Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,33 @@
|
|
1 |
# app.py – encoder-only demo for bert-beatrix-2048
|
2 |
# -----------------------------------------------
|
3 |
# launch: python app.py
|
4 |
-
|
5 |
-
|
6 |
import torch
|
7 |
import gradio as gr
|
8 |
-
import
|
9 |
from bert_handler import create_handler_from_checkpoint
|
10 |
|
11 |
# ------------------------------------------------------------------
|
12 |
-
# 1.
|
13 |
# ------------------------------------------------------------------
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
handler, full_model, tokenizer = create_handler_from_checkpoint(
|
22 |
full_model = full_model.eval().cuda()
|
23 |
|
24 |
-
#
|
25 |
encoder = full_model.bert.encoder
|
26 |
embeddings = full_model.bert.embeddings
|
27 |
emb_ln = full_model.bert.emb_ln
|
28 |
emb_drop = full_model.bert.emb_drop
|
29 |
|
30 |
# ------------------------------------------------------------------
|
31 |
-
# 2. Symbolic token
|
32 |
# ------------------------------------------------------------------
|
33 |
SYMBOLIC_ROLES = [
|
34 |
"<subject>", "<subject1>", "<subject2>", "<pose>", "<emotion>",
|
@@ -39,55 +38,40 @@ SYMBOLIC_ROLES = [
|
|
39 |
"<fabric>", "<jewelry>"
|
40 |
]
|
41 |
|
42 |
-
#
|
43 |
-
missing = [
|
44 |
-
if tokenizer.convert_tokens_to_ids(
|
45 |
if missing:
|
46 |
-
raise RuntimeError(f"Tokenizer is missing
|
47 |
|
48 |
# ------------------------------------------------------------------
|
49 |
# 3. Encoder-only inference util ----------------------------------
|
50 |
# ------------------------------------------------------------------
|
51 |
@spaces.GPU
|
52 |
def encode_and_trace(text: str, selected_roles: list[str]):
|
53 |
-
"""
|
54 |
-
• encodes `text`
|
55 |
-
• pulls out the hidden states for any of the `selected_roles`
|
56 |
-
• returns some quick stats so we can verify everything’s wired up
|
57 |
-
"""
|
58 |
with torch.no_grad():
|
59 |
batch = tokenizer(text, return_tensors="pt").to("cuda")
|
60 |
-
|
61 |
-
|
62 |
-
# --- embedding + LayerNorm/dropout ---
|
63 |
-
x = embeddings(inp_ids)
|
64 |
-
x = emb_drop(emb_ln(x))
|
65 |
|
66 |
-
|
67 |
-
ext_mask = full_model.bert.get_extended_attention_mask(
|
68 |
-
attn_mask, x.shape[:-1]
|
69 |
-
)
|
70 |
|
71 |
-
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
ids_list = inp_ids.squeeze(0).tolist() # python ints
|
76 |
-
keep_mask = torch.tensor([tid in sel_ids for tid in ids_list],
|
77 |
-
device=encoded.device)
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
norm_val = f"{repr_vec.norm().item():.4f}"
|
84 |
else:
|
85 |
-
|
86 |
|
87 |
return {
|
88 |
-
"Symbolic Tokens": ", ".join(
|
89 |
-
"
|
90 |
-
"
|
91 |
}
|
92 |
|
93 |
# ------------------------------------------------------------------
|
@@ -95,37 +79,18 @@ def encode_and_trace(text: str, selected_roles: list[str]):
|
|
95 |
# ------------------------------------------------------------------
|
96 |
def build_interface():
|
97 |
with gr.Blocks(title="🧠 Symbolic Encoder Inspector") as demo:
|
98 |
-
|
99 |
-
gr.Markdown("## 🧠 Symbolic Encoder Inspector\n"
|
100 |
-
"Paste some text containing the special `<role>` tokens and "
|
101 |
-
"inspect their encoder representations.")
|
102 |
-
|
103 |
with gr.Row():
|
104 |
with gr.Column():
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
lines=3,
|
109 |
-
)
|
110 |
-
role_selector = gr.CheckboxGroup(
|
111 |
-
choices=SYMBOLIC_ROLES,
|
112 |
-
label="Trace these symbolic roles"
|
113 |
-
)
|
114 |
-
run_btn = gr.Button("Encode & Trace")
|
115 |
with gr.Column():
|
116 |
-
|
117 |
-
out_norm
|
118 |
-
|
119 |
-
|
120 |
-
run_btn.click(
|
121 |
-
fn=encode_and_trace,
|
122 |
-
inputs=[input_text, role_selector],
|
123 |
-
outputs=[out_tokens, out_norm, out_count],
|
124 |
-
)
|
125 |
-
|
126 |
return demo
|
127 |
|
128 |
-
|
129 |
if __name__ == "__main__":
|
130 |
-
|
131 |
-
demo.launch()
|
|
|
1 |
# app.py – encoder-only demo for bert-beatrix-2048
|
2 |
# -----------------------------------------------
|
3 |
# launch: python app.py
|
4 |
+
import spaces
|
|
|
5 |
import torch
|
6 |
import gradio as gr
|
7 |
+
from huggingface_hub import snapshot_download
|
8 |
from bert_handler import create_handler_from_checkpoint
|
9 |
|
10 |
# ------------------------------------------------------------------
|
11 |
+
# 1. Download *once* and load locally -----------------------------
|
12 |
# ------------------------------------------------------------------
|
13 |
+
LOCAL_CKPT = snapshot_download(
|
14 |
+
repo_id="AbstractPhil/bert-beatrix-2048",
|
15 |
+
revision="main",
|
16 |
+
local_dir="bert-beatrix-2048",
|
17 |
+
local_dir_use_symlinks=False
|
18 |
+
)
|
19 |
+
|
20 |
+
handler, full_model, tokenizer = create_handler_from_checkpoint(LOCAL_CKPT)
|
21 |
full_model = full_model.eval().cuda()
|
22 |
|
23 |
+
# --- pull encoder & embeddings only --------------------------------
|
24 |
encoder = full_model.bert.encoder
|
25 |
embeddings = full_model.bert.embeddings
|
26 |
emb_ln = full_model.bert.emb_ln
|
27 |
emb_drop = full_model.bert.emb_drop
|
28 |
|
29 |
# ------------------------------------------------------------------
|
30 |
+
# 2. Symbolic token list ------------------------------------------
|
31 |
# ------------------------------------------------------------------
|
32 |
SYMBOLIC_ROLES = [
|
33 |
"<subject>", "<subject1>", "<subject2>", "<pose>", "<emotion>",
|
|
|
38 |
"<fabric>", "<jewelry>"
|
39 |
]
|
40 |
|
41 |
+
# Sanity-check: every role must be known by the tokenizer
|
42 |
+
missing = [t for t in SYMBOLIC_ROLES
|
43 |
+
if tokenizer.convert_tokens_to_ids(t) == tokenizer.unk_token_id]
|
44 |
if missing:
|
45 |
+
raise RuntimeError(f"Tokenizer is missing special tokens: {missing}")
|
46 |
|
47 |
# ------------------------------------------------------------------
|
48 |
# 3. Encoder-only inference util ----------------------------------
|
49 |
# ------------------------------------------------------------------
|
50 |
@spaces.GPU
|
51 |
def encode_and_trace(text: str, selected_roles: list[str]):
|
|
|
|
|
|
|
|
|
|
|
52 |
with torch.no_grad():
|
53 |
batch = tokenizer(text, return_tensors="pt").to("cuda")
|
54 |
+
ids, mask = batch.input_ids, batch.attention_mask
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
x = emb_drop(emb_ln(embeddings(ids)))
|
|
|
|
|
|
|
57 |
|
58 |
+
ext_mask = full_model.bert.get_extended_attention_mask(mask, x.shape[:-1])
|
59 |
+
enc = encoder(x, attention_mask=ext_mask) # (1, S, H)
|
60 |
|
61 |
+
want = {tokenizer.convert_tokens_to_ids(t) for t in selected_roles}
|
62 |
+
keep = torch.tensor([tid in want for tid in ids[0]], device=enc.device)
|
|
|
|
|
|
|
63 |
|
64 |
+
found = [tokenizer.convert_ids_to_tokens([tid])[0] for tid in ids[0] if tid in want]
|
65 |
+
if keep.any():
|
66 |
+
vec = enc[0][keep].mean(0)
|
67 |
+
norm = f"{vec.norm().item():.4f}"
|
|
|
68 |
else:
|
69 |
+
norm = "0.0000"
|
70 |
|
71 |
return {
|
72 |
+
"Symbolic Tokens": ", ".join(found) or "(none)",
|
73 |
+
"Mean Norm": norm,
|
74 |
+
"Token Count": int(keep.sum().item()),
|
75 |
}
|
76 |
|
77 |
# ------------------------------------------------------------------
|
|
|
79 |
# ------------------------------------------------------------------
|
80 |
def build_interface():
|
81 |
with gr.Blocks(title="🧠 Symbolic Encoder Inspector") as demo:
|
82 |
+
gr.Markdown("## 🧠 Symbolic Encoder Inspector")
|
|
|
|
|
|
|
|
|
83 |
with gr.Row():
|
84 |
with gr.Column():
|
85 |
+
txt = gr.Textbox(label="Input with Symbolic Tokens", lines=3)
|
86 |
+
chk = gr.CheckboxGroup(choices=SYMBOLIC_ROLES, label="Trace these roles")
|
87 |
+
btn = gr.Button("Encode & Trace")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
with gr.Column():
|
89 |
+
out_tok = gr.Textbox(label="Symbolic Tokens Found")
|
90 |
+
out_norm = gr.Textbox(label="Mean Norm")
|
91 |
+
out_cnt = gr.Textbox(label="Token Count")
|
92 |
+
btn.click(encode_and_trace, [txt, chk], [out_tok, out_norm, out_cnt])
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
return demo
|
94 |
|
|
|
95 |
if __name__ == "__main__":
|
96 |
+
build_interface().launch()
|
|