Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -90,24 +90,24 @@ def encode_and_trace(text, selected_roles):
|
|
90 |
sel_ids = [tokenizer.convert_tokens_to_ids(t) for t in selected_roles]
|
91 |
sel_ids_tensor = torch.tensor(sel_ids, device="cuda")
|
92 |
|
93 |
-
# Tokenize
|
94 |
batch = tokenizer(text, return_tensors="pt").to("cuda")
|
95 |
ids, attn = batch.input_ids, batch.attention_mask
|
96 |
S = ids.shape[1]
|
97 |
|
98 |
-
#
|
99 |
def encode(input_ids, attn_mask):
|
100 |
x = embeddings(input_ids)
|
101 |
if emb_ln: x = emb_ln(x)
|
102 |
if emb_drop: x = emb_drop(x)
|
103 |
ext = full_model.bert.get_extended_attention_mask(attn_mask, x.shape[:-1])
|
104 |
-
return encoder(x, attention_mask=ext)[0]
|
105 |
|
106 |
encoded = encode(ids, attn)
|
107 |
|
108 |
-
#
|
109 |
-
symbolic_embeds = embeddings.word_embeddings(sel_ids_tensor) #
|
110 |
-
sim = cosine(encoded.unsqueeze(1), symbolic_embeds.unsqueeze(0)) # (S, R)
|
111 |
maxcos, argrole = sim.max(-1) # (S,)
|
112 |
top_roles = [selected_roles[i] for i in argrole.tolist()]
|
113 |
sort_idx = maxcos.argsort(descending=True)
|
@@ -116,7 +116,7 @@ def encode_and_trace(text, selected_roles):
|
|
116 |
|
117 |
MASK_ID = tokenizer.mask_token_id or tokenizer.convert_tokens_to_ids("[MASK]")
|
118 |
|
119 |
-
#
|
120 |
def evaluate_pool(idx_order, label, ids):
|
121 |
best_pool, best_acc = [], 0.0
|
122 |
ptr = 0
|
@@ -130,16 +130,17 @@ def encode_and_trace(text, selected_roles):
|
|
130 |
masked_input = ids.where(mask_flags, MASK_ID)
|
131 |
|
132 |
encoded_m = encode(masked_input, attn)
|
133 |
-
logits = mlm_head(encoded_m)
|
134 |
-
preds = logits.argmax(-1)
|
135 |
|
136 |
-
masked_positions = (~mask_flags[0]).nonzero(as_tuple=
|
137 |
if masked_positions.numel() == 0:
|
138 |
continue
|
139 |
|
140 |
-
#
|
141 |
-
|
142 |
-
|
|
|
143 |
acc = correct.mean().item()
|
144 |
|
145 |
if acc > best_acc:
|
@@ -149,18 +150,18 @@ def encode_and_trace(text, selected_roles):
|
|
149 |
|
150 |
return best_pool, best_acc
|
151 |
|
152 |
-
# Run both
|
153 |
pool_hi, acc_hi = evaluate_pool(hi_idx, "high", ids)
|
154 |
pool_lo, acc_lo = evaluate_pool(lo_idx, "low", ids)
|
155 |
|
156 |
-
#
|
157 |
decoded_tokens = tokenizer.convert_ids_to_tokens(ids[0])
|
158 |
role_trace = [
|
159 |
f"{tok:<15} β {role} cos={score:.4f}"
|
160 |
for tok, role, score in zip(decoded_tokens, top_roles, maxcos.tolist())
|
161 |
]
|
162 |
|
163 |
-
#
|
164 |
res_json = {
|
165 |
"High-pool tokens": tokenizer.decode(ids[0, pool_hi]),
|
166 |
"High accuracy": f"{acc_hi:.3f}",
|
@@ -174,6 +175,7 @@ def encode_and_trace(text, selected_roles):
|
|
174 |
|
175 |
|
176 |
|
|
|
177 |
# ------------------------------------------------------------------
|
178 |
# 4. Gradio UI -----------------------------------------------------
|
179 |
def build_interface():
|
|
|
90 |
sel_ids = [tokenizer.convert_tokens_to_ids(t) for t in selected_roles]
|
91 |
sel_ids_tensor = torch.tensor(sel_ids, device="cuda")
|
92 |
|
93 |
+
# Tokenize
|
94 |
batch = tokenizer(text, return_tensors="pt").to("cuda")
|
95 |
ids, attn = batch.input_ids, batch.attention_mask
|
96 |
S = ids.shape[1]
|
97 |
|
98 |
+
# Encode helper
|
99 |
def encode(input_ids, attn_mask):
|
100 |
x = embeddings(input_ids)
|
101 |
if emb_ln: x = emb_ln(x)
|
102 |
if emb_drop: x = emb_drop(x)
|
103 |
ext = full_model.bert.get_extended_attention_mask(attn_mask, x.shape[:-1])
|
104 |
+
return encoder(x, attention_mask=ext)[0] # shape: (1, S, H)
|
105 |
|
106 |
encoded = encode(ids, attn)
|
107 |
|
108 |
+
# Project symbolic token embeddings
|
109 |
+
symbolic_embeds = embeddings.word_embeddings(sel_ids_tensor) # shape: (R, H)
|
110 |
+
sim = cosine(encoded[0].unsqueeze(1), symbolic_embeds.unsqueeze(0)) # (S, R)
|
111 |
maxcos, argrole = sim.max(-1) # (S,)
|
112 |
top_roles = [selected_roles[i] for i in argrole.tolist()]
|
113 |
sort_idx = maxcos.argsort(descending=True)
|
|
|
116 |
|
117 |
MASK_ID = tokenizer.mask_token_id or tokenizer.convert_tokens_to_ids("[MASK]")
|
118 |
|
119 |
+
# Final pool evaluator
|
120 |
def evaluate_pool(idx_order, label, ids):
|
121 |
best_pool, best_acc = [], 0.0
|
122 |
ptr = 0
|
|
|
130 |
masked_input = ids.where(mask_flags, MASK_ID)
|
131 |
|
132 |
encoded_m = encode(masked_input, attn)
|
133 |
+
logits = mlm_head(encoded_m) # (1, S, V)
|
134 |
+
preds = logits.argmax(-1) # (1, S)
|
135 |
|
136 |
+
masked_positions = (~mask_flags[0]).nonzero(as_tuple=True)[0] # 1D tensor
|
137 |
if masked_positions.numel() == 0:
|
138 |
continue
|
139 |
|
140 |
+
# Extract both predicted and gold tokens
|
141 |
+
pred_tokens = preds[0, masked_positions]
|
142 |
+
gold_tokens = ids[0, masked_positions]
|
143 |
+
correct = (pred_tokens == gold_tokens).float()
|
144 |
acc = correct.mean().item()
|
145 |
|
146 |
if acc > best_acc:
|
|
|
150 |
|
151 |
return best_pool, best_acc
|
152 |
|
153 |
+
# Run both pools
|
154 |
pool_hi, acc_hi = evaluate_pool(hi_idx, "high", ids)
|
155 |
pool_lo, acc_lo = evaluate_pool(lo_idx, "low", ids)
|
156 |
|
157 |
+
# Alignment trace
|
158 |
decoded_tokens = tokenizer.convert_ids_to_tokens(ids[0])
|
159 |
role_trace = [
|
160 |
f"{tok:<15} β {role} cos={score:.4f}"
|
161 |
for tok, role, score in zip(decoded_tokens, top_roles, maxcos.tolist())
|
162 |
]
|
163 |
|
164 |
+
# Return results
|
165 |
res_json = {
|
166 |
"High-pool tokens": tokenizer.decode(ids[0, pool_hi]),
|
167 |
"High accuracy": f"{acc_hi:.3f}",
|
|
|
175 |
|
176 |
|
177 |
|
178 |
+
|
179 |
# ------------------------------------------------------------------
|
180 |
# 4. Gradio UI -----------------------------------------------------
|
181 |
def build_interface():
|