Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,408 Bytes
0cba5a9 5e20a2a fd4a12a aa28bbb 872b08b fd4a12a 0a14990 81a0ae4 5e20a2a 096fe3a 872b08b 5e20a2a 096fe3a fd4a12a 5e20a2a fd4a12a 5e20a2a fd4a12a 5e20a2a fd4a12a 5e20a2a fd4a12a 0a14990 fd4a12a 9a08859 fd4a12a 096fe3a 535151e 5e20a2a fd4a12a 096fe3a 785df91 872b08b 785df91 5e20a2a 0cba5a9 fd4a12a 0cba5a9 5e20a2a 096fe3a 0cba5a9 5e20a2a 0cba5a9 5e20a2a 0cba5a9 5e20a2a 0cba5a9 fd4a12a 0cba5a9 42a1b9e 0cba5a9 fd4a12a 0cba5a9 42a1b9e 0cba5a9 42a1b9e 0cba5a9 42a1b9e 0cba5a9 42a1b9e 0cba5a9 42a1b9e 0cba5a9 42a1b9e 0cba5a9 42a1b9e 0cba5a9 42a1b9e 0cba5a9 42a1b9e 0cba5a9 42a1b9e 0cba5a9 20331bc 45ddfa3 096fe3a 0cba5a9 5e20a2a 0cba5a9 42a1b9e 0cba5a9 44c0214 0cba5a9 2ef5341 0cba5a9 2ef5341 42a1b9e 2ef5341 42a1b9e 2ef5341 42a1b9e 2ef5341 0cba5a9 2ef5341 0cba5a9 2ef5341 0cba5a9 535151e ea2994b 5e20a2a 0cba5a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
# app.py β FIXED encoder-only demo for bert-beatrix-2048
# launch: python app.py
# -----------------------------------------------
import json, re, sys, math
from pathlib import Path, PurePosixPath
import torch, torch.nn.functional as F
import gradio as gr
import spaces
from huggingface_hub import snapshot_download
from bert_handler import create_handler_from_checkpoint
# ------------------------------------------------------------------
# 0. Download & patch HF checkpoint --------------------------------
REPO_ID = "AbstractPhil/bert-beatrix-2048"
LOCAL_CKPT = "bert-beatrix-2048"
snapshot_download(
repo_id=REPO_ID,
revision="main",
local_dir=LOCAL_CKPT,
local_dir_use_symlinks=False,
)
# β strip repo prefix in auto_map (one-time)
cfg_path = Path(LOCAL_CKPT) / "config.json"
with cfg_path.open() as f: cfg = json.load(f)
amap = cfg.get("auto_map", {})
for k,v in amap.items():
if "--" in v:
amap[k] = PurePosixPath(v.split("--",1)[1]).as_posix()
cfg["auto_map"] = amap
with cfg_path.open("w") as f: json.dump(cfg,f,indent=2)
# ------------------------------------------------------------------
# 1. Load model & components --------------------------------------
handler, full_model, tokenizer = create_handler_from_checkpoint(LOCAL_CKPT)
full_model = full_model.eval().cuda()
# ------------------------------------------------------------------
# 2. Symbolic roles -------------------------------------------------
SYMBOLIC_ROLES = [
"<subject>", "<subject1>", "<subject2>", "<pose>", "<emotion>",
"<surface>", "<lighting>", "<material>", "<accessory>", "<footwear>",
"<upper_body_clothing>", "<hair_style>", "<hair_length>", "<headwear>",
"<texture>", "<pattern>", "<grid>", "<zone>", "<offset>",
"<object_left>", "<object_right>", "<relation>", "<intent>", "<style>",
"<fabric>", "<jewelry>",
]
# Verify all symbolic tokens exist in tokenizer
missing_tokens = []
symbolic_token_ids = {}
for token in SYMBOLIC_ROLES:
token_id = tokenizer.convert_tokens_to_ids(token)
if token_id == tokenizer.unk_token_id:
missing_tokens.append(token)
else:
symbolic_token_ids[token] = token_id
if missing_tokens:
print(f"β οΈ Missing symbolic tokens: {missing_tokens}")
print("Available tokens will be used for classification")
MASK = tokenizer.mask_token
MASK_ID = tokenizer.mask_token_id
print(f"β
Loaded {len(symbolic_token_ids)} symbolic tokens")
# ------------------------------------------------------------------
# 3. FIXED MLM-based symbolic classification ----------------------
def get_symbolic_predictions(input_ids, attention_mask, mask_positions, selected_roles):
"""
Proper MLM-based prediction for symbolic tokens at masked positions
Args:
input_ids: (B, S) token IDs with [MASK] at positions to classify
attention_mask: (B, S) attention mask
mask_positions: list of positions that are masked
selected_roles: list of symbolic role tokens to consider
Returns:
predictions and probabilities for each masked position
"""
# Get MLM logits from the model (this is what it was trained for)
with torch.no_grad():
outputs = full_model(input_ids=input_ids, attention_mask=attention_mask)
logits = outputs.logits # (B, S, V)
# Filter to only selected symbolic role token IDs
selected_token_ids = [symbolic_token_ids[role] for role in selected_roles
if role in symbolic_token_ids]
if not selected_token_ids:
return [], []
results = []
for pos in mask_positions:
# Get logits for this masked position
pos_logits = logits[0, pos] # (V,)
# Extract logits for symbolic tokens only
symbolic_logits = pos_logits[selected_token_ids] # (num_symbolic,)
# Apply softmax to get probabilities
symbolic_probs = F.softmax(symbolic_logits, dim=-1)
# Get top predictions
top_indices = torch.argsort(symbolic_probs, descending=True)
pos_results = []
for i in top_indices:
token_idx = selected_token_ids[i]
token = tokenizer.convert_ids_to_tokens([token_idx])[0]
prob = symbolic_probs[i].item()
pos_results.append({
"token": token,
"probability": prob,
"token_id": token_idx
})
results.append({
"position": pos,
"predictions": pos_results
})
return results
def create_strategic_masks(text, tokenizer, strategy="content_words"):
"""
Create strategic mask positions based on different strategies
Args:
text: input text
tokenizer: tokenizer
strategy: masking strategy
Returns:
input_ids with masks, attention_mask, original_tokens, mask_positions
"""
# Tokenize original text
batch = tokenizer(text, return_tensors="pt", add_special_tokens=True)
input_ids = batch.input_ids[0] # (S,)
attention_mask = batch.attention_mask[0] # (S,)
# Get original tokens for reference
original_tokens = tokenizer.convert_ids_to_tokens(input_ids)
# Find positions to mask based on strategy
mask_positions = []
if strategy == "content_words":
# Mask content words (avoid special tokens, punctuation, common words)
skip_tokens = {
tokenizer.cls_token, tokenizer.sep_token, tokenizer.pad_token,
".", ",", "!", "?", ":", ";", "'", '"', "-", "(", ")", "[", "]",
"the", "a", "an", "and", "or", "but", "in", "on", "at", "to",
"for", "of", "with", "by", "is", "are", "was", "were", "be", "been"
}
for i, token in enumerate(original_tokens):
if (token not in skip_tokens and
not token.startswith("##") and # avoid subword tokens
len(token) > 2 and
token.isalpha()):
mask_positions.append(i)
elif strategy == "every_nth":
# Mask every 3rd token (avoiding special tokens)
for i in range(1, len(original_tokens) - 1, 3): # skip CLS and SEP
mask_positions.append(i)
elif strategy == "random":
# Randomly mask 15% of tokens
import random
candidates = list(range(1, len(original_tokens) - 1)) # skip CLS and SEP
num_to_mask = max(1, int(len(candidates) * 0.15))
mask_positions = random.sample(candidates, min(num_to_mask, len(candidates)))
mask_positions.sort()
elif strategy == "manual":
# For manual specification - return original for now
# Users can specify positions in the UI
pass
# Limit to reasonable number of masks
mask_positions = mask_positions[:10] # Max 10 masks for UI clarity
# Create masked input
masked_input_ids = input_ids.clone()
for pos in mask_positions:
masked_input_ids[pos] = MASK_ID
return masked_input_ids.unsqueeze(0), attention_mask.unsqueeze(0), original_tokens, mask_positions
@spaces.GPU
def symbolic_classification_analysis(text, selected_roles, masking_strategy="content_words", num_predictions=5):
"""
Perform symbolic classification analysis using MLM prediction
FIXED: Now tests what the model actually learned
"""
if not selected_roles:
selected_roles = list(symbolic_token_ids.keys())
if not text.strip():
return "Please enter some text to analyze.", "", 0
try:
# DETECT if input follows training pattern vs needs conversion
if any(role in text for role in symbolic_token_ids.keys()):
# Input already has symbolic tokens - test descriptive prediction
return test_descriptive_prediction(text, selected_roles, num_predictions)
else:
# Convert input to training-style format and test
return test_with_context_injection(text, selected_roles, num_predictions)
except Exception as e:
error_msg = f"Error during analysis: {str(e)}"
print(error_msg)
return error_msg, "", 0
def test_descriptive_prediction(text, selected_roles, num_predictions):
"""
Test what descriptive words the model predicts after symbolic tokens
This matches the actual training objective
"""
# Find positions after symbolic tokens
tokens = tokenizer.tokenize(text, add_special_tokens=True)
token_ids = tokenizer.convert_tokens_to_ids(tokens)
# Find symbolic token positions
symbolic_positions = []
for i, token in enumerate(tokens):
if token in symbolic_token_ids:
# Mask the next 1-3 positions after symbolic token
for offset in range(1, min(4, len(tokens) - i)):
if i + offset < len(tokens) and tokens[i + offset] not in ['[SEP]', '[PAD]']:
symbolic_positions.append({
'mask_pos': i + offset,
'symbolic_token': token,
'original_token': tokens[i + offset]
})
if not symbolic_positions:
return "No symbolic tokens found in input. Try format like: '<subject> a young woman'", "", 0
# Create masked versions and get predictions
results = []
for pos_info in symbolic_positions[:5]: # Limit to 5 positions
masked_ids = token_ids.copy()
masked_ids[pos_info['mask_pos']] = MASK_ID
# Get MLM predictions
masked_input = torch.tensor([masked_ids]).to("cuda")
attention_mask = torch.ones_like(masked_input)
with torch.no_grad():
outputs = full_model(input_ids=masked_input, attention_mask=attention_mask)
logits = outputs.logits[0, pos_info['mask_pos']] # Logits for masked position
# Get top 10 predictions from full vocabulary
probs = F.softmax(logits, dim=-1)
top_indices = torch.argsort(probs, descending=True)[:num_predictions]
predictions = []
for idx in top_indices:
token_text = tokenizer.convert_ids_to_tokens([idx.item()])[0]
prob = probs[idx].item()
predictions.append({
"token": token_text,
"probability": prob
})
results.append({
"symbolic_context": pos_info['symbolic_token'],
"position": pos_info['mask_pos'],
"original_token": pos_info['original_token'],
"predictions": predictions
})
# Format results
analysis = {
"input_text": text,
"test_type": "descriptive_prediction",
"explanation": "Testing what descriptive words model predicts after symbolic tokens",
"results": results
}
summary_lines = [f"π― Testing Descriptive Prediction (what model actually learned)\n"]
for result in results:
ctx = result["symbolic_context"]
orig = result["original_token"]
top_pred = result["predictions"][0]
summary_lines.append(
f"After {ctx}: '{orig}' β '{top_pred['token']}' ({top_pred['probability']:.4f})"
)
summary = "\n".join(summary_lines)
return json.dumps(analysis, indent=2), summary, len(results)
def test_with_context_injection(text, selected_roles, num_predictions):
"""
Inject symbolic context and test what descriptive words are predicted
"""
results = []
# Test each selected symbolic role as context
for role in selected_roles[:3]: # Limit to 3 roles for speed
# Create training-style context
context_text = f"{role} {text}"
# Tokenize and find good positions to mask
tokens = tokenizer.tokenize(context_text, add_special_tokens=True)
token_ids = tokenizer.convert_tokens_to_ids(tokens)
# Find role position and mask next content word
role_pos = None
for i, token in enumerate(tokens):
if token == role:
role_pos = i
break
if role_pos is None or role_pos + 2 >= len(tokens):
continue
# Mask position after role (skip articles like "a", "the")
mask_pos = role_pos + 1
skip_words = {'a', 'an', 'the', 'some', 'this', 'that'}
while mask_pos < len(tokens) - 1:
current_token = tokens[mask_pos].lower()
if current_token not in skip_words and len(current_token) > 2:
break
mask_pos += 1
if mask_pos >= len(tokens):
continue
# Create masked input
masked_ids = token_ids.copy()
original_token = tokens[mask_pos]
masked_ids[mask_pos] = MASK_ID
# Get predictions
masked_input = torch.tensor([masked_ids]).to("cuda")
attention_mask = torch.ones_like(masked_input)
with torch.no_grad():
outputs = full_model(input_ids=masked_input, attention_mask=attention_mask)
logits = outputs.logits[0, mask_pos]
# Get top predictions
probs = F.softmax(logits, dim=-1)
top_indices = torch.argsort(probs, descending=True)[:num_predictions]
predictions = []
for idx in top_indices:
token_text = tokenizer.convert_ids_to_tokens([idx.item()])[0]
prob = probs[idx].item()
predictions.append({
"token": token_text,
"probability": prob
})
results.append({
"symbolic_context": role,
"position": mask_pos,
"original_token": original_token,
"context_text": context_text,
"predictions": predictions
})
# Format results
analysis = {
"input_text": text,
"test_type": "context_injection",
"explanation": "Injected symbolic tokens and tested descriptive predictions",
"results": results
}
summary_lines = [f"π― Testing with Symbolic Context Injection\n"]
for result in results:
role = result["symbolic_context"]
orig = result["original_token"]
top_pred = result["predictions"][0]
summary_lines.append(
f"{role} context: '{orig}' β '{top_pred['token']}' ({top_pred['probability']:.4f})"
)
summary = "\n".join(summary_lines)
return json.dumps(analysis, indent=2), summary, len(results)
def create_manual_mask_analysis(text, mask_positions_str, selected_roles):
"""
Allow manual specification of mask positions
"""
try:
# Parse mask positions
mask_positions = [int(x.strip()) for x in mask_positions_str.split(",") if x.strip().isdigit()]
if not mask_positions:
return "Please specify valid mask positions (comma-separated numbers)", "", 0
# Tokenize text
batch = tokenizer(text, return_tensors="pt", add_special_tokens=True)
input_ids = batch.input_ids[0]
attention_mask = batch.attention_mask[0]
original_tokens = tokenizer.convert_ids_to_tokens(input_ids)
# Validate positions
valid_positions = [pos for pos in mask_positions if 0 <= pos < len(input_ids)]
if not valid_positions:
return f"Invalid positions. Text has {len(input_ids)} tokens (0-{len(input_ids)-1})", "", 0
# Create masked input
masked_input_ids = input_ids.clone()
for pos in valid_positions:
masked_input_ids[pos] = MASK_ID
# Run analysis
masked_input_ids = masked_input_ids.unsqueeze(0).to("cuda")
attention_mask = attention_mask.unsqueeze(0).to("cuda")
predictions = get_symbolic_predictions(
masked_input_ids, attention_mask, valid_positions, selected_roles
)
# Format results
results = []
for pred_data in predictions:
pos = pred_data["position"]
original = original_tokens[pos]
top_pred = pred_data["predictions"][0] if pred_data["predictions"] else None
if top_pred:
results.append(
f"Pos {pos}: '{original}' β {top_pred['token']} ({top_pred['probability']:.4f})"
)
return "\n".join(results), f"Analyzed {len(valid_positions)} positions", len(valid_positions)
except Exception as e:
return f"Error: {str(e)}", "", 0
# ------------------------------------------------------------------
# 4. Gradio UI -----------------------------------------------------
def build_interface():
with gr.Blocks(title="π§ MLM Symbolic Classifier", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π§ MLM-Based Symbolic Classification")
gr.Markdown("Analyze text using masked language modeling to predict symbolic roles at specific positions.")
with gr.Tab("Automatic Analysis"):
with gr.Row():
with gr.Column():
txt_input = gr.Textbox(
label="Input Text",
lines=4,
placeholder="Try: '<subject> a young woman wearing elegant dress' or just 'young woman wearing dress'"
)
with gr.Row():
masking_strategy = gr.Dropdown(
choices=["content_words", "every_nth", "random"],
value="content_words",
label="Masking Strategy"
)
num_predictions = gr.Slider(
minimum=1, maximum=10, value=5, step=1,
label="Top Predictions per Position"
)
roles_selection = gr.CheckboxGroup(
choices=list(symbolic_token_ids.keys()),
value=list(symbolic_token_ids.keys()),
label="Symbolic Roles to Consider"
)
analyze_btn = gr.Button("π Analyze", variant="primary")
with gr.Column():
summary_output = gr.Textbox(
label="Analysis Summary",
lines=10,
max_lines=15
)
with gr.Row():
positions_analyzed = gr.Number(label="Positions Analyzed", precision=0)
max_confidence = gr.Textbox(label="Best Prediction", max_lines=1)
detailed_output = gr.JSON(label="Detailed Results")
with gr.Tab("Manual Masking"):
with gr.Row():
with gr.Column():
manual_text = gr.Textbox(
label="Input Text",
lines=3,
placeholder="Enter text for manual analysis..."
)
mask_positions_input = gr.Textbox(
label="Mask Positions (comma-separated)",
placeholder="e.g., 2,5,8,12",
info="Specify token positions to mask (0-based indexing)"
)
manual_roles = gr.CheckboxGroup(
choices=list(symbolic_token_ids.keys()),
value=list(symbolic_token_ids.keys())[:10], # Default to first 10
label="Symbolic Roles"
)
manual_analyze_btn = gr.Button("π― Analyze Specific Positions")
with gr.Column():
manual_results = gr.Textbox(
label="Manual Analysis Results",
lines=8
)
manual_summary = gr.Textbox(label="Summary")
manual_count = gr.Number(label="Positions", precision=0)
with gr.Tab("Token Inspector"):
with gr.Row():
with gr.Column():
inspect_text = gr.Textbox(
label="Text to Inspect",
lines=2,
placeholder="Enter text to see tokenization..."
)
# Add example patterns button
example_patterns = gr.Button("π Load Image Caption Examples")
inspect_btn = gr.Button("π Inspect Tokens")
with gr.Column():
token_breakdown = gr.Textbox(
label="Token Breakdown",
lines=8,
info="Shows how text is tokenized with position indices"
)
with gr.Tab("Caption Examples"):
gr.Markdown("### πΌοΈ Test with Training-Style Patterns")
gr.Markdown("""
**The model was trained to predict descriptive words AFTER symbolic tokens.**
Test with patterns like:
- `<subject> a young woman wearing elegant dress`
- `<lighting> soft natural illumination on the scene`
- `<emotion> happy expression while posing confidently`
""")
example_captions = [
"<subject> a young woman wearing a blue dress",
"<lighting> soft natural illumination in the scene",
"<emotion> happy expression while posing confidently",
"<pose> standing gracefully near the window",
"<upper_body_clothing> elegant silk blouse with intricate patterns",
"<material> luxurious velvet fabric with rich texture",
"<accessory> delicate silver jewelry catching the light",
"<surface> polished marble floor reflecting ambient glow"
]
for caption in example_captions:
with gr.Row():
gr.Textbox(value=caption, label="Training-Style Example", interactive=False, scale=3)
copy_btn = gr.Button("π Test This", scale=1)
# Event handlers
analyze_btn.click(
symbolic_classification_analysis,
inputs=[txt_input, roles_selection, masking_strategy, num_predictions],
outputs=[detailed_output, summary_output, positions_analyzed]
)
manual_analyze_btn.click(
create_manual_mask_analysis,
inputs=[manual_text, mask_positions_input, manual_roles],
outputs=[manual_results, manual_summary, manual_count]
)
def load_examples():
return "a young woman wearing a blue dress"
def inspect_tokens(text):
if not text.strip():
return "Enter text to inspect tokenization"
tokens = tokenizer.tokenize(text, add_special_tokens=True)
result_lines = []
for i, token in enumerate(tokens):
result_lines.append(f"{i:2d}: '{token}'")
return "\n".join(result_lines)
# Event handlers
example_patterns.click(
load_examples,
outputs=[inspect_text]
)
inspect_btn.click(
inspect_tokens,
inputs=[inspect_text],
outputs=[token_breakdown]
)
return demo
if __name__ == "__main__":
print("π Starting MLM Symbolic Classifier...")
print(f"β
Model loaded with {len(symbolic_token_ids)} symbolic tokens")
print(f"π― Available symbolic roles: {list(symbolic_token_ids.keys())[:5]}...")
build_interface().launch(
server_name="0.0.0.0",
server_port=7860,
share=True
) |