Spaces:
Runtime error
Runtime error
File size: 13,257 Bytes
19e2e87 e543e33 19e2e87 e543e33 403ae01 19e2e87 c34205b ca066a9 e543e33 19e2e87 e543e33 ca066a9 e543e33 620a643 19e2e87 1e5ce4d e543e33 19e2e87 ca066a9 19e2e87 e543e33 19e2e87 ca066a9 1e5ce4d 19e2e87 1e5ce4d 19e2e87 ca066a9 19e2e87 e543e33 19e2e87 e543e33 19e2e87 e543e33 19e2e87 e543e33 19e2e87 5759aab ca066a9 e543e33 b6b9cb1 e543e33 19e2e87 e543e33 19e2e87 e543e33 19e2e87 e543e33 b6b9cb1 e543e33 1e5ce4d 19e2e87 e543e33 19e2e87 e543e33 1e5ce4d 19e2e87 e543e33 19e2e87 e543e33 19e2e87 e543e33 19e2e87 e543e33 19e2e87 535b292 19e2e87 535b292 19e2e87 e543e33 535b292 19e2e87 e543e33 535b292 19e2e87 535b292 19e2e87 535b292 19e2e87 535b292 19e2e87 535b292 19e2e87 5759aab e543e33 19e2e87 e543e33 19e2e87 c22af2e e543e33 19e2e87 e543e33 19e2e87 5759aab e543e33 5759aab e543e33 19e2e87 e543e33 19e2e87 e543e33 19e2e87 e543e33 1e5ce4d 19e2e87 1e5ce4d 19e2e87 e543e33 19e2e87 e543e33 5759aab 19e2e87 e543e33 19e2e87 e543e33 19e2e87 5759aab 403ae01 e543e33 403ae01 e543e33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
# app.py ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
import io, warnings, numpy as np, matplotlib.pyplot as plt
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import gradio as gr
import torch, torch.nn.functional as F
from PIL import Image
from transformers import T5Tokenizer, T5EncoderModel
from diffusers import (
StableDiffusionXLPipeline,
DDIMScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler,
)
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
# local modules
from two_stream_shunt_adapter import TwoStreamShuntAdapter
from conditioning_shifter import ConditioningShifter, ShiftConfig, AdapterOutput
from embedding_manager import get_bank
from configs import T5_SHUNT_REPOS
warnings.filterwarnings("ignore")
# βββ GLOBALS ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
dtype = torch.float16
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
_bank = get_bank() # singleton β optional caching
_t5_tok: Optional[T5Tokenizer] = None
_t5_mod: Optional[T5EncoderModel] = None
_pipe : Optional[StableDiffusionXLPipeline] = None
SCHEDULERS = {
"DPM++ 2M": DPMSolverMultistepScheduler,
"DDIM": DDIMScheduler,
"Euler": EulerDiscreteScheduler,
}
# adapter-meta from configs.py
clip_l_opts = T5_SHUNT_REPOS["clip_l"]["shunts_available"]["shunt_list"]
clip_g_opts = T5_SHUNT_REPOS["clip_g"]["shunts_available"]["shunt_list"]
repo_l, conf_l = T5_SHUNT_REPOS["clip_l"]["repo"], T5_SHUNT_REPOS["clip_l"]["config"]
repo_g, conf_g = T5_SHUNT_REPOS["clip_g"]["repo"], T5_SHUNT_REPOS["clip_g"]["config"]
# βββ INITIALISERS ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def _init_t5():
global _t5_tok, _t5_mod
if _t5_tok is None:
_t5_tok = T5Tokenizer.from_pretrained("google/flan-t5-base")
_t5_mod = T5EncoderModel.from_pretrained("google/flan-t5-base") \
.to(device).eval()
def _init_pipe():
global _pipe
if _pipe is None:
_pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=dtype, variant="fp16", use_safetensors=True
).to(device)
_pipe.enable_xformers_memory_efficient_attention()
# βββ HELPERS βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def load_adapter(repo: str, filename: str, cfg: dict,
device: torch.device) -> TwoStreamShuntAdapter:
path = hf_hub_download(repo_id=repo, filename=filename)
model = TwoStreamShuntAdapter(cfg).eval()
model.load_state_dict(load_file(path))
return model.to(device)
def plot_heat(mat: torch.Tensor | np.ndarray, title: str) -> np.ndarray:
if isinstance(mat, torch.Tensor):
mat = mat.detach().cpu().numpy()
if mat.ndim == 1:
mat = mat[None, :]
elif mat.ndim >= 3:
mat = mat.mean(axis=0)
plt.figure(figsize=(7, 3.3), dpi=110)
plt.imshow(mat, aspect="auto", cmap="RdBu_r", origin="upper")
plt.title(title, fontsize=10)
plt.colorbar(shrink=0.7)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
plt.close(); buf.seek(0)
return np.array(Image.open(buf))
def encode_prompt_xl(pipe, prompt: str, negative: str) -> Dict[str, torch.Tensor]:
tok_l = pipe.tokenizer (prompt, max_length=77, truncation=True,
padding="max_length", return_tensors="pt").input_ids.to(device)
tok_g = pipe.tokenizer_2(prompt, max_length=77, truncation=True,
padding="max_length", return_tensors="pt").input_ids.to(device)
ntok_l = pipe.tokenizer (negative,max_length=77, truncation=True,
padding="max_length", return_tensors="pt").input_ids.to(device)
ntok_g = pipe.tokenizer_2(negative,max_length=77, truncation=True,
padding="max_length", return_tensors="pt").input_ids.to(device)
with torch.no_grad():
clip_l = pipe.text_encoder(tok_l)[0]
neg_clip_l = pipe.text_encoder(ntok_l)[0]
g_out = pipe.text_encoder_2(tok_g, output_hidden_states=False)
clip_g, pl = g_out[1], g_out[0]
ng_out = pipe.text_encoder_2(ntok_g, output_hidden_states=False)
neg_clip_g, npl = ng_out[1], ng_out[0]
return {"clip_l": clip_l, "clip_g": clip_g,
"neg_l": neg_clip_l, "neg_g": neg_clip_g,
"pooled": pl, "neg_pooled": npl}
# βββ INFERENCE βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def infer(prompt: str, negative_prompt: str,
adapter_l_file: str, adapter_g_file: str,
strength: float, delta_scale: float, sigma_scale: float,
gpred_scale: float, noise: float, gate_prob: float, use_anchor: bool,
steps: int, cfg_scale: float, scheduler_name: str,
width: int, height: int, seed: int):
torch.cuda.empty_cache()
_init_t5(); _init_pipe()
if scheduler_name in SCHEDULERS:
_pipe.scheduler = SCHEDULERS[scheduler_name].from_config(_pipe.scheduler.config)
generator = (torch.Generator(device=device).manual_seed(seed)
if seed != -1 else None)
# build ShiftConfig (one per request)
cfg_shift = ShiftConfig(
prompt = prompt,
seed = seed,
strength = strength,
delta_scale = delta_scale,
sigma_scale = sigma_scale,
gate_probability = gate_prob,
noise_injection = noise,
use_anchor = use_anchor,
guidance_scale = gpred_scale,
)
# encoder (T5) embeddings
t5_seq = ConditioningShifter.extract_encoder_embeddings(
{"tokenizer": _t5_tok, "model": _t5_mod, "config": {"config": {}}},
device, cfg_shift
)
# CLIP embeddings
embeds = encode_prompt_xl(_pipe, prompt, negative_prompt)
# run adapters --------------------------------------------------------
outputs: List[AdapterOutput] = []
if adapter_l_file and adapter_l_file != "None":
ada_l = load_adapter(repo_l, adapter_l_file, conf_l, device)
outputs.append(ConditioningShifter.run_adapter(
ada_l, t5_seq, embeds["clip_l"],
cfg_shift.guidance_scale, "clip_l", (0, 768)))
if adapter_g_file and adapter_g_file != "None":
ada_g = load_adapter(repo_g, adapter_g_file, conf_g, device)
outputs.append(ConditioningShifter.run_adapter(
ada_g, t5_seq, embeds["clip_g"],
cfg_shift.guidance_scale, "clip_g", (768, 2048)))
# apply modifications -------------------------------------------------
clip_l_mod, clip_g_mod = embeds["clip_l"], embeds["clip_g"]
delta_viz = {"clip_l": torch.zeros_like(clip_l_mod),
"clip_g": torch.zeros_like(clip_g_mod)}
gate_viz = {"clip_l": torch.zeros_like(clip_l_mod[..., :1]),
"clip_g": torch.zeros_like(clip_g_mod[..., :1])}
for out in outputs:
target = clip_l_mod if out.adapter_type == "clip_l" else clip_g_mod
mod = ConditioningShifter.apply_modifications(target, [out], cfg_shift)
if out.adapter_type == "clip_l":
clip_l_mod = mod
else:
clip_g_mod = mod
delta_viz[out.adapter_type] = out.delta.detach()
gate_viz [out.adapter_type] = out.gate.detach()
# prepare for SDXL ----------------------------------------------------
prompt_embeds = torch.cat([clip_l_mod, clip_g_mod], dim=-1)
neg_embeds = torch.cat([embeds["neg_l"], embeds["neg_g"]], dim=-1)
image = _pipe(
prompt_embeds = prompt_embeds,
negative_prompt_embeds = neg_embeds,
pooled_prompt_embeds = embeds["pooled"],
negative_pooled_prompt_embeds = embeds["neg_pooled"],
num_inference_steps = steps,
guidance_scale = cfg_scale,
width = width, height = height, generator = generator
).images[0]
# diagnostics ---------------------------------------------------------
delta_l_img = plot_heat(delta_viz["clip_l"].squeeze(), "Ξ CLIP-L")
gate_l_img = plot_heat(gate_viz ["clip_l"].squeeze().mean(-1, keepdims=True), "Gate L")
delta_g_img = plot_heat(delta_viz["clip_g"].squeeze(), "Ξ CLIP-G")
gate_g_img = plot_heat(gate_viz ["clip_g"].squeeze().mean(-1, keepdims=True), "Gate G")
stats_l = (f"ΟΜ_L = {outputs[0].tau.mean().item():.3f}"
if outputs and outputs[0].adapter_type == "clip_l" else "-")
stats_g = (f"ΟΜ_G = {outputs[-1].tau.mean().item():.3f}"
if len(outputs) > 1 and outputs[-1].adapter_type == "clip_g" else "-")
return image, delta_l_img, gate_l_img, delta_g_img, gate_g_img, stats_l, stats_g
# βββ GRADIO UI ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def create_interface():
with gr.Blocks(title="SDXL Dual-Shunt Tester", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π§ SDXL Dual-Shunt Tester")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Prompts")
prompt = gr.Textbox(label="Prompt", lines=3,
value="a futuristic control station with holographic displays")
negative = gr.Textbox(label="Negative", lines=2,
value="blurry, low quality, distorted")
gr.Markdown("### Adapters")
adapter_l = gr.Dropdown(["None"] + clip_l_opts,
value="t5-vit-l-14-dual_shunt_caption.safetensors",
label="CLIP-L Adapter")
adapter_g = gr.Dropdown(["None"] + clip_g_opts,
value="dual_shunt_omega_no_caption_noised_e1_step_10000.safetensors",
label="CLIP-G Adapter")
gr.Markdown("### Adapter Controls")
strength = gr.Slider(0, 10, 4.0, 0.05, label="Strength")
delta_scale = gr.Slider(-15, 15, 0.2, 0.1, label="Ξ scale")
sigma_scale = gr.Slider(0, 15, 0.1, 0.1, label="Ο scale")
gpred_scale = gr.Slider(0, 20, 2.0, 0.05, label="Guidance scale")
noise = gr.Slider(0, 1, 0.55, 0.01, label="Extra noise")
gate_prob = gr.Slider(0, 1, 0.27, 0.01, label="Gate prob")
use_anchor = gr.Checkbox(True, label="Use anchor mix")
gr.Markdown("### Generation")
with gr.Row():
steps = gr.Slider(1, 50, 20, 1, label="Steps")
cfg_scale = gr.Slider(1, 15, 7.5, 0.1, label="CFG")
scheduler = gr.Dropdown(list(SCHEDULERS.keys()),
value="DPM++ 2M", label="Scheduler")
with gr.Row():
width = gr.Slider(512, 1536, 1024, 64, label="Width")
height = gr.Slider(512, 1536, 1024, 64, label="Height")
seed = gr.Number(-1, label="Seed (-1 β random)", precision=0)
run_btn = gr.Button("π Generate", variant="primary")
with gr.Column(scale=1):
out_img = gr.Image(label="Result", height=400)
gr.Markdown("### Diagnostics")
delta_l = gr.Image(label="Ξ L", height=180)
gate_l = gr.Image(label="Gate L", height=180)
delta_g = gr.Image(label="Ξ G", height=180)
gate_g = gr.Image(label="Gate G", height=180)
stats_l = gr.Textbox(label="Stats L", interactive=False)
stats_g = gr.Textbox(label="Stats G", interactive=False)
def _run(*args):
pl, npl = args[0], args[1]
al, ag = (None if v == "None" else v for v in args[2:4])
return infer(pl, npl, al, ag, *args[4:])
run_btn.click(
fn=_run,
inputs=[prompt, negative, adapter_l, adapter_g, strength, delta_scale,
sigma_scale, gpred_scale, noise, gate_prob, use_anchor, steps,
cfg_scale, scheduler, width, height, seed],
outputs=[out_img, delta_l, gate_l, delta_g, gate_g, stats_l, stats_g]
)
return demo
if __name__ == "__main__":
create_interface().launch()
|