NORLIE JHON MALAGDAO
Update app.py
79cd26d verified
raw
history blame
6.1 kB
import os
import zipfile
import gdown
import pathlib
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
import matplotlib.pyplot as plt
import gradio as gr
import numpy as np
# Define the Google Drive shareable link
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
# Extract the file ID from the URL
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
direct_download_url = f'https://drive.google.com/uc?id={file_id}'
# Define the local filename to save the ZIP file
local_zip_file = 'file.zip'
# Download the ZIP file
gdown.download(direct_download_url, local_zip_file, quiet=False)
# Directory to extract files
extracted_path = 'extracted_files'
# Verify if the downloaded file is a ZIP file and extract it
try:
with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
zip_ref.extractall(extracted_path)
print("Extraction successful!")
except zipfile.BadZipFile:
print("Error: The downloaded file is not a valid ZIP file.")
# Optionally, you can delete the ZIP file after extraction
os.remove(local_zip_file)
# Convert the extracted directory path to a pathlib.Path object
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
# Verify the directory structure
for root, dirs, files in os.walk(extracted_path):
level = root.replace(extracted_path, '').count(os.sep)
indent = ' ' * 4 * (level)
print(f"{indent}{os.path.basename(root)}/")
subindent = ' ' * 4 * (level + 1)
for f in files:
print(f"{subindent}{f}")
# Set image dimensions and batch size
img_height, img_width = 180, 180
batch_size = 32
# Create training and validation datasets
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size
)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size
)
class_names = train_ds.class_names
print(class_names)
# Display some sample images
plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):
for i in range(9):
ax = plt.subplot(3, 3, i + 1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(class_names[labels[i]])
plt.axis("off")
# Enhanced data augmentation
data_augmentation = keras.Sequential(
[
layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
layers.RandomRotation(0.2),
layers.RandomZoom(0.2),
layers.RandomContrast(0.2),
layers.RandomBrightness(0.2),
]
)
# Display augmented images
plt.figure(figsize=(10, 10))
for images, _ in train_ds.take(1):
for i in range(9):
augmented_images = data_augmentation(images)
ax = plt.subplot(3, 3, i + 1)
plt.imshow(augmented_images[0].numpy().astype("uint8"))
plt.axis("off")
# Define a deeper CNN model with more regularization techniques
num_classes = len(class_names)
model = Sequential()
model.add(data_augmentation)
model.add(layers.Rescaling(1./255))
model.add(layers.Conv2D(32, 3, padding='same', activation='relu'))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D())
model.add(layers.Conv2D(64, 3, padding='same', activation='relu'))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D())
model.add(layers.Conv2D(128, 3, padding='same', activation='relu'))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D())
model.add(layers.Conv2D(256, 3, padding='same', activation='relu'))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D())
model.add(layers.Conv2D(512, 3, padding='same', activation='relu'))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D())
model.add(layers.Dropout(0.5))
model.add(layers.Flatten())
model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(num_classes, activation='softmax', name="outputs"))
model.compile(optimizer=keras.optimizers.Adam(learning_rate=1e-4),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['accuracy'])
model.summary()
# Implement early stopping
from tensorflow.keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
# Learning rate scheduler
def scheduler(epoch, lr):
if epoch < 10:
return lr
else:
return lr * tf.math.exp(-0.1)
lr_scheduler = keras.callbacks.LearningRateScheduler(scheduler)
# Train the model
epochs = 30
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs,
callbacks=[early_stopping, lr_scheduler]
)
# Define the prediction function
def predict_image(img):
img = np.array(img)
img_resized = tf.image.resize(img, (180, 180))
img_4d = tf.expand_dims(img_resized, axis=0)
prediction = model.predict(img_4d)[0]
predicted_class = np.argmax(prediction)
predicted_label = class_names[predicted_class]
return {predicted_label: f"{float(prediction[predicted_class]):.2f}"}
# Set up Gradio interface
image = gr.Image()
label = gr.Label(num_top_classes=1)
# Define custom CSS for background image
custom_css = """
body {
background-image: url('extracted_files/Pest_Dataset/bees/bees (444).jpg');
background-size: cover;
background-repeat: no-repeat;
background-attachment: fixed;
color: white;
}
"""
gr.Interface(
fn=predict_image,
inputs=image,
outputs=label,
title="Welcome to Agricultural Pest Image Classification",
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
css=custom_css
).launch(debug=True)