AbstractPhil commited on
Commit
c34205b
Β·
1 Parent(s): 6f70ac0
__pycache__/two_stream_shunt_adapter.cpython-310.pyc CHANGED
Binary files a/__pycache__/two_stream_shunt_adapter.cpython-310.pyc and b/__pycache__/two_stream_shunt_adapter.cpython-310.pyc differ
 
app.py CHANGED
@@ -1,16 +1,15 @@
1
- import spaces
2
-
3
  import torch
4
  import gradio as gr
5
  import numpy as np
6
  import matplotlib.pyplot as plt
 
 
7
  from transformers import T5Tokenizer, T5EncoderModel
8
  from diffusers import StableDiffusionXLPipeline, DDIMScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler
9
  from safetensors.torch import load_file
10
  from huggingface_hub import hf_hub_download
11
  from two_stream_shunt_adapter import TwoStreamShuntAdapter
12
  from configs import T5_SHUNT_REPOS
13
- from PIL import Image
14
 
15
  # ─── Device & Model Setup ─────────────────────────────────────
16
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@@ -69,8 +68,7 @@ def plot_heat(mat, title):
69
  plt.savefig(buf, format="png", bbox_inches='tight')
70
  buf.seek(0)
71
  plt.close(fig)
72
- pil_image = Image.open(buf)
73
- return pil_image
74
 
75
  # ─── SDXL Text Encoding ───────────────────────────────────────
76
  def encode_sdxl_prompt(prompt, negative_prompt=""):
@@ -136,7 +134,6 @@ def encode_sdxl_prompt(prompt, negative_prompt=""):
136
  }
137
 
138
  # ─── Inference ────────────────────────────────────────────────
139
- @spaces.GPU
140
  @torch.no_grad()
141
  def infer(prompt, negative_prompt, adapter_l_file, adapter_g_file, strength, noise, gate_prob,
142
  use_anchor, steps, cfg_scale, scheduler_name, width, height, seed):
@@ -344,15 +341,8 @@ with gr.Blocks(title="SDXL Dual Shunt Adapter", theme=gr.themes.Soft()) as demo:
344
  prompt, negative_prompt, adapter_l, adapter_g, strength, noise, gate_prob,
345
  use_anchor, steps, cfg_scale, scheduler_name, width, height, seed
346
  ],
347
- outputs=[
348
- out_img,
349
- delta_l,
350
- gate_l,
351
- delta_g,
352
- gate_g,
353
- stats_l,
354
- stats_g]
355
  )
356
 
357
  if __name__ == "__main__":
358
- demo.launch(share=True)
 
 
 
1
  import torch
2
  import gradio as gr
3
  import numpy as np
4
  import matplotlib.pyplot as plt
5
+ from PIL import Image
6
+ import spaces
7
  from transformers import T5Tokenizer, T5EncoderModel
8
  from diffusers import StableDiffusionXLPipeline, DDIMScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler
9
  from safetensors.torch import load_file
10
  from huggingface_hub import hf_hub_download
11
  from two_stream_shunt_adapter import TwoStreamShuntAdapter
12
  from configs import T5_SHUNT_REPOS
 
13
 
14
  # ─── Device & Model Setup ─────────────────────────────────────
15
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
68
  plt.savefig(buf, format="png", bbox_inches='tight')
69
  buf.seek(0)
70
  plt.close(fig)
71
+ return buf
 
72
 
73
  # ─── SDXL Text Encoding ───────────────────────────────────────
74
  def encode_sdxl_prompt(prompt, negative_prompt=""):
 
134
  }
135
 
136
  # ─── Inference ────────────────────────────────────────────────
 
137
  @torch.no_grad()
138
  def infer(prompt, negative_prompt, adapter_l_file, adapter_g_file, strength, noise, gate_prob,
139
  use_anchor, steps, cfg_scale, scheduler_name, width, height, seed):
 
341
  prompt, negative_prompt, adapter_l, adapter_g, strength, noise, gate_prob,
342
  use_anchor, steps, cfg_scale, scheduler_name, width, height, seed
343
  ],
344
+ outputs=[out_img, delta_l, gate_l, delta_g, gate_g, stats_l, stats_g]
 
 
 
 
 
 
 
345
  )
346
 
347
  if __name__ == "__main__":
348
+ demo.launch()
requirements.txt CHANGED
@@ -1,4 +1,3 @@
1
- spaces
2
  sentencepiece
3
  accelerate
4
  diffusers
@@ -6,5 +5,4 @@ invisible_watermark
6
  torch
7
  transformers
8
  xformers
9
- matplotlib
10
- pillow
 
 
1
  sentencepiece
2
  accelerate
3
  diffusers
 
5
  torch
6
  transformers
7
  xformers
8
+ matplotlib