Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
-
from transformers import CLIPProcessor, CLIPModel
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
import faiss
|
@@ -13,13 +13,21 @@ import os
|
|
13 |
import shutil
|
14 |
|
15 |
class VideoRAGTool:
|
16 |
-
def __init__(self,
|
|
|
17 |
"""
|
18 |
-
Initialize the Video RAG Tool with CLIP
|
19 |
"""
|
20 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
self.frame_index = None
|
24 |
self.frame_data = []
|
25 |
self.logger = self._setup_logger()
|
@@ -33,6 +41,13 @@ class VideoRAGTool:
|
|
33 |
logger.addHandler(handler)
|
34 |
return logger
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
def process_video(self, video_path: str, frame_interval: int = 30) -> None:
|
37 |
"""Process video file and extract features from frames."""
|
38 |
self.logger.info(f"Processing video: {video_path}")
|
@@ -49,12 +64,17 @@ class VideoRAGTool:
|
|
49 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
50 |
image = Image.fromarray(frame_rgb)
|
51 |
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
54 |
|
55 |
self.frame_data.append({
|
56 |
'frame_number': frame_count,
|
57 |
-
'timestamp': frame_count / cap.get(cv2.CAP_PROP_FPS)
|
|
|
58 |
})
|
59 |
features_list.append(image_features.cpu().detach().numpy())
|
60 |
|
@@ -75,8 +95,8 @@ class VideoRAGTool:
|
|
75 |
"""Query the video using natural language and return relevant frames."""
|
76 |
self.logger.info(f"Processing query: {query_text}")
|
77 |
|
78 |
-
inputs = self.
|
79 |
-
text_features = self.
|
80 |
|
81 |
distances, indices = self.frame_index.search(
|
82 |
text_features.cpu().detach().numpy(),
|
@@ -109,10 +129,7 @@ class VideoRAGApp:
|
|
109 |
if video_file is None:
|
110 |
return "Please upload a video first."
|
111 |
|
112 |
-
# video_file is now a file path provided by Gradio
|
113 |
video_path = video_file.name
|
114 |
-
|
115 |
-
# Create a copy in our temp directory
|
116 |
temp_video_path = os.path.join(self.temp_dir, "current_video.mp4")
|
117 |
shutil.copy2(video_path, temp_video_path)
|
118 |
|
@@ -135,7 +152,7 @@ class VideoRAGApp:
|
|
135 |
results = self.rag_tool.query_video(query_text, k=4)
|
136 |
|
137 |
frames = []
|
138 |
-
|
139 |
|
140 |
cap = cv2.VideoCapture(self.current_video_path)
|
141 |
|
@@ -148,13 +165,19 @@ class VideoRAGApp:
|
|
148 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
149 |
frames.append(Image.fromarray(frame_rgb))
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
154 |
|
155 |
cap.release()
|
156 |
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
except Exception as e:
|
160 |
return None, f"Error querying video: {str(e)}"
|
@@ -194,9 +217,10 @@ class VideoRAGApp:
|
|
194 |
height="auto"
|
195 |
)
|
196 |
|
197 |
-
|
198 |
-
label="
|
199 |
-
interactive=False
|
|
|
200 |
)
|
201 |
|
202 |
process_button.click(
|
@@ -208,7 +232,7 @@ class VideoRAGApp:
|
|
208 |
query_button.click(
|
209 |
fn=self.query_video,
|
210 |
inputs=[query_input],
|
211 |
-
outputs=[gallery,
|
212 |
)
|
213 |
|
214 |
return interface
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
+
from transformers import CLIPProcessor, CLIPModel, BlipProcessor, BlipForConditionalGeneration
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
import faiss
|
|
|
13 |
import shutil
|
14 |
|
15 |
class VideoRAGTool:
|
16 |
+
def __init__(self, clip_model_name: str = "openai/clip-vit-base-patch32",
|
17 |
+
blip_model_name: str = "Salesforce/blip-image-captioning-base"):
|
18 |
"""
|
19 |
+
Initialize the Video RAG Tool with CLIP and BLIP models for frame analysis and captioning.
|
20 |
"""
|
21 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
+
|
23 |
+
# Initialize CLIP for frame retrieval
|
24 |
+
self.clip_model = CLIPModel.from_pretrained(clip_model_name).to(self.device)
|
25 |
+
self.clip_processor = CLIPProcessor.from_pretrained(clip_model_name)
|
26 |
+
|
27 |
+
# Initialize BLIP for image captioning
|
28 |
+
self.blip_processor = BlipProcessor.from_pretrained(blip_model_name)
|
29 |
+
self.blip_model = BlipForConditionalGeneration.from_pretrained(blip_model_name).to(self.device)
|
30 |
+
|
31 |
self.frame_index = None
|
32 |
self.frame_data = []
|
33 |
self.logger = self._setup_logger()
|
|
|
41 |
logger.addHandler(handler)
|
42 |
return logger
|
43 |
|
44 |
+
def generate_caption(self, image: Image.Image) -> str:
|
45 |
+
"""Generate a description for the given image using BLIP."""
|
46 |
+
inputs = self.blip_processor(image, return_tensors="pt").to(self.device)
|
47 |
+
out = self.blip_model.generate(**inputs)
|
48 |
+
caption = self.blip_processor.decode(out[0], skip_special_tokens=True)
|
49 |
+
return caption
|
50 |
+
|
51 |
def process_video(self, video_path: str, frame_interval: int = 30) -> None:
|
52 |
"""Process video file and extract features from frames."""
|
53 |
self.logger.info(f"Processing video: {video_path}")
|
|
|
64 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
65 |
image = Image.fromarray(frame_rgb)
|
66 |
|
67 |
+
# Generate caption for the frame
|
68 |
+
caption = self.generate_caption(image)
|
69 |
+
|
70 |
+
# Process frame with CLIP
|
71 |
+
inputs = self.clip_processor(images=image, return_tensors="pt").to(self.device)
|
72 |
+
image_features = self.clip_model.get_image_features(**inputs)
|
73 |
|
74 |
self.frame_data.append({
|
75 |
'frame_number': frame_count,
|
76 |
+
'timestamp': frame_count / cap.get(cv2.CAP_PROP_FPS),
|
77 |
+
'caption': caption
|
78 |
})
|
79 |
features_list.append(image_features.cpu().detach().numpy())
|
80 |
|
|
|
95 |
"""Query the video using natural language and return relevant frames."""
|
96 |
self.logger.info(f"Processing query: {query_text}")
|
97 |
|
98 |
+
inputs = self.clip_processor(text=[query_text], return_tensors="pt").to(self.device)
|
99 |
+
text_features = self.clip_model.get_text_features(**inputs)
|
100 |
|
101 |
distances, indices = self.frame_index.search(
|
102 |
text_features.cpu().detach().numpy(),
|
|
|
129 |
if video_file is None:
|
130 |
return "Please upload a video first."
|
131 |
|
|
|
132 |
video_path = video_file.name
|
|
|
|
|
133 |
temp_video_path = os.path.join(self.temp_dir, "current_video.mp4")
|
134 |
shutil.copy2(video_path, temp_video_path)
|
135 |
|
|
|
152 |
results = self.rag_tool.query_video(query_text, k=4)
|
153 |
|
154 |
frames = []
|
155 |
+
descriptions = []
|
156 |
|
157 |
cap = cv2.VideoCapture(self.current_video_path)
|
158 |
|
|
|
165 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
166 |
frames.append(Image.fromarray(frame_rgb))
|
167 |
|
168 |
+
description = f"Timestamp: {result['timestamp']:.2f}s\n"
|
169 |
+
description += f"Scene Description: {result['caption']}\n"
|
170 |
+
description += f"Relevance Score: {result['relevance_score']:.2f}"
|
171 |
+
descriptions.append(description)
|
172 |
|
173 |
cap.release()
|
174 |
|
175 |
+
# Combine all descriptions with frame numbers
|
176 |
+
combined_description = "\n\nFrame Analysis:\n\n"
|
177 |
+
for i, desc in enumerate(descriptions, 1):
|
178 |
+
combined_description += f"Frame {i}:\n{desc}\n\n"
|
179 |
+
|
180 |
+
return frames, combined_description
|
181 |
|
182 |
except Exception as e:
|
183 |
return None, f"Error querying video: {str(e)}"
|
|
|
217 |
height="auto"
|
218 |
)
|
219 |
|
220 |
+
descriptions = gr.Textbox(
|
221 |
+
label="Scene Descriptions",
|
222 |
+
interactive=False,
|
223 |
+
lines=10
|
224 |
)
|
225 |
|
226 |
process_button.click(
|
|
|
232 |
query_button.click(
|
233 |
fn=self.query_video,
|
234 |
inputs=[query_input],
|
235 |
+
outputs=[gallery, descriptions]
|
236 |
)
|
237 |
|
238 |
return interface
|