Spaces:
Runtime error
Runtime error
File size: 14,449 Bytes
e543e33 403ae01 ca066a9 c34205b e543e33 ca066a9 e543e33 ca066a9 e543e33 620a643 1e5ce4d e543e33 ca066a9 e543e33 ca066a9 1e5ce4d e543e33 1e5ce4d e543e33 ca066a9 e543e33 ca066a9 e543e33 7229198 5759aab ca066a9 e543e33 b6b9cb1 e543e33 b6b9cb1 e543e33 1e5ce4d e543e33 b6b9cb1 e543e33 1e5ce4d e543e33 c22af2e b6b9cb1 e543e33 b6b9cb1 e543e33 c22af2e e543e33 5759aab e543e33 c22af2e e543e33 5759aab e543e33 5759aab e543e33 1e5ce4d e543e33 1e5ce4d e543e33 5759aab e543e33 5759aab 403ae01 e543e33 403ae01 e543e33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
# app.py ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
import io, os, json, math, random, warnings, gc, functools, hashlib
from pathlib import Path
from typing import Dict, List, Optional
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import torch
import torch.nn.functional as F
from transformers import T5Tokenizer, T5EncoderModel
from diffusers import (
StableDiffusionXLPipeline,
DDIMScheduler,
EulerDiscreteScheduler,
DPMSolverMultistepScheduler,
)
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
# -------------------------------------------------------------------------
# local modules
from two_stream_shunt_adapter import TwoStreamShuntAdapter
from configs import T5_SHUNT_REPOS
from embedding_manager import get_bank # β NEW
warnings.filterwarnings("ignore")
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# GLOBALS
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
dtype = torch.float16
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
bank = get_bank() # shared singleton
_t5_tok: Optional[T5Tokenizer] = None
_t5_mod: Optional[T5EncoderModel] = None
_pipe: Optional[StableDiffusionXLPipeline] = None
SCHEDULERS = {
"DPM++ 2M": DPMSolverMultistepScheduler,
"DDIM": DDIMScheduler,
"Euler": EulerDiscreteScheduler,
}
# easy access to adapter repo metadata
clip_l_opts = T5_SHUNT_REPOS["clip_l"]["shunts_available"]["shunt_list"]
clip_g_opts = T5_SHUNT_REPOS["clip_g"]["shunts_available"]["shunt_list"]
repo_l = T5_SHUNT_REPOS["clip_l"]["repo"]
repo_g = T5_SHUNT_REPOS["clip_g"]["repo"]
conf_l = T5_SHUNT_REPOS["clip_l"]["config"]
conf_g = T5_SHUNT_REPOS["clip_g"]["config"]
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# HELPERs
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def _init_t5():
global _t5_tok, _t5_mod
if _t5_tok is None:
_t5_tok = T5Tokenizer.from_pretrained("google/flan-t5-base")
_t5_mod = T5EncoderModel.from_pretrained("google/flan-t5-base").to(device).eval()
def _init_pipe():
global _pipe
if _pipe is None:
_pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=dtype,
use_safetensors=True,
variant="fp16",
).to(device)
_pipe.enable_xformers_memory_efficient_attention()
def load_adapter(repo: str, filename: str, cfg: dict):
"""load a TwoStreamShuntAdapter from HF Hub safetensors"""
path = hf_hub_download(repo_id=repo, filename=filename)
model = TwoStreamShuntAdapter(cfg).eval()
tensors = load_file(path)
model.load_state_dict(tensors)
return model.to(device)
def plot_heat(mat: torch.Tensor | np.ndarray, title: str) -> np.ndarray:
if isinstance(mat, torch.Tensor):
mat = mat.detach().cpu().numpy()
if mat.ndim == 1:
mat = mat[None, :]
elif mat.ndim >= 3: # (B,T,D) β mean over B
mat = mat.mean(axis=0)
plt.figure(figsize=(8, 4), dpi=120)
plt.imshow(mat, aspect="auto", cmap="RdBu_r", origin="upper")
plt.title(title)
plt.colorbar(shrink=0.7)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format="png")
plt.close()
buf.seek(0)
return np.array(Image.open(buf))
def encode_prompt_sd_xl(pipe, prompt: str, negative: str) -> Dict[str, torch.Tensor]:
"""Return CLIP-L, CLIP-G (and negative) embeddings from SDXL pipeline."""
tok_l = pipe.tokenizer(prompt, max_length=77, padding="max_length", truncation=True, return_tensors="pt").input_ids.to(device)
tok_g = pipe.tokenizer_2(prompt,max_length=77, padding="max_length", truncation=True, return_tensors="pt").input_ids.to(device)
ntok_l = pipe.tokenizer(negative, max_length=77, padding="max_length", truncation=True, return_tensors="pt").input_ids.to(device)
ntok_g = pipe.tokenizer_2(negative,max_length=77, padding="max_length", truncation=True, return_tensors="pt").input_ids.to(device)
with torch.no_grad():
clip_l = pipe.text_encoder(tok_l)[0] # (1,77,768)
nclip_l= pipe.text_encoder(ntok_l)[0]
out_g = pipe.text_encoder_2(tok_g, output_hidden_states=False)
clip_g, pooled = out_g[1], out_g[0]
nout_g = pipe.text_encoder_2(ntok_g, output_hidden_states=False)
nclip_g, npooled = nout_g[1], nout_g[0]
return {"clip_l": clip_l, "clip_g": clip_g,
"neg_l": nclip_l, "neg_g": nclip_g,
"pooled": pooled, "neg_pooled": npooled}
def adapter_forward(adapter, t5_seq, clip_seq, cfg):
with torch.no_grad():
out = adapter(t5_seq.float(), clip_seq.float())
# unify outputs
anchor, delta, log_sigma, *_, tau, g_pred, gate = (
out + (None,) * 8)[:8] # pad to length 8
delta = delta * cfg["delta_scale"]
gate = torch.sigmoid(gate * g_pred * cfg["gpred_scale"]) * cfg["gate_prob"]
final_delta = delta * cfg["strength"] * gate
mod = clip_seq + final_delta.to(dtype)
if cfg["sigma_scale"] > 0:
sigma = torch.exp(log_sigma * cfg["sigma_scale"])
mod += torch.randn_like(mod) * sigma.to(dtype)
if cfg["use_anchor"]:
mod = mod * (1 - gate) + anchor.to(dtype) * gate
if cfg["noise"] > 0:
mod += torch.randn_like(mod) * cfg["noise"]
return mod, final_delta, gate, g_pred, tau
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# MAIN INFERENCE
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def infer(prompt, negative_prompt,
adapter_l_file, adapter_g_file,
strength, delta_scale, sigma_scale,
gpred_scale, noise, gate_prob, use_anchor,
steps, cfg_scale, scheduler_name,
width, height, seed):
torch.cuda.empty_cache()
_init_t5(); _init_pipe()
# scheduler
if scheduler_name in SCHEDULERS:
_pipe.scheduler = SCHEDULERS[scheduler_name].from_config(_pipe.scheduler.config)
# RNG
generator = None
if seed != -1:
generator = torch.Generator(device=device).manual_seed(seed)
torch.manual_seed(seed); np.random.seed(seed)
# T5 embeddings (semantic guidance)
t5_ids = _t5_tok(prompt, max_length=77, truncation=True, padding="max_length", return_tensors="pt").input_ids.to(device)
t5_seq = _t5_mod(t5_ids).last_hidden_state # (1,77,768)
# CLIP embeddings from SDXL
embeds = encode_prompt_sd_xl(_pipe, prompt, negative_prompt)
# ------------------------------------------------------------------
# LOAD adapters (if any)
cfg_common = dict(
strength=strength, delta_scale=delta_scale, sigma_scale=sigma_scale,
gpred_scale=gpred_scale, noise=noise, gate_prob=gate_prob,
use_anchor=use_anchor,
)
# CLIP-L
if adapter_l_file and adapter_l_file != "None":
cfg_l = conf_l.copy(); cfg_l.update(cfg_common)
if "booru" in adapter_l_file: cfg_l["heads"] = 4
adapter_l = load_adapter(repo_l, adapter_l_file, conf_l, device)
clip_l_mod, delta_l, gate_l, g_pred_l, tau_l = adapter_forward(
adapter_l, t5_seq, embeds["clip_l"], cfg_l)
else:
clip_l_mod = embeds["clip_l"]; delta_l = torch.zeros_like(clip_l_mod)
gate_l = torch.zeros_like(clip_l_mod[..., :1]); g_pred_l = tau_l = torch.tensor(0.)
# CLIP-G
if adapter_g_file and adapter_g_file != "None":
cfg_g = conf_g.copy(); cfg_g.update(cfg_common)
adapter_g = load_adapter(repo_g, adapter_g_file, conf_g, device)
clip_g_mod, delta_g, gate_g, g_pred_g, tau_g = adapter_forward(
adapter_g, t5_seq, embeds["clip_g"], cfg_g)
else:
clip_g_mod = embeds["clip_g"]; delta_g = torch.zeros_like(clip_g_mod)
gate_g = torch.zeros_like(clip_g_mod[..., :1]); g_pred_g = tau_g = torch.tensor(0.)
# concatenate for SDXL
prompt_embeds = torch.cat([clip_l_mod, clip_g_mod], dim=-1)
neg_embeds = torch.cat([embeds["neg_l"], embeds["neg_g"]], dim=-1)
# SDXL generation
image = _pipe(
prompt_embeds = prompt_embeds,
negative_prompt_embeds = neg_embeds,
pooled_prompt_embeds = embeds["pooled"],
negative_pooled_prompt_embeds = embeds["neg_pooled"],
num_inference_steps=steps, guidance_scale=cfg_scale,
width=width, height=height, generator=generator
).images[0]
# viz
delta_l_img = plot_heat(delta_l.squeeze(), "Ξ CLIP-L")
gate_l_img = plot_heat(gate_l.squeeze().mean(-1, keepdims=True), "Gate L")
delta_g_img = plot_heat(delta_g.squeeze(), "Ξ CLIP-G")
gate_g_img = plot_heat(gate_g.squeeze().mean(-1, keepdims=True), "Gate G")
stats_l = f"g_pred_L={g_pred_l.item():.3f} | Ο_L={tau_l.item():.3f}"
stats_g = f"g_pred_G={g_pred_g.item():.3f} | Ο_G={tau_g.item():.3f}"
return image, delta_l_img, gate_l_img, delta_g_img, gate_g_img, stats_l, stats_g
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# GRADIO UI
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def create_interface():
with gr.Blocks(title="SDXL Dual-Shunt Tester", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π§ SDXL Dual-Shunt Tester")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Prompts")
prompt = gr.Textbox(label="Prompt", lines=3,
value="a futuristic control station with holographic displays")
negative_prompt = gr.Textbox(label="Negative", lines=2,
value="blurry, low quality, distorted")
gr.Markdown("### Adapters")
adapter_l = gr.Dropdown(["None"]+clip_l_opts, value="t5-vit-l-14-dual_shunt_caption.safetensors",
label="CLIP-L Adapter")
adapter_g = gr.Dropdown(["None"]+clip_g_opts, value="dual_shunt_omega_no_caption_noised_e1_step_10000.safetensors",
label="CLIP-G Adapter")
gr.Markdown("### Adapter Controls")
strength = gr.Slider(0, 10, 4.0, 0.01, label="Strength")
delta_scale = gr.Slider(-15, 15, 0.2, 0.1, label="Ξ scale")
sigma_scale = gr.Slider(0, 15, 0.1, 0.1, label="Ο scale")
gpred_scale = gr.Slider(0, 20, 2.0, 0.01, label="g_pred scale")
noise = gr.Slider(0, 1, 0.55, 0.01, label="Extra noise")
gate_prob = gr.Slider(0, 1, 0.27, 0.01, label="Gate prob")
use_anchor = gr.Checkbox(True, label="Use anchor mix")
gr.Markdown("### Generation")
with gr.Row():
steps = gr.Slider(1, 50, 20, 1, label="Steps")
cfg_scale = gr.Slider(1, 15, 7.5, 0.1, label="CFG")
scheduler = gr.Dropdown(list(SCHEDULERS.keys()), value="DPM++ 2M", label="Scheduler")
with gr.Row():
width = gr.Slider(512, 1536, 1024, 64, label="Width")
height = gr.Slider(512, 1536, 1024, 64, label="Height")
seed = gr.Number(-1, label="Seed (-1=random)")
go_btn = gr.Button("π Generate", variant="primary")
with gr.Column(scale=1):
out_img = gr.Image(label="Result", height=400)
gr.Markdown("### Adapter Diagnostics")
delta_l_i = gr.Image(label="Ξ L", height=180)
gate_l_i = gr.Image(label="Gate L", height=180)
delta_g_i = gr.Image(label="Ξ G", height=180)
gate_g_i = gr.Image(label="Gate G", height=180)
stats_l = gr.Textbox(label="Stats L", interactive=False)
stats_g = gr.Textbox(label="Stats G", interactive=False)
def _run(*args):
pl , npl = args[0], args[1]
al, ag = (None if v=="None" else v for v in args[2:4])
return infer(pl, npl, al, ag, *args[4:])
go_btn.click(
_run,
inputs=[prompt, negative_prompt, adapter_l, adapter_g,
strength, delta_scale, sigma_scale, gpred_scale,
noise, gate_prob, use_anchor, steps, cfg_scale,
scheduler, width, height, seed],
outputs=[out_img, delta_l_i, gate_l_i, delta_g_i, gate_g_i,
stats_l, stats_g]
)
return demo
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
if __name__ == "__main__":
create_interface().launch()
|