File size: 7,401 Bytes
510db66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ee22a5
510db66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ee22a5
 
 
 
 
 
 
510db66
4ee22a5
510db66
4ee22a5
 
510db66
 
4ee22a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510db66
 
 
 
 
 
 
 
4ee22a5
 
510db66
6919ed7
 
 
 
 
 
 
 
 
 
5d4f9ed
68d5b48
8e0a53d
 
 
060688e
5d4f9ed
6919ed7
b66b45c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
import gdown
import zipfile
import pathlib

# Define the Google Drive shareable link
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'

# Extract the file ID from the URL
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
direct_download_url = f'https://drive.google.com/uc?id={file_id}'

# Define the local filename to save the ZIP file
local_zip_file = 'file.zip'

# Download the ZIP file
gdown.download(direct_download_url, local_zip_file, quiet=False)

# Directory to extract files
extracted_path = 'extracted_files'

# Verify if the downloaded file is a ZIP file and extract it
try:
    with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
        zip_ref.extractall(extracted_path)
    print("Extraction successful!")
except zipfile.BadZipFile:
    print("Error: The downloaded file is not a valid ZIP file.")

# Optionally, you can delete the ZIP file after extraction
os.remove(local_zip_file)

# Convert the extracted directory path to a pathlib.Path object
data_dir = pathlib.Path(extracted_path)

# Print the directory structure to debug
for root, dirs, files in os.walk(extracted_path):
    level = root.replace(extracted_path, '').count(os.sep)
    indent = ' ' * 4 * (level)
    print(f"{indent}{os.path.basename(root)}/")
    subindent = ' ' * 4 * (level + 1)
    for f in files:
        print(f"{subindent}{f}")

# Path to the dataset directory
data_dir = pathlib.Path('extracted_files/Pest_Dataset')

image_count = len(list(data_dir.glob('*/*.jpg')))
print(image_count)

bees = list(data_dir.glob('bees/*'))
print(bees[0])
PIL.Image.open(str(bees[0]))
batch_size = 32
img_height = 180
img_width = 180

train_ds = tf.keras.utils.image_dataset_from_directory(
  data_dir,
  validation_split=0.2,
  subset="training",
  seed=123,
  image_size=(img_height, img_width),
  batch_size=batch_size)

val_ds = tf.keras.utils.image_dataset_from_directory(
  data_dir,
  validation_split=0.2,
  subset="validation",
  seed=123,
  image_size=(img_height, img_width),
  batch_size=batch_size)

class_names = train_ds.class_names
print(class_names)

plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):
  for i in range(9):
    ax = plt.subplot(3, 3, i + 1)
    plt.imshow(images[i].numpy().astype("uint8"))
    plt.title(class_names[labels[i]])
    plt.axis("off")

for image_batch, labels_batch in train_ds:
  print(image_batch.shape)
  print(labels_batch.shape)
  break

AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

normalization_layer = layers.Rescaling(1./255)

normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
image_batch, labels_batch = next(iter(normalized_ds))
first_image = image_batch[0]
# Notice the pixel values are now in `[0,1]`.
print(np.min(first_image), np.max(first_image))

data_augmentation = keras.Sequential(
  [
    layers.RandomFlip("horizontal",
                      input_shape=(img_height,
                                  img_width,
                                  3)),
    layers.RandomRotation(0.1),
    layers.RandomZoom(0.1),
    layers.RandomContrast(0.1),
  ]
)

plt.figure(figsize=(10, 10))
for images, _ in train_ds.take(1):
  for i in range(9):
    augmented_images = data_augmentation(images)
    ax = plt.subplot(3, 3, i + 1)
    plt.imshow(augmented_images[0].numpy().astype("uint8"))
    plt.axis("off")

from tensorflow.keras.applications import EfficientNetB0

base_model = EfficientNetB0(weights='imagenet', include_top=False, input_shape=(img_height, img_width, 3))

# Freeze the pre-trained weights
base_model.trainable = False

# Create new model on top
inputs = keras.Input(shape=(img_height, img_width, 3))
x = data_augmentation(inputs)  # Apply data augmentation
x = base_model(x, training=False)
x = keras.layers.GlobalAveragePooling2D()(x)
x = keras.layers.Dropout(0.2)(x)
outputs = keras.layers.Dense(len(class_names), activation='softmax')(x)

# Compile the model
model = keras.Model(inputs, outputs)
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.summary()

# Train the model
epochs = 10
history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)


# Plot training history
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

test_ds = tf.keras.utils.image_dataset_from_directory(
  data_dir,
  validation_split=0.2,
  subset="validation",
  seed=123,
  image_size=(img_height, img_width),
  batch_size=batch_size)

results = model.evaluate(test_ds, verbose=0)

print("    Test Loss: {:.5f}".format(results[0]))
print("Test Accuracy: {:.2f}%".format(results[1] * 100))


# Metrics
y_true = []
y_pred = []

for images, labels in test_ds:
    y_true.extend(labels.numpy())
    preds = model.predict(images)
    y_pred.extend(np.argmax(preds, axis=1))

from sklearn.metrics import classification_report, confusion_matrix
print(classification_report(y_true, y_pred, target_names=class_names))

import pandas as pd
report = classification_report(y_true, y_pred, target_names=class_names, output_dict=True)
df = pd.DataFrame(report).transpose()
print(df)

def make_confusion_matrix(y_true, y_pred, labels):
    cm = confusion_matrix(y_true, y_pred)
    fig, ax = plt.subplots(figsize=(10, 8))
    cax = ax.matshow(cm, cmap=plt.cm.Blues)
    plt.title('Confusion Matrix')
    fig.colorbar(cax)
    ax.set_xticklabels([''] + labels, rotation=90)
    ax.set_yticklabels([''] + labels)
    plt.xlabel('Predicted')
    plt.ylabel('True')
    plt.show()

make_confusion_matrix(y_true, y_pred, class_names)


def predict_image(img):
    img = np.array(img)
    img_resized = tf.image.resize(img, (180, 180))
    img_4d = tf.expand_dims(img_resized, axis=0)
    prediction = model.predict(img_4d)[0]
    return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}

image = gr.Image(type="pil")
label = gr.Label(num_top_classes=12)

# Define custom CSS for background image
custom_css = """
body {
    background-image: url('/extracted_files/Pest_Dataset/bees/bees (444).jpg');
    background-size: cover;
    background-repeat: no-repeat;
    background-attachment: fixed;
    color: white;
}
"""

gr.Interface(
    fn=predict_image,
    inputs=image,
    outputs=label,
    title="PestScout: An Agricultural Pest Image Classification System Using Convolutional Neural Networks",
    description="Upload an image of a pest to classify it into one of the predefined categories.",
    css=custom_css
).launch(debug=True)