import os import zipfile import gdown import pathlib import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.models import Sequential import matplotlib.pyplot as plt import gradio as gr import numpy as np # Define the Google Drive shareable link gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link' # Extract the file ID from the URL file_id = gdrive_url.split('/d/')[1].split('/view')[0] direct_download_url = f'https://drive.google.com/uc?id={file_id}' # Define the local filename to save the ZIP file local_zip_file = 'file.zip' # Download the ZIP file gdown.download(direct_download_url, local_zip_file, quiet=False) # Directory to extract files extracted_path = 'extracted_files' # Verify if the downloaded file is a ZIP file and extract it try: with zipfile.ZipFile(local_zip_file, 'r') as zip_ref: zip_ref.extractall(extracted_path) print("Extraction successful!") except zipfile.BadZipFile: print("Error: The downloaded file is not a valid ZIP file.") # Optionally, you can delete the ZIP file after extraction os.remove(local_zip_file) # Convert the extracted directory path to a pathlib.Path object data_dir = pathlib.Path('extracted_files/Pest_Dataset') # Verify the directory structure for root, dirs, files in os.walk(extracted_path): level = root.replace(extracted_path, '').count(os.sep) indent = ' ' * 4 * (level) print(f"{indent}{os.path.basename(root)}/") subindent = ' ' * 4 * (level + 1) for f in files: print(f"{subindent}{f}") # Set image dimensions and batch size img_height, img_width = 180, 180 batch_size = 32 # Create training and validation datasets train_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset="training", seed=123, image_size=(img_height, img_width), batch_size=batch_size ) val_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size ) class_names = train_ds.class_names print(class_names) # Display some sample images plt.figure(figsize=(10, 10)) for images, labels in train_ds.take(1): for i in range(9): ax = plt.subplot(3, 3, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.title(class_names[labels[i]]) plt.axis("off") # Enhanced data augmentation data_augmentation = keras.Sequential( [ layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)), layers.RandomRotation(0.2), layers.RandomZoom(0.2), layers.RandomContrast(0.2), layers.RandomBrightness(0.2), ] ) # Display augmented images plt.figure(figsize=(10, 10)) for images, _ in train_ds.take(1): for i in range(9): augmented_images = data_augmentation(images) ax = plt.subplot(3, 3, i + 1) plt.imshow(augmented_images[0].numpy().astype("uint8")) plt.axis("off") # Define a deeper CNN model with more regularization techniques num_classes = len(class_names) model = Sequential() model.add(data_augmentation) model.add(layers.Rescaling(1./255)) model.add(layers.Conv2D(32, 3, padding='same', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.MaxPooling2D()) model.add(layers.Conv2D(64, 3, padding='same', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.MaxPooling2D()) model.add(layers.Conv2D(128, 3, padding='same', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.MaxPooling2D()) model.add(layers.Conv2D(256, 3, padding='same', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.MaxPooling2D()) model.add(layers.Conv2D(512, 3, padding='same', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.MaxPooling2D()) model.add(layers.Dropout(0.5)) model.add(layers.Flatten()) model.add(layers.Dense(256, activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(num_classes, activation='softmax', name="outputs")) model.compile(optimizer=keras.optimizers.Adam(learning_rate=1e-4), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), metrics=['accuracy']) model.summary() # Implement early stopping from tensorflow.keras.callbacks import EarlyStopping early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True) # Learning rate scheduler def scheduler(epoch, lr): if epoch < 10: return lr else: return lr * tf.math.exp(-0.1) lr_scheduler = keras.callbacks.LearningRateScheduler(scheduler) # Train the model epochs = 30 history = model.fit( train_ds, validation_data=val_ds, epochs=epochs, callbacks=[early_stopping, lr_scheduler] ) # Define the prediction function def predict_image(img): img = np.array(img) img_resized = tf.image.resize(img, (180, 180)) img_4d = tf.expand_dims(img_resized, axis=0) prediction = model.predict(img_4d)[0] predicted_class = np.argmax(prediction) predicted_label = class_names[predicted_class] return {predicted_label: f"{float(prediction[predicted_class]):.2f}"} # Set up Gradio interface image = gr.Image() label = gr.Label(num_top_classes=1) # Define custom CSS for background image custom_css = """ body { background-image: url('extracted_files/Pest_Dataset/bees/bees (444).jpg'); background-size: cover; background-repeat: no-repeat; background-attachment: fixed; color: white; } """ gr.Interface( fn=predict_image, inputs=image, outputs=label, title="Welcome to Agricultural Pest Image Classification", description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils", css=custom_css ).launch(debug=True)