rag_tool.query_video(query_text, k=4)
44
+
45
+ # Extract frames for display
46
+ frames = []
47
+ captions = []
48
+
49
+ cap = cv2.VideoCapture(self.current_video_path)
50
+
51
+ for result in results:
52
+ frame_number = result['frame_number']
53
+ cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
54
+ ret, frame = cap.read()
55
+
56
+ if ret:
57
+ frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
58
+ frames.append(Image.fromarray(frame_rgb))
59
+
60
+ caption = f"Timestamp: {result['timestamp']:.2f}s\n"
61
+ caption += f"Relevance: {result['relevance_score']:.2f}"
62
+ captions.append(caption)
63
+
64
+ cap.release()
65
+
66
+ return frames, captions
67
+
68
+ except Exception as e:
69
+ return f"Error querying video: {str(e)}"
70
+
71
+ def create_interface(self):
72
+ """Create and return Gradio interface"""
73
+ with gr.Blocks(title="Video Chat RAG") as interface:
74
+ gr.Markdown("# Video Chat RAG")
75
+ gr.Markdown("Upload a video and ask questions about its content!")
76
+
77
+ with gr.Row():
78
+ video_input = gr.File(
79
+ label="Upload Video",
80
+ file_types=["video"],
81
+ )
82
+ process_button = gr.Button("Process Video")
83
+
84
+ status_output = gr.Textbox(
85
+ label="Status",
86
+ interactive=False
87
+ )
88
+
89
+ with gr.Row():
90
+ query_input = gr.Textbox(
91
+ label="Ask about the video",
92
+ placeholder="What's happening in the video?"
93
+ )
94
+ query_button = gr.Button("Search")
95
+
96
+ with gr.Row():
97
+ gallery = gr.Gallery(
98
+ label="Retrieved Frames",
99
+ show_label=True,
100
+ elem_id="gallery",
101
+ columns=[2],
102
+ rows=[2],
103
+ height="auto"
104
+ )
105
+
106
+ captions = gr.Textbox(
107
+ label="Frame Details",
108
+ interactive=False
109
+ )
110
+
111
+ # Set up event handlers
112
+ process_button.click(
113
+ fn=self.process_video,
114
+ inputs=[video_input],
115
+ outputs=[status_output]
116
+ )
117
+
118
+ query_button.click(
119
+ fn=self.query_video,
120
+ inputs=[query_input],
121
+ outputs=[gallery, captions]
122
+ )
123
+
124
+ return interface
125
+
126
+ # For Hugging Face Spaces deployment
127
+ app = VideoRAGApp()
128
+ interface = app.create_interface()
129
+
130
+ # Launch the app (for local testing)
131
+ if __name__ == "__main__":
132
+ interface.launch()