Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,602 Bytes
0cba5a9 5e20a2a fd4a12a aa28bbb 872b08b fd4a12a 0a14990 81a0ae4 5e20a2a 096fe3a 872b08b 5e20a2a 096fe3a fd4a12a 5e20a2a fd4a12a 5e20a2a fd4a12a 5e20a2a fd4a12a 5e20a2a fd4a12a 0a14990 fd4a12a 9a08859 fd4a12a 096fe3a 535151e 5e20a2a fd4a12a 096fe3a 785df91 872b08b 785df91 5e20a2a 0cba5a9 fd4a12a 0cba5a9 5e20a2a 096fe3a 0cba5a9 5e20a2a 0cba5a9 5e20a2a 0cba5a9 5e20a2a 0cba5a9 fd4a12a 0cba5a9 fd4a12a 0cba5a9 20331bc 45ddfa3 096fe3a 0cba5a9 5e20a2a 0cba5a9 44c0214 0cba5a9 535151e ea2994b 5e20a2a 0cba5a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
# app.py β FIXED encoder-only demo for bert-beatrix-2048
# launch: python app.py
# -----------------------------------------------
import json, re, sys, math
from pathlib import Path, PurePosixPath
import torch, torch.nn.functional as F
import gradio as gr
import spaces
from huggingface_hub import snapshot_download
from bert_handler import create_handler_from_checkpoint
# ------------------------------------------------------------------
# 0. Download & patch HF checkpoint --------------------------------
REPO_ID = "AbstractPhil/bert-beatrix-2048"
LOCAL_CKPT = "bert-beatrix-2048"
snapshot_download(
repo_id=REPO_ID,
revision="main",
local_dir=LOCAL_CKPT,
local_dir_use_symlinks=False,
)
# β strip repo prefix in auto_map (one-time)
cfg_path = Path(LOCAL_CKPT) / "config.json"
with cfg_path.open() as f: cfg = json.load(f)
amap = cfg.get("auto_map", {})
for k,v in amap.items():
if "--" in v:
amap[k] = PurePosixPath(v.split("--",1)[1]).as_posix()
cfg["auto_map"] = amap
with cfg_path.open("w") as f: json.dump(cfg,f,indent=2)
# ------------------------------------------------------------------
# 1. Load model & components --------------------------------------
handler, full_model, tokenizer = create_handler_from_checkpoint(LOCAL_CKPT)
full_model = full_model.eval().cuda()
# ------------------------------------------------------------------
# 2. Symbolic roles -------------------------------------------------
SYMBOLIC_ROLES = [
"<subject>", "<subject1>", "<subject2>", "<pose>", "<emotion>",
"<surface>", "<lighting>", "<material>", "<accessory>", "<footwear>",
"<upper_body_clothing>", "<hair_style>", "<hair_length>", "<headwear>",
"<texture>", "<pattern>", "<grid>", "<zone>", "<offset>",
"<object_left>", "<object_right>", "<relation>", "<intent>", "<style>",
"<fabric>", "<jewelry>",
]
# Verify all symbolic tokens exist in tokenizer
missing_tokens = []
symbolic_token_ids = {}
for token in SYMBOLIC_ROLES:
token_id = tokenizer.convert_tokens_to_ids(token)
if token_id == tokenizer.unk_token_id:
missing_tokens.append(token)
else:
symbolic_token_ids[token] = token_id
if missing_tokens:
print(f"β οΈ Missing symbolic tokens: {missing_tokens}")
print("Available tokens will be used for classification")
MASK = tokenizer.mask_token
MASK_ID = tokenizer.mask_token_id
print(f"β
Loaded {len(symbolic_token_ids)} symbolic tokens")
# ------------------------------------------------------------------
# 3. FIXED MLM-based symbolic classification ----------------------
def get_symbolic_predictions(input_ids, attention_mask, mask_positions, selected_roles):
"""
Proper MLM-based prediction for symbolic tokens at masked positions
Args:
input_ids: (B, S) token IDs with [MASK] at positions to classify
attention_mask: (B, S) attention mask
mask_positions: list of positions that are masked
selected_roles: list of symbolic role tokens to consider
Returns:
predictions and probabilities for each masked position
"""
# Get MLM logits from the model (this is what it was trained for)
with torch.no_grad():
outputs = full_model(input_ids=input_ids, attention_mask=attention_mask)
logits = outputs.logits # (B, S, V)
# Filter to only selected symbolic role token IDs
selected_token_ids = [symbolic_token_ids[role] for role in selected_roles
if role in symbolic_token_ids]
if not selected_token_ids:
return [], []
results = []
for pos in mask_positions:
# Get logits for this masked position
pos_logits = logits[0, pos] # (V,)
# Extract logits for symbolic tokens only
symbolic_logits = pos_logits[selected_token_ids] # (num_symbolic,)
# Apply softmax to get probabilities
symbolic_probs = F.softmax(symbolic_logits, dim=-1)
# Get top predictions
top_indices = torch.argsort(symbolic_probs, descending=True)
pos_results = []
for i in top_indices:
token_idx = selected_token_ids[i]
token = tokenizer.convert_ids_to_tokens([token_idx])[0]
prob = symbolic_probs[i].item()
pos_results.append({
"token": token,
"probability": prob,
"token_id": token_idx
})
results.append({
"position": pos,
"predictions": pos_results
})
return results
def create_strategic_masks(text, tokenizer, strategy="content_words"):
"""
Create strategic mask positions based on different strategies
Args:
text: input text
tokenizer: tokenizer
strategy: masking strategy
Returns:
input_ids with masks, attention_mask, original_tokens, mask_positions
"""
# Tokenize original text
batch = tokenizer(text, return_tensors="pt", add_special_tokens=True)
input_ids = batch.input_ids[0] # (S,)
attention_mask = batch.attention_mask[0] # (S,)
# Get original tokens for reference
original_tokens = tokenizer.convert_ids_to_tokens(input_ids)
# Find positions to mask based on strategy
mask_positions = []
if strategy == "content_words":
# Mask content words (avoid special tokens, punctuation, common words)
skip_tokens = {
tokenizer.cls_token, tokenizer.sep_token, tokenizer.pad_token,
".", ",", "!", "?", ":", ";", "'", '"', "-", "(", ")", "[", "]",
"the", "a", "an", "and", "or", "but", "in", "on", "at", "to",
"for", "of", "with", "by", "is", "are", "was", "were", "be", "been"
}
for i, token in enumerate(original_tokens):
if (token not in skip_tokens and
not token.startswith("##") and # avoid subword tokens
len(token) > 2 and
token.isalpha()):
mask_positions.append(i)
elif strategy == "every_nth":
# Mask every 3rd token (avoiding special tokens)
for i in range(1, len(original_tokens) - 1, 3): # skip CLS and SEP
mask_positions.append(i)
elif strategy == "random":
# Randomly mask 15% of tokens
import random
candidates = list(range(1, len(original_tokens) - 1)) # skip CLS and SEP
num_to_mask = max(1, int(len(candidates) * 0.15))
mask_positions = random.sample(candidates, min(num_to_mask, len(candidates)))
mask_positions.sort()
elif strategy == "manual":
# For manual specification - return original for now
# Users can specify positions in the UI
pass
# Limit to reasonable number of masks
mask_positions = mask_positions[:10] # Max 10 masks for UI clarity
# Create masked input
masked_input_ids = input_ids.clone()
for pos in mask_positions:
masked_input_ids[pos] = MASK_ID
return masked_input_ids.unsqueeze(0), attention_mask.unsqueeze(0), original_tokens, mask_positions
@spaces.GPU
def symbolic_classification_analysis(text, selected_roles, masking_strategy="content_words", num_predictions=5):
"""
Perform symbolic classification analysis using MLM prediction
"""
if not selected_roles:
selected_roles = list(symbolic_token_ids.keys())
if not text.strip():
return "Please enter some text to analyze.", "", 0
try:
# Create strategically masked input
masked_input_ids, attention_mask, original_tokens, mask_positions = create_strategic_masks(
text, tokenizer, masking_strategy
)
if not mask_positions:
return "No suitable positions found for masking. Try different text or strategy.", "", 0
# Move to device
masked_input_ids = masked_input_ids.to("cuda")
attention_mask = attention_mask.to("cuda")
# Get symbolic predictions
predictions = get_symbolic_predictions(
masked_input_ids, attention_mask, mask_positions, selected_roles
)
# Build detailed analysis
analysis = {
"input_text": text,
"masking_strategy": masking_strategy,
"total_tokens": len(original_tokens),
"masked_positions": len(mask_positions),
"available_symbolic_roles": len(selected_roles),
"analysis_results": []
}
for pred_data in predictions:
pos = pred_data["position"]
original_token = original_tokens[pos]
# Show top N predictions
top_preds = pred_data["predictions"][:num_predictions]
position_analysis = {
"position": pos,
"original_token": original_token,
"top_predictions": []
}
for pred in top_preds:
position_analysis["top_predictions"].append({
"symbolic_role": pred["token"],
"probability": f"{pred['probability']:.4f}",
"confidence": "High" if pred["probability"] > 0.3 else "Medium" if pred["probability"] > 0.1 else "Low"
})
analysis["analysis_results"].append(position_analysis)
# Create readable summary
summary_lines = []
max_prob = 0
best_prediction = None
for result in analysis["analysis_results"]:
pos = result["position"]
orig = result["original_token"]
top_pred = result["top_predictions"][0] if result["top_predictions"] else None
if top_pred:
prob = float(top_pred["probability"])
role = top_pred["symbolic_role"]
summary_lines.append(
f"Position {pos:2d}: '{orig}' β {role} ({top_pred['probability']}, {top_pred['confidence']})"
)
if prob > max_prob:
max_prob = prob
best_prediction = f"{role} (confidence: {top_pred['confidence']})"
summary = "\n".join(summary_lines)
if best_prediction:
summary = f"π― Best Match: {best_prediction}\n\n" + summary
return json.dumps(analysis, indent=2), summary, len(mask_positions)
except Exception as e:
error_msg = f"Error during analysis: {str(e)}"
print(error_msg)
return error_msg, "", 0
def create_manual_mask_analysis(text, mask_positions_str, selected_roles):
"""
Allow manual specification of mask positions
"""
try:
# Parse mask positions
mask_positions = [int(x.strip()) for x in mask_positions_str.split(",") if x.strip().isdigit()]
if not mask_positions:
return "Please specify valid mask positions (comma-separated numbers)", "", 0
# Tokenize text
batch = tokenizer(text, return_tensors="pt", add_special_tokens=True)
input_ids = batch.input_ids[0]
attention_mask = batch.attention_mask[0]
original_tokens = tokenizer.convert_ids_to_tokens(input_ids)
# Validate positions
valid_positions = [pos for pos in mask_positions if 0 <= pos < len(input_ids)]
if not valid_positions:
return f"Invalid positions. Text has {len(input_ids)} tokens (0-{len(input_ids)-1})", "", 0
# Create masked input
masked_input_ids = input_ids.clone()
for pos in valid_positions:
masked_input_ids[pos] = MASK_ID
# Run analysis
masked_input_ids = masked_input_ids.unsqueeze(0).to("cuda")
attention_mask = attention_mask.unsqueeze(0).to("cuda")
predictions = get_symbolic_predictions(
masked_input_ids, attention_mask, valid_positions, selected_roles
)
# Format results
results = []
for pred_data in predictions:
pos = pred_data["position"]
original = original_tokens[pos]
top_pred = pred_data["predictions"][0] if pred_data["predictions"] else None
if top_pred:
results.append(
f"Pos {pos}: '{original}' β {top_pred['token']} ({top_pred['probability']:.4f})"
)
return "\n".join(results), f"Analyzed {len(valid_positions)} positions", len(valid_positions)
except Exception as e:
return f"Error: {str(e)}", "", 0
# ------------------------------------------------------------------
# 4. Gradio UI -----------------------------------------------------
def build_interface():
with gr.Blocks(title="π§ MLM Symbolic Classifier", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π§ MLM-Based Symbolic Classification")
gr.Markdown("Analyze text using masked language modeling to predict symbolic roles at specific positions.")
with gr.Tab("Automatic Analysis"):
with gr.Row():
with gr.Column():
txt_input = gr.Textbox(
label="Input Text",
lines=4,
placeholder="Enter text to analyze for symbolic role classification..."
)
with gr.Row():
masking_strategy = gr.Dropdown(
choices=["content_words", "every_nth", "random"],
value="content_words",
label="Masking Strategy"
)
num_predictions = gr.Slider(
minimum=1, maximum=10, value=5, step=1,
label="Top Predictions per Position"
)
roles_selection = gr.CheckboxGroup(
choices=list(symbolic_token_ids.keys()),
value=list(symbolic_token_ids.keys()),
label="Symbolic Roles to Consider"
)
analyze_btn = gr.Button("π Analyze", variant="primary")
with gr.Column():
summary_output = gr.Textbox(
label="Analysis Summary",
lines=10,
max_lines=15
)
with gr.Row():
positions_analyzed = gr.Number(label="Positions Analyzed", precision=0)
max_confidence = gr.Textbox(label="Best Prediction", max_lines=1)
detailed_output = gr.JSON(label="Detailed Results")
with gr.Tab("Manual Masking"):
with gr.Row():
with gr.Column():
manual_text = gr.Textbox(
label="Input Text",
lines=3,
placeholder="Enter text for manual analysis..."
)
mask_positions_input = gr.Textbox(
label="Mask Positions (comma-separated)",
placeholder="e.g., 2,5,8,12",
info="Specify token positions to mask (0-based indexing)"
)
manual_roles = gr.CheckboxGroup(
choices=list(symbolic_token_ids.keys()),
value=list(symbolic_token_ids.keys())[:10], # Default to first 10
label="Symbolic Roles"
)
manual_analyze_btn = gr.Button("π― Analyze Specific Positions")
with gr.Column():
manual_results = gr.Textbox(
label="Manual Analysis Results",
lines=8
)
manual_summary = gr.Textbox(label="Summary")
manual_count = gr.Number(label="Positions", precision=0)
with gr.Tab("Token Inspector"):
with gr.Row():
with gr.Column():
inspect_text = gr.Textbox(
label="Text to Inspect",
lines=2,
placeholder="Enter text to see tokenization..."
)
inspect_btn = gr.Button("π Inspect Tokens")
with gr.Column():
token_breakdown = gr.Textbox(
label="Token Breakdown",
lines=8,
info="Shows how text is tokenized with position indices"
)
# Event handlers
analyze_btn.click(
symbolic_classification_analysis,
inputs=[txt_input, roles_selection, masking_strategy, num_predictions],
outputs=[detailed_output, summary_output, positions_analyzed]
)
manual_analyze_btn.click(
create_manual_mask_analysis,
inputs=[manual_text, mask_positions_input, manual_roles],
outputs=[manual_results, manual_summary, manual_count]
)
def inspect_tokens(text):
if not text.strip():
return "Enter text to inspect tokenization"
tokens = tokenizer.tokenize(text, add_special_tokens=True)
result_lines = []
for i, token in enumerate(tokens):
result_lines.append(f"{i:2d}: '{token}'")
return "\n".join(result_lines)
inspect_btn.click(
inspect_tokens,
inputs=[inspect_text],
outputs=[token_breakdown]
)
return demo
if __name__ == "__main__":
print("π Starting MLM Symbolic Classifier...")
print(f"β
Model loaded with {len(symbolic_token_ids)} symbolic tokens")
print(f"π― Available symbolic roles: {list(symbolic_token_ids.keys())[:5]}...")
build_interface().launch(
server_name="0.0.0.0",
server_port=7860,
share=True
) |