Spaces:
Running
on
Zero
Running
on
Zero
Commit
Β·
1e5ce4d
1
Parent(s):
7b42604
yes
Browse files- __pycache__/two_stream_shunt_adapter.cpython-310.pyc +0 -0
- app.py +280 -93
- two_stream_shunt_adapter.py +110 -318
__pycache__/two_stream_shunt_adapter.cpython-310.pyc
CHANGED
Binary files a/__pycache__/two_stream_shunt_adapter.cpython-310.pyc and b/__pycache__/two_stream_shunt_adapter.cpython-310.pyc differ
|
|
app.py
CHANGED
@@ -3,25 +3,35 @@ import gradio as gr
|
|
3 |
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
5 |
from transformers import T5Tokenizer, T5EncoderModel
|
6 |
-
from diffusers import
|
7 |
-
from safetensors.torch import
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
from two_stream_shunt_adapter import TwoStreamShuntAdapter
|
10 |
-
from
|
11 |
|
12 |
# βββ Device & Model Setup βββββββββββββββββββββββββββββββββββββ
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
15 |
|
|
|
16 |
t5_tok = T5Tokenizer.from_pretrained("google/flan-t5-base")
|
17 |
t5_mod = T5EncoderModel.from_pretrained("google/flan-t5-base").to(device).eval()
|
18 |
|
19 |
-
|
|
|
20 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
21 |
torch_dtype=dtype,
|
22 |
-
variant="fp16" if dtype == torch.float16 else None
|
|
|
23 |
).to(device)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# βββ Adapter Configs ββββββββββββββββββββββββββββββββββββββββββ
|
26 |
clip_l_opts = T5_SHUNT_REPOS["clip_l"]["shunts_available"]["shunt_list"]
|
27 |
clip_g_opts = T5_SHUNT_REPOS["clip_g"]["shunts_available"]["shunt_list"]
|
@@ -31,8 +41,11 @@ config_l = T5_SHUNT_REPOS["clip_l"]["config"]
|
|
31 |
config_g = T5_SHUNT_REPOS["clip_g"]["config"]
|
32 |
|
33 |
# βββ Loader βββββββββββββββββββββββββββββββββββββββββββββββββββ
|
|
|
|
|
34 |
def load_adapter(repo, filename, config):
|
35 |
path = hf_hub_download(repo_id=repo, filename=filename)
|
|
|
36 |
model = TwoStreamShuntAdapter(config).eval()
|
37 |
tensors = {}
|
38 |
with safe_open(path, framework="pt", device="cpu") as f:
|
@@ -42,103 +55,277 @@ def load_adapter(repo, filename, config):
|
|
42 |
model.to(device)
|
43 |
return model
|
44 |
|
45 |
-
# βββ
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
})
|
58 |
-
|
59 |
-
# Encode prompt via T5
|
60 |
-
t5_ids = t5_tok(prompt, return_tensors="pt").input_ids.to(device)
|
61 |
-
t5_seq = t5_mod(t5_ids).last_hidden_state # (B, L, 768)
|
62 |
-
|
63 |
-
# Encode prompt via SDXL normally to get CLIP-L and CLIP-G outputs
|
64 |
-
prompt_embeds, pooled_prompt_embeds = pipe._encode_prompt(
|
65 |
-
prompt=prompt,
|
66 |
-
device=device,
|
67 |
-
num_images_per_prompt=1,
|
68 |
-
do_classifier_free_guidance=False,
|
69 |
-
)
|
70 |
-
|
71 |
-
total_dim = prompt_embeds.shape[-1]
|
72 |
-
cond_tensor = prompt_embeds.clone()
|
73 |
-
|
74 |
-
for adapter_info in adapter_list:
|
75 |
-
adapter_model = adapter_info["adapter"]
|
76 |
-
adapter_config = adapter_info["config"]
|
77 |
-
clip_dim = adapter_config["clip"]["hidden_size"]
|
78 |
-
|
79 |
-
if clip_dim == 768:
|
80 |
-
clip_slice = cond_tensor[:, :, :768]
|
81 |
-
slice_start, slice_end = 0, 768
|
82 |
-
elif clip_dim == 1280:
|
83 |
-
clip_slice = cond_tensor[:, :, 768:2048] if total_dim >= 2048 else cond_tensor[:, :, 768:]
|
84 |
-
slice_start, slice_end = 768, 2048
|
85 |
-
else:
|
86 |
-
continue
|
87 |
-
|
88 |
-
anchor, delta_mean_adapter, log_sigma_adapter, _, _, _, g_pred_adapter, gate_adapter = adapter_model(t5_seq, clip_slice)
|
89 |
-
gate = gate_adapter * gate_prob
|
90 |
-
delta = (delta_mean_adapter + 0.0) * strength * gate
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
if use_anchor:
|
100 |
-
|
101 |
-
|
102 |
if noise > 0:
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
image = pipe(
|
109 |
-
prompt_embeds=
|
110 |
-
pooled_prompt_embeds=
|
111 |
-
negative_prompt_embeds=
|
112 |
-
negative_pooled_prompt_embeds=
|
113 |
-
num_inference_steps=
|
114 |
-
guidance_scale=
|
|
|
|
|
|
|
115 |
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
#
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
with gr.Row():
|
124 |
-
with gr.Column():
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
run_btn.click(
|
138 |
-
fn=
|
139 |
-
inputs=[
|
140 |
-
|
|
|
|
|
|
|
141 |
)
|
142 |
|
143 |
if __name__ == "__main__":
|
144 |
-
demo.launch(share=True)
|
|
|
3 |
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
5 |
from transformers import T5Tokenizer, T5EncoderModel
|
6 |
+
from diffusers import StableDiffusionXLPipeline, DDIMScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler
|
7 |
+
from safetensors.torch import load_file
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
from two_stream_shunt_adapter import TwoStreamShuntAdapter
|
10 |
+
from configs import T5_SHUNT_REPOS
|
11 |
|
12 |
# βββ Device & Model Setup βββββββββββββββββββββββββββββββββββββ
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
15 |
|
16 |
+
# T5 Model for semantic understanding
|
17 |
t5_tok = T5Tokenizer.from_pretrained("google/flan-t5-base")
|
18 |
t5_mod = T5EncoderModel.from_pretrained("google/flan-t5-base").to(device).eval()
|
19 |
|
20 |
+
# SDXL Pipeline with proper text encoders
|
21 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
22 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
23 |
torch_dtype=dtype,
|
24 |
+
variant="fp16" if dtype == torch.float16 else None,
|
25 |
+
use_safetensors=True
|
26 |
).to(device)
|
27 |
|
28 |
+
# Available schedulers
|
29 |
+
SCHEDULERS = {
|
30 |
+
"DPM++ 2M": DPMSolverMultistepScheduler,
|
31 |
+
"DDIM": DDIMScheduler,
|
32 |
+
"Euler": EulerDiscreteScheduler,
|
33 |
+
}
|
34 |
+
|
35 |
# βββ Adapter Configs ββββββββββββββββββββββββββββββββββββββββββ
|
36 |
clip_l_opts = T5_SHUNT_REPOS["clip_l"]["shunts_available"]["shunt_list"]
|
37 |
clip_g_opts = T5_SHUNT_REPOS["clip_g"]["shunts_available"]["shunt_list"]
|
|
|
41 |
config_g = T5_SHUNT_REPOS["clip_g"]["config"]
|
42 |
|
43 |
# βββ Loader βββββββββββββββββββββββββββββββββββββββββββββββββββ
|
44 |
+
from safetensors.torch import safe_open
|
45 |
+
|
46 |
def load_adapter(repo, filename, config):
|
47 |
path = hf_hub_download(repo_id=repo, filename=filename)
|
48 |
+
|
49 |
model = TwoStreamShuntAdapter(config).eval()
|
50 |
tensors = {}
|
51 |
with safe_open(path, framework="pt", device="cpu") as f:
|
|
|
55 |
model.to(device)
|
56 |
return model
|
57 |
|
58 |
+
# βββ Visualization ββββββββββββββββββββββββββββββββββββββββββββ
|
59 |
+
def plot_heat(mat, title):
|
60 |
+
import io
|
61 |
+
fig, ax = plt.subplots(figsize=(6, 3), dpi=100)
|
62 |
+
im = ax.imshow(mat, aspect="auto", cmap="bwr", origin="upper")
|
63 |
+
ax.set_title(title)
|
64 |
+
plt.colorbar(im, ax=ax)
|
65 |
+
buf = io.BytesIO()
|
66 |
+
plt.savefig(buf, format="png", bbox_inches='tight')
|
67 |
+
buf.seek(0)
|
68 |
+
plt.close(fig)
|
69 |
+
return buf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
# βββ SDXL Text Encoding βββββββββββββββββββββββββββββββββββββββ
|
72 |
+
def encode_sdxl_prompt(prompt, negative_prompt=""):
|
73 |
+
"""Generate proper CLIP-L and CLIP-G embeddings using SDXL's text encoders"""
|
74 |
+
|
75 |
+
# Tokenize for both encoders
|
76 |
+
tokens_l = pipe.tokenizer(
|
77 |
+
prompt,
|
78 |
+
padding="max_length",
|
79 |
+
max_length=77,
|
80 |
+
truncation=True,
|
81 |
+
return_tensors="pt"
|
82 |
+
).input_ids.to(device)
|
83 |
+
|
84 |
+
tokens_g = pipe.tokenizer_2(
|
85 |
+
prompt,
|
86 |
+
padding="max_length",
|
87 |
+
max_length=77,
|
88 |
+
truncation=True,
|
89 |
+
return_tensors="pt"
|
90 |
+
).input_ids.to(device)
|
91 |
+
|
92 |
+
# Negative prompts
|
93 |
+
neg_tokens_l = pipe.tokenizer(
|
94 |
+
negative_prompt,
|
95 |
+
padding="max_length",
|
96 |
+
max_length=77,
|
97 |
+
truncation=True,
|
98 |
+
return_tensors="pt"
|
99 |
+
).input_ids.to(device)
|
100 |
+
|
101 |
+
neg_tokens_g = pipe.tokenizer_2(
|
102 |
+
negative_prompt,
|
103 |
+
padding="max_length",
|
104 |
+
max_length=77,
|
105 |
+
truncation=True,
|
106 |
+
return_tensors="pt"
|
107 |
+
).input_ids.to(device)
|
108 |
+
|
109 |
+
with torch.no_grad():
|
110 |
+
# CLIP-L embeddings (768d)
|
111 |
+
clip_l_embeds = pipe.text_encoder(tokens_l)[0]
|
112 |
+
neg_clip_l_embeds = pipe.text_encoder(neg_tokens_l)[0]
|
113 |
+
|
114 |
+
# CLIP-G embeddings (1280d)
|
115 |
+
clip_g_embeds = pipe.text_encoder_2(tokens_g)[0]
|
116 |
+
neg_clip_g_embeds = pipe.text_encoder_2(neg_tokens_g)[0]
|
117 |
+
|
118 |
+
# Pooled embeddings for SDXL
|
119 |
+
pooled_embeds = pipe.text_encoder_2(tokens_g)[1]
|
120 |
+
neg_pooled_embeds = pipe.text_encoder_2(neg_tokens_g)[1]
|
121 |
+
|
122 |
+
return {
|
123 |
+
"clip_l": clip_l_embeds,
|
124 |
+
"clip_g": clip_g_embeds,
|
125 |
+
"neg_clip_l": neg_clip_l_embeds,
|
126 |
+
"neg_clip_g": neg_clip_g_embeds,
|
127 |
+
"pooled": pooled_embeds,
|
128 |
+
"neg_pooled": neg_pooled_embeds
|
129 |
+
}
|
130 |
|
131 |
+
# βββ Inference ββββββββββββββββββββββββββββββββββββββββββββββββ
|
132 |
+
@torch.no_grad()
|
133 |
+
def infer(prompt, negative_prompt, adapter_l_file, adapter_g_file, strength, noise, gate_prob,
|
134 |
+
use_anchor, steps, cfg_scale, scheduler_name, width, height, seed):
|
135 |
+
|
136 |
+
# Set seed for reproducibility
|
137 |
+
if seed != -1:
|
138 |
+
torch.manual_seed(seed)
|
139 |
+
np.random.seed(seed)
|
140 |
+
|
141 |
+
# Set scheduler
|
142 |
+
if scheduler_name in SCHEDULERS:
|
143 |
+
pipe.scheduler = SCHEDULERS[scheduler_name].from_config(pipe.scheduler.config)
|
144 |
+
|
145 |
+
# Get T5 embeddings for semantic understanding
|
146 |
+
t5_ids = t5_tok(prompt, return_tensors="pt", padding=True, truncation=True).input_ids.to(device)
|
147 |
+
t5_seq = t5_mod(t5_ids).last_hidden_state
|
148 |
+
|
149 |
+
# Get proper SDXL CLIP embeddings
|
150 |
+
clip_embeds = encode_sdxl_prompt(prompt, negative_prompt)
|
151 |
+
|
152 |
+
# Load adapters
|
153 |
+
adapter_l = load_adapter(repo_l, adapter_l_file, config_l) if adapter_l_file else None
|
154 |
+
adapter_g = load_adapter(repo_g, adapter_g_file, config_g) if adapter_g_file else None
|
155 |
+
|
156 |
+
# Apply CLIP-L adapter
|
157 |
+
if adapter_l is not None:
|
158 |
+
anchor_l, delta_l, log_sigma_l, attn_l1, attn_l2, tau_l, g_pred_l, gate_l = adapter_l(t5_seq, clip_embeds["clip_l"])
|
159 |
+
gate_l_scaled = gate_l * gate_prob
|
160 |
+
delta_l_final = delta_l * strength * gate_l_scaled
|
161 |
+
clip_l_mod = clip_embeds["clip_l"] + delta_l_final
|
162 |
if use_anchor:
|
163 |
+
clip_l_mod = clip_l_mod * (1 - gate_l_scaled) + anchor_l * gate_l_scaled
|
|
|
164 |
if noise > 0:
|
165 |
+
clip_l_mod += torch.randn_like(clip_l_mod) * noise
|
166 |
+
else:
|
167 |
+
clip_l_mod = clip_embeds["clip_l"]
|
168 |
+
delta_l_final = torch.zeros_like(clip_embeds["clip_l"])
|
169 |
+
gate_l_scaled = torch.zeros_like(clip_embeds["clip_l"])
|
170 |
+
g_pred_l = torch.tensor(0.0)
|
171 |
+
tau_l = torch.tensor(0.0)
|
172 |
+
|
173 |
+
# Apply CLIP-G adapter
|
174 |
+
if adapter_g is not None:
|
175 |
+
anchor_g, delta_g, log_sigma_g, attn_g1, attn_g2, tau_g, g_pred_g, gate_g = adapter_g(t5_seq, clip_embeds["clip_g"])
|
176 |
+
gate_g_scaled = gate_g * gate_prob
|
177 |
+
delta_g_final = delta_g * strength * gate_g_scaled
|
178 |
+
clip_g_mod = clip_embeds["clip_g"] + delta_g_final
|
179 |
+
if use_anchor:
|
180 |
+
clip_g_mod = clip_g_mod * (1 - gate_g_scaled) + anchor_g * gate_g_scaled
|
181 |
+
if noise > 0:
|
182 |
+
clip_g_mod += torch.randn_like(clip_g_mod) * noise
|
183 |
+
else:
|
184 |
+
clip_g_mod = clip_embeds["clip_g"]
|
185 |
+
delta_g_final = torch.zeros_like(clip_embeds["clip_g"])
|
186 |
+
gate_g_scaled = torch.zeros_like(clip_embeds["clip_g"])
|
187 |
+
g_pred_g = torch.tensor(0.0)
|
188 |
+
tau_g = torch.tensor(0.0)
|
189 |
+
|
190 |
+
# Combine embeddings in SDXL format: [CLIP-L(768) + CLIP-G(1280)] = 2048
|
191 |
+
prompt_embeds = torch.cat([clip_l_mod, clip_g_mod], dim=-1).to(dtype)
|
192 |
+
neg_embeds = torch.cat([clip_embeds["neg_clip_l"], clip_embeds["neg_clip_g"]], dim=-1).to(dtype)
|
193 |
+
|
194 |
+
# Generate image with proper SDXL parameters
|
195 |
image = pipe(
|
196 |
+
prompt_embeds=prompt_embeds,
|
197 |
+
pooled_prompt_embeds=clip_embeds["pooled"],
|
198 |
+
negative_prompt_embeds=neg_embeds,
|
199 |
+
negative_pooled_prompt_embeds=clip_embeds["neg_pooled"],
|
200 |
+
num_inference_steps=steps,
|
201 |
+
guidance_scale=cfg_scale,
|
202 |
+
width=width,
|
203 |
+
height=height,
|
204 |
+
generator=torch.Generator(device=device).manual_seed(seed) if seed != -1 else None
|
205 |
).images[0]
|
206 |
+
|
207 |
+
return (
|
208 |
+
image,
|
209 |
+
plot_heat(delta_l_final.squeeze().cpu().numpy(), "Ξ CLIP-L"),
|
210 |
+
plot_heat(gate_l_scaled.squeeze().cpu().numpy(), "Gate CLIP-L"),
|
211 |
+
plot_heat(delta_g_final.squeeze().cpu().numpy(), "Ξ CLIP-G"),
|
212 |
+
plot_heat(gate_g_scaled.squeeze().cpu().numpy(), "Gate CLIP-G"),
|
213 |
+
f"g_pred_l: {g_pred_l.mean().item():.3f}, Ο_l: {tau_l.mean().item():.3f}",
|
214 |
+
f"g_pred_g: {g_pred_g.mean().item():.3f}, Ο_g: {tau_g.mean().item():.3f}"
|
215 |
+
)
|
216 |
|
217 |
+
# βββ Gradio Interface βββββββββββββββββββββββββββββββββββββββββ
|
218 |
+
with gr.Blocks(title="SDXL Dual Shunt Adapter", theme=gr.themes.Soft()) as demo:
|
219 |
+
gr.Markdown("# π§ SDXL Dual Shunt Adapter β’ T5βCLIP Enhancement")
|
220 |
+
gr.Markdown("Enhance SDXL generation by using T5 semantic understanding to modify CLIP embeddings")
|
221 |
+
|
|
|
222 |
with gr.Row():
|
223 |
+
with gr.Column(scale=1):
|
224 |
+
# Prompts
|
225 |
+
with gr.Group():
|
226 |
+
gr.Markdown("### Prompts")
|
227 |
+
prompt = gr.Textbox(
|
228 |
+
label="Prompt",
|
229 |
+
value="a futuristic control station with holographic displays",
|
230 |
+
lines=3
|
231 |
+
)
|
232 |
+
negative_prompt = gr.Textbox(
|
233 |
+
label="Negative Prompt",
|
234 |
+
value="blurry, low quality, distorted",
|
235 |
+
lines=2
|
236 |
+
)
|
237 |
+
|
238 |
+
# Adapters
|
239 |
+
with gr.Group():
|
240 |
+
gr.Markdown("### Adapters")
|
241 |
+
adapter_l = gr.Dropdown(
|
242 |
+
choices=["None"] + clip_l_opts,
|
243 |
+
label="CLIP-L (768d) Adapter",
|
244 |
+
value="None"
|
245 |
+
)
|
246 |
+
adapter_g = gr.Dropdown(
|
247 |
+
choices=["None"] + clip_g_opts,
|
248 |
+
label="CLIP-G (1280d) Adapter",
|
249 |
+
value="None"
|
250 |
+
)
|
251 |
+
|
252 |
+
# Adapter Controls
|
253 |
+
with gr.Group():
|
254 |
+
gr.Markdown("### Adapter Controls")
|
255 |
+
strength = gr.Slider(0.0, 5.0, value=1.0, step=0.1, label="Adapter Strength")
|
256 |
+
noise = gr.Slider(0.0, 1.0, value=0.0, step=0.05, label="Noise Injection")
|
257 |
+
gate_prob = gr.Slider(0.0, 1.0, value=1.0, step=0.05, label="Gate Probability")
|
258 |
+
use_anchor = gr.Checkbox(label="Use Anchor", value=True)
|
259 |
+
|
260 |
+
# Generation Settings
|
261 |
+
with gr.Group():
|
262 |
+
gr.Markdown("### Generation Settings")
|
263 |
+
with gr.Row():
|
264 |
+
steps = gr.Slider(1, 100, value=25, step=1, label="Steps")
|
265 |
+
cfg_scale = gr.Slider(1.0, 20.0, value=7.5, step=0.5, label="CFG Scale")
|
266 |
+
|
267 |
+
scheduler_name = gr.Dropdown(
|
268 |
+
choices=list(SCHEDULERS.keys()),
|
269 |
+
value="DPM++ 2M",
|
270 |
+
label="Scheduler"
|
271 |
+
)
|
272 |
+
|
273 |
+
with gr.Row():
|
274 |
+
width = gr.Slider(512, 1536, value=1024, step=64, label="Width")
|
275 |
+
height = gr.Slider(512, 1536, value=1024, step=64, label="Height")
|
276 |
+
|
277 |
+
seed = gr.Number(value=-1, label="Seed (-1 for random)")
|
278 |
+
|
279 |
+
run_btn = gr.Button("π Generate", variant="primary", size="lg")
|
280 |
+
|
281 |
+
with gr.Column(scale=1):
|
282 |
+
# Output
|
283 |
+
with gr.Group():
|
284 |
+
gr.Markdown("### Generated Image")
|
285 |
+
out_img = gr.Image(label="Result", height=400)
|
286 |
+
|
287 |
+
# Visualizations
|
288 |
+
with gr.Group():
|
289 |
+
gr.Markdown("### Adapter Visualizations")
|
290 |
+
with gr.Row():
|
291 |
+
delta_l = gr.Image(label="Ξ CLIP-L", height=200)
|
292 |
+
gate_l = gr.Image(label="Gate CLIP-L", height=200)
|
293 |
+
with gr.Row():
|
294 |
+
delta_g = gr.Image(label="Ξ CLIP-G", height=200)
|
295 |
+
gate_g = gr.Image(label="Gate CLIP-G", height=200)
|
296 |
+
|
297 |
+
# Stats
|
298 |
+
with gr.Group():
|
299 |
+
gr.Markdown("### Adapter Statistics")
|
300 |
+
stats_l = gr.Textbox(label="CLIP-L Stats", interactive=False)
|
301 |
+
stats_g = gr.Textbox(label="CLIP-G Stats", interactive=False)
|
302 |
+
|
303 |
+
# Event handlers
|
304 |
+
def process_adapters(adapter_l_val, adapter_g_val):
|
305 |
+
# Convert "None" back to None for processing
|
306 |
+
adapter_l_processed = None if adapter_l_val == "None" else adapter_l_val
|
307 |
+
adapter_g_processed = None if adapter_g_val == "None" else adapter_g_val
|
308 |
+
return adapter_l_processed, adapter_g_processed
|
309 |
+
|
310 |
+
def run_inference(*args):
|
311 |
+
# Process adapter selections
|
312 |
+
adapter_l_processed, adapter_g_processed = process_adapters(args[2], args[3])
|
313 |
+
|
314 |
+
# Call inference with processed adapters
|
315 |
+
new_args = list(args)
|
316 |
+
new_args[2] = adapter_l_processed
|
317 |
+
new_args[3] = adapter_g_processed
|
318 |
+
|
319 |
+
return infer(*new_args)
|
320 |
+
|
321 |
run_btn.click(
|
322 |
+
fn=run_inference,
|
323 |
+
inputs=[
|
324 |
+
prompt, negative_prompt, adapter_l, adapter_g, strength, noise, gate_prob,
|
325 |
+
use_anchor, steps, cfg_scale, scheduler_name, width, height, seed
|
326 |
+
],
|
327 |
+
outputs=[out_img, delta_l, gate_l, delta_g, gate_g, stats_l, stats_g]
|
328 |
)
|
329 |
|
330 |
if __name__ == "__main__":
|
331 |
+
demo.launch(share=True)
|
two_stream_shunt_adapter.py
CHANGED
@@ -1,331 +1,123 @@
|
|
1 |
import torch
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
from transformers import T5Tokenizer, T5EncoderModel
|
6 |
-
from diffusers import StableDiffusionXLPipeline, DDIMScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler
|
7 |
-
from safetensors.torch import load_file
|
8 |
-
from huggingface_hub import hf_hub_download
|
9 |
-
from two_stream_shunt_adapter import TwoStreamShuntAdapter
|
10 |
-
from configs import T5_SHUNT_REPOS
|
11 |
|
12 |
-
# βββ
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
"Euler": EulerDiscreteScheduler,
|
33 |
-
}
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
#
|
44 |
-
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
tensors = {}
|
51 |
-
with safe_open(path, framework="pt", device="cpu") as f:
|
52 |
-
for key in f.keys():
|
53 |
-
tensors[key] = f.get_tensor(key)
|
54 |
-
model.load_state_dict(tensors)
|
55 |
-
model.to(device)
|
56 |
-
return model
|
57 |
|
58 |
-
#
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
ax.set_title(title)
|
64 |
-
plt.colorbar(im, ax=ax)
|
65 |
-
buf = io.BytesIO()
|
66 |
-
plt.savefig(buf, format="png", bbox_inches='tight')
|
67 |
-
buf.seek(0)
|
68 |
-
plt.close(fig)
|
69 |
-
return buf
|
70 |
|
71 |
-
#
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
padding="max_length",
|
79 |
-
max_length=77,
|
80 |
-
truncation=True,
|
81 |
-
return_tensors="pt"
|
82 |
-
).input_ids.to(device)
|
83 |
-
|
84 |
-
tokens_g = pipe.tokenizer_2(
|
85 |
-
prompt,
|
86 |
-
padding="max_length",
|
87 |
-
max_length=77,
|
88 |
-
truncation=True,
|
89 |
-
return_tensors="pt"
|
90 |
-
).input_ids.to(device)
|
91 |
-
|
92 |
-
# Negative prompts
|
93 |
-
neg_tokens_l = pipe.tokenizer(
|
94 |
-
negative_prompt,
|
95 |
-
padding="max_length",
|
96 |
-
max_length=77,
|
97 |
-
truncation=True,
|
98 |
-
return_tensors="pt"
|
99 |
-
).input_ids.to(device)
|
100 |
-
|
101 |
-
neg_tokens_g = pipe.tokenizer_2(
|
102 |
-
negative_prompt,
|
103 |
-
padding="max_length",
|
104 |
-
max_length=77,
|
105 |
-
truncation=True,
|
106 |
-
return_tensors="pt"
|
107 |
-
).input_ids.to(device)
|
108 |
-
|
109 |
-
with torch.no_grad():
|
110 |
-
# CLIP-L embeddings (768d)
|
111 |
-
clip_l_embeds = pipe.text_encoder(tokens_l)[0]
|
112 |
-
neg_clip_l_embeds = pipe.text_encoder(neg_tokens_l)[0]
|
113 |
-
|
114 |
-
# CLIP-G embeddings (1280d)
|
115 |
-
clip_g_embeds = pipe.text_encoder_2(tokens_g)[0]
|
116 |
-
neg_clip_g_embeds = pipe.text_encoder_2(neg_tokens_g)[0]
|
117 |
-
|
118 |
-
# Pooled embeddings for SDXL
|
119 |
-
pooled_embeds = pipe.text_encoder_2(tokens_g)[1]
|
120 |
-
neg_pooled_embeds = pipe.text_encoder_2(neg_tokens_g)[1]
|
121 |
-
|
122 |
-
return {
|
123 |
-
"clip_l": clip_l_embeds,
|
124 |
-
"clip_g": clip_g_embeds,
|
125 |
-
"neg_clip_l": neg_clip_l_embeds,
|
126 |
-
"neg_clip_g": neg_clip_g_embeds,
|
127 |
-
"pooled": pooled_embeds,
|
128 |
-
"neg_pooled": neg_pooled_embeds
|
129 |
-
}
|
130 |
|
131 |
-
#
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
# Set seed for reproducibility
|
137 |
-
if seed != -1:
|
138 |
-
torch.manual_seed(seed)
|
139 |
-
np.random.seed(seed)
|
140 |
-
|
141 |
-
# Set scheduler
|
142 |
-
if scheduler_name in SCHEDULERS:
|
143 |
-
pipe.scheduler = SCHEDULERS[scheduler_name].from_config(pipe.scheduler.config)
|
144 |
-
|
145 |
-
# Get T5 embeddings for semantic understanding
|
146 |
-
t5_ids = t5_tok(prompt, return_tensors="pt", padding=True, truncation=True).input_ids.to(device)
|
147 |
-
t5_seq = t5_mod(t5_ids).last_hidden_state
|
148 |
-
|
149 |
-
# Get proper SDXL CLIP embeddings
|
150 |
-
clip_embeds = encode_sdxl_prompt(prompt, negative_prompt)
|
151 |
-
|
152 |
-
# Load adapters
|
153 |
-
adapter_l = load_adapter(repo_l, adapter_l_file, config_l) if adapter_l_file else None
|
154 |
-
adapter_g = load_adapter(repo_g, adapter_g_file, config_g) if adapter_g_file else None
|
155 |
-
|
156 |
-
# Apply CLIP-L adapter
|
157 |
-
if adapter_l is not None:
|
158 |
-
anchor_l, delta_l, log_sigma_l, attn_l1, attn_l2, tau_l, g_pred_l, gate_l = adapter_l(t5_seq, clip_embeds["clip_l"])
|
159 |
-
gate_l_scaled = gate_l * gate_prob
|
160 |
-
delta_l_final = delta_l * strength * gate_l_scaled
|
161 |
-
clip_l_mod = clip_embeds["clip_l"] + delta_l_final
|
162 |
-
if use_anchor:
|
163 |
-
clip_l_mod = clip_l_mod * (1 - gate_l_scaled) + anchor_l * gate_l_scaled
|
164 |
-
if noise > 0:
|
165 |
-
clip_l_mod += torch.randn_like(clip_l_mod) * noise
|
166 |
-
else:
|
167 |
-
clip_l_mod = clip_embeds["clip_l"]
|
168 |
-
delta_l_final = torch.zeros_like(clip_embeds["clip_l"])
|
169 |
-
gate_l_scaled = torch.zeros_like(clip_embeds["clip_l"])
|
170 |
-
g_pred_l = torch.tensor(0.0)
|
171 |
-
tau_l = torch.tensor(0.0)
|
172 |
-
|
173 |
-
# Apply CLIP-G adapter
|
174 |
-
if adapter_g is not None:
|
175 |
-
anchor_g, delta_g, log_sigma_g, attn_g1, attn_g2, tau_g, g_pred_g, gate_g = adapter_g(t5_seq, clip_embeds["clip_g"])
|
176 |
-
gate_g_scaled = gate_g * gate_prob
|
177 |
-
delta_g_final = delta_g * strength * gate_g_scaled
|
178 |
-
clip_g_mod = clip_embeds["clip_g"] + delta_g_final
|
179 |
-
if use_anchor:
|
180 |
-
clip_g_mod = clip_g_mod * (1 - gate_g_scaled) + anchor_g * gate_g_scaled
|
181 |
-
if noise > 0:
|
182 |
-
clip_g_mod += torch.randn_like(clip_g_mod) * noise
|
183 |
-
else:
|
184 |
-
clip_g_mod = clip_embeds["clip_g"]
|
185 |
-
delta_g_final = torch.zeros_like(clip_embeds["clip_g"])
|
186 |
-
gate_g_scaled = torch.zeros_like(clip_embeds["clip_g"])
|
187 |
-
g_pred_g = torch.tensor(0.0)
|
188 |
-
tau_g = torch.tensor(0.0)
|
189 |
-
|
190 |
-
# Combine embeddings in SDXL format: [CLIP-L(768) + CLIP-G(1280)] = 2048
|
191 |
-
prompt_embeds = torch.cat([clip_l_mod, clip_g_mod], dim=-1).to(dtype)
|
192 |
-
neg_embeds = torch.cat([clip_embeds["neg_clip_l"], clip_embeds["neg_clip_g"]], dim=-1).to(dtype)
|
193 |
-
|
194 |
-
# Generate image with proper SDXL parameters
|
195 |
-
image = pipe(
|
196 |
-
prompt_embeds=prompt_embeds,
|
197 |
-
pooled_prompt_embeds=clip_embeds["pooled"],
|
198 |
-
negative_prompt_embeds=neg_embeds,
|
199 |
-
negative_pooled_prompt_embeds=clip_embeds["neg_pooled"],
|
200 |
-
num_inference_steps=steps,
|
201 |
-
guidance_scale=cfg_scale,
|
202 |
-
width=width,
|
203 |
-
height=height,
|
204 |
-
generator=torch.Generator(device=device).manual_seed(seed) if seed != -1 else None
|
205 |
-
).images[0]
|
206 |
-
|
207 |
-
return (
|
208 |
-
image,
|
209 |
-
plot_heat(delta_l_final.squeeze().cpu().numpy(), "Ξ CLIP-L"),
|
210 |
-
plot_heat(gate_l_scaled.squeeze().cpu().numpy(), "Gate CLIP-L"),
|
211 |
-
plot_heat(delta_g_final.squeeze().cpu().numpy(), "Ξ CLIP-G"),
|
212 |
-
plot_heat(gate_g_scaled.squeeze().cpu().numpy(), "Gate CLIP-G"),
|
213 |
-
f"g_pred_l: {g_pred_l.mean().item():.3f}, Ο_l: {tau_l.mean().item():.3f}",
|
214 |
-
f"g_pred_g: {g_pred_g.mean().item():.3f}, Ο_g: {tau_g.mean().item():.3f}"
|
215 |
-
)
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
with gr.Group():
|
226 |
-
gr.Markdown("### Prompts")
|
227 |
-
prompt = gr.Textbox(
|
228 |
-
label="Prompt",
|
229 |
-
value="a futuristic control station with holographic displays",
|
230 |
-
lines=3
|
231 |
-
)
|
232 |
-
negative_prompt = gr.Textbox(
|
233 |
-
label="Negative Prompt",
|
234 |
-
value="blurry, low quality, distorted",
|
235 |
-
lines=2
|
236 |
-
)
|
237 |
-
|
238 |
-
# Adapters
|
239 |
-
with gr.Group():
|
240 |
-
gr.Markdown("### Adapters")
|
241 |
-
adapter_l = gr.Dropdown(
|
242 |
-
choices=["None"] + clip_l_opts,
|
243 |
-
label="CLIP-L (768d) Adapter",
|
244 |
-
value="None"
|
245 |
-
)
|
246 |
-
adapter_g = gr.Dropdown(
|
247 |
-
choices=["None"] + clip_g_opts,
|
248 |
-
label="CLIP-G (1280d) Adapter",
|
249 |
-
value="None"
|
250 |
-
)
|
251 |
-
|
252 |
-
# Adapter Controls
|
253 |
-
with gr.Group():
|
254 |
-
gr.Markdown("### Adapter Controls")
|
255 |
-
strength = gr.Slider(0.0, 5.0, value=1.0, step=0.1, label="Adapter Strength")
|
256 |
-
noise = gr.Slider(0.0, 1.0, value=0.0, step=0.05, label="Noise Injection")
|
257 |
-
gate_prob = gr.Slider(0.0, 1.0, value=1.0, step=0.05, label="Gate Probability")
|
258 |
-
use_anchor = gr.Checkbox(label="Use Anchor", value=True)
|
259 |
-
|
260 |
-
# Generation Settings
|
261 |
-
with gr.Group():
|
262 |
-
gr.Markdown("### Generation Settings")
|
263 |
-
with gr.Row():
|
264 |
-
steps = gr.Slider(1, 100, value=25, step=1, label="Steps")
|
265 |
-
cfg_scale = gr.Slider(1.0, 20.0, value=7.5, step=0.5, label="CFG Scale")
|
266 |
-
|
267 |
-
scheduler_name = gr.Dropdown(
|
268 |
-
choices=list(SCHEDULERS.keys()),
|
269 |
-
value="DPM++ 2M",
|
270 |
-
label="Scheduler"
|
271 |
-
)
|
272 |
-
|
273 |
-
with gr.Row():
|
274 |
-
width = gr.Slider(512, 1536, value=1024, step=64, label="Width")
|
275 |
-
height = gr.Slider(512, 1536, value=1024, step=64, label="Height")
|
276 |
-
|
277 |
-
seed = gr.Number(value=-1, label="Seed (-1 for random)")
|
278 |
-
|
279 |
-
run_btn = gr.Button("π Generate", variant="primary", size="lg")
|
280 |
-
|
281 |
-
with gr.Column(scale=1):
|
282 |
-
# Output
|
283 |
-
with gr.Group():
|
284 |
-
gr.Markdown("### Generated Image")
|
285 |
-
out_img = gr.Image(label="Result", height=400)
|
286 |
-
|
287 |
-
# Visualizations
|
288 |
-
with gr.Group():
|
289 |
-
gr.Markdown("### Adapter Visualizations")
|
290 |
-
with gr.Row():
|
291 |
-
delta_l = gr.Image(label="Ξ CLIP-L", height=200)
|
292 |
-
gate_l = gr.Image(label="Gate CLIP-L", height=200)
|
293 |
-
with gr.Row():
|
294 |
-
delta_g = gr.Image(label="Ξ CLIP-G", height=200)
|
295 |
-
gate_g = gr.Image(label="Gate CLIP-G", height=200)
|
296 |
-
|
297 |
-
# Stats
|
298 |
-
with gr.Group():
|
299 |
-
gr.Markdown("### Adapter Statistics")
|
300 |
-
stats_l = gr.Textbox(label="CLIP-L Stats", interactive=False)
|
301 |
-
stats_g = gr.Textbox(label="CLIP-G Stats", interactive=False)
|
302 |
-
|
303 |
-
# Event handlers
|
304 |
-
def process_adapters(adapter_l_val, adapter_g_val):
|
305 |
-
# Convert "None" back to None for processing
|
306 |
-
adapter_l_processed = None if adapter_l_val == "None" else adapter_l_val
|
307 |
-
adapter_g_processed = None if adapter_g_val == "None" else adapter_g_val
|
308 |
-
return adapter_l_processed, adapter_g_processed
|
309 |
-
|
310 |
-
def run_inference(*args):
|
311 |
-
# Process adapter selections
|
312 |
-
adapter_l_processed, adapter_g_processed = process_adapters(args[2], args[3])
|
313 |
-
|
314 |
-
# Call inference with processed adapters
|
315 |
-
new_args = list(args)
|
316 |
-
new_args[2] = adapter_l_processed
|
317 |
-
new_args[3] = adapter_g_processed
|
318 |
-
|
319 |
-
return infer(*new_args)
|
320 |
-
|
321 |
-
run_btn.click(
|
322 |
-
fn=run_inference,
|
323 |
-
inputs=[
|
324 |
-
prompt, negative_prompt, adapter_l, adapter_g, strength, noise, gate_prob,
|
325 |
-
use_anchor, steps, cfg_scale, scheduler_name, width, height, seed
|
326 |
-
],
|
327 |
-
outputs=[out_img, delta_l, gate_l, delta_g, gate_g, stats_l, stats_g]
|
328 |
-
)
|
329 |
|
330 |
-
|
331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# βββ Residual Pocket Block βββββββββββββββββββββββββββββββββββ
|
6 |
+
class BottleneckResBlock(nn.Module):
|
7 |
+
def __init__(self, dim, kernel=3, dropout=0.1):
|
8 |
+
super().__init__()
|
9 |
+
self.norm = nn.LayerNorm(dim)
|
10 |
+
self.conv = nn.Conv1d(dim, dim, kernel_size=kernel, padding=kernel // 2, groups=1)
|
11 |
+
self.proj = nn.Sequential(
|
12 |
+
nn.Linear(dim, dim * 2),
|
13 |
+
nn.GELU(),
|
14 |
+
nn.Linear(dim * 2, dim),
|
15 |
+
nn.Dropout(dropout)
|
16 |
+
)
|
17 |
|
18 |
+
def forward(self, x):
|
19 |
+
residual = x
|
20 |
+
x = self.norm(x)
|
21 |
+
x = x.transpose(1, 2)
|
22 |
+
x = self.conv(x).transpose(1, 2)
|
23 |
+
return residual + self.proj(x)
|
24 |
|
25 |
+
# βββ Two Stream Shunt Adapter ββββββββββββββββββββββββββββββββββββββ
|
26 |
+
class TwoStreamShuntAdapter(nn.Module):
|
27 |
+
def __init__(self, config: dict):
|
28 |
+
super().__init__()
|
29 |
+
self.config = config
|
30 |
+
self.t5_dim = config["t5"]["hidden_size"]
|
31 |
+
self.clip_dim = config["clip"]["hidden_size"]
|
32 |
+
self.bneck = config["bottleneck"]
|
33 |
+
self.heads = config["heads"]
|
34 |
+
self.tau_init = config["tau_init"]
|
35 |
+
self.max_guidance = config["max_guidance"]
|
36 |
|
37 |
+
use_norm = config.get("layer_norm", True)
|
38 |
+
use_do = config.get("use_dropout", True)
|
39 |
+
do_p = config.get("dropout", 0.1)
|
40 |
+
proj_depth = config.get("proj_layers", 2)
|
|
|
|
|
41 |
|
42 |
+
def build_projection(input_dim, output_dim):
|
43 |
+
layers = []
|
44 |
+
last_dim = input_dim
|
45 |
+
if use_norm:
|
46 |
+
layers.append(nn.LayerNorm(last_dim))
|
47 |
+
for i in range(proj_depth):
|
48 |
+
next_dim = self.bneck * (2 if i == 0 and proj_depth > 1 else 1)
|
49 |
+
layers.append(nn.Linear(last_dim, next_dim))
|
50 |
+
layers.append(nn.GELU())
|
51 |
+
if use_do:
|
52 |
+
layers.append(nn.Dropout(do_p))
|
53 |
+
last_dim = next_dim
|
54 |
+
layers.append(nn.Linear(last_dim, output_dim))
|
55 |
+
return nn.Sequential(*layers)
|
56 |
|
57 |
+
# Projections
|
58 |
+
self.proj_t5 = build_projection(self.t5_dim, self.bneck)
|
59 |
+
self.proj_clip = build_projection(self.clip_dim, self.bneck)
|
60 |
|
61 |
+
# Attention
|
62 |
+
self.cross_t2c = nn.MultiheadAttention(self.bneck, self.heads, batch_first=True, dropout=do_p)
|
63 |
+
self.cross_c2t = nn.MultiheadAttention(self.bneck, self.heads, batch_first=True, dropout=do_p)
|
64 |
+
self.tau = nn.Parameter(torch.full((self.heads, 1, 1), self.tau_init))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
# Residual Pocket
|
67 |
+
self.pocket_blocks = nn.Sequential(
|
68 |
+
BottleneckResBlock(self.bneck, dropout=do_p),
|
69 |
+
BottleneckResBlock(self.bneck, dropout=do_p)
|
70 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
# Fuse
|
73 |
+
self.fuse = nn.Sequential(
|
74 |
+
nn.LayerNorm(2 * self.bneck),
|
75 |
+
nn.Linear(2 * self.bneck, self.bneck * 2),
|
76 |
+
nn.GELU(),
|
77 |
+
nn.Linear(self.bneck * 2, self.bneck)
|
78 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# Output Projections
|
81 |
+
self.anchor_proj = build_projection(self.bneck, self.clip_dim)
|
82 |
+
self.delta_proj = build_projection(self.bneck, self.clip_dim)
|
83 |
+
self.logsig_proj = build_projection(self.bneck, self.clip_dim)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
self.gate_proj = nn.Sequential(
|
86 |
+
nn.LayerNorm(self.bneck),
|
87 |
+
nn.Linear(self.bneck, self.bneck),
|
88 |
+
nn.GELU(),
|
89 |
+
nn.Linear(self.bneck, 1),
|
90 |
+
nn.Tanh(),
|
91 |
+
nn.Sigmoid()
|
92 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
self.guidance_proj = nn.Sequential(
|
95 |
+
nn.LayerNorm(self.bneck),
|
96 |
+
nn.Linear(self.bneck, 1),
|
97 |
+
nn.Sigmoid()
|
98 |
+
)
|
99 |
+
|
100 |
+
def forward(self, t5_seq: torch.Tensor, clip_seq: torch.Tensor):
|
101 |
+
if self.config.get("assert_input_dims", True):
|
102 |
+
assert t5_seq.size(-1) == self.t5_dim
|
103 |
+
assert clip_seq.size(-1) == self.clip_dim
|
104 |
+
|
105 |
+
t5_b = self.proj_t5(t5_seq)
|
106 |
+
clip_b = self.proj_clip(clip_seq)
|
107 |
+
|
108 |
+
t2c, attn_t2c = self.cross_t2c(t5_b, clip_b, clip_b, need_weights=True, average_attn_weights=False)
|
109 |
+
c2t, attn_c2t = self.cross_c2t(clip_b, t5_b, t5_b, need_weights=True, average_attn_weights=False)
|
110 |
+
|
111 |
+
pocket = self.pocket_blocks(t2c)
|
112 |
+
|
113 |
+
pocket_mean = pocket.mean(1, keepdim=True).expand(-1, clip_b.size(1), -1)
|
114 |
+
h = self.fuse(torch.cat([pocket_mean, c2t], dim=-1))
|
115 |
+
|
116 |
+
anchor = self.anchor_proj(h)
|
117 |
+
delta = self.delta_proj(h) * self.gate_proj(h)
|
118 |
+
log_sigma = self.logsig_proj(h)
|
119 |
+
|
120 |
+
g_tok = self.guidance_proj(h).squeeze(-1)
|
121 |
+
g_pred = g_tok.mean(1, keepdim=True) * self.max_guidance
|
122 |
+
|
123 |
+
return anchor, delta, log_sigma, attn_t2c, attn_c2t, self.tau, g_pred, self.gate_proj(h)
|