Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -52,7 +52,6 @@ for root, dirs, files in os.walk(extracted_path):
|
|
52 |
|
53 |
# Path to the dataset directory
|
54 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
55 |
-
data_dir = pathlib.Path(data_dir)
|
56 |
|
57 |
image_count = len(list(data_dir.glob('*/*.jpg')))
|
58 |
print(image_count)
|
@@ -60,7 +59,6 @@ print(image_count)
|
|
60 |
bees = list(data_dir.glob('bees/*'))
|
61 |
print(bees[0])
|
62 |
PIL.Image.open(str(bees[0]))
|
63 |
-
|
64 |
batch_size = 32
|
65 |
img_height = 180
|
66 |
img_width = 180
|
@@ -73,7 +71,6 @@ train_ds = tf.keras.utils.image_dataset_from_directory(
|
|
73 |
image_size=(img_height, img_width),
|
74 |
batch_size=batch_size)
|
75 |
|
76 |
-
|
77 |
val_ds = tf.keras.utils.image_dataset_from_directory(
|
78 |
data_dir,
|
79 |
validation_split=0.2,
|
@@ -82,7 +79,6 @@ val_ds = tf.keras.utils.image_dataset_from_directory(
|
|
82 |
image_size=(img_height, img_width),
|
83 |
batch_size=batch_size)
|
84 |
|
85 |
-
|
86 |
class_names = train_ds.class_names
|
87 |
print(class_names)
|
88 |
|
@@ -94,7 +90,6 @@ for images, labels in train_ds.take(1):
|
|
94 |
plt.title(class_names[labels[i]])
|
95 |
plt.axis("off")
|
96 |
|
97 |
-
|
98 |
for image_batch, labels_batch in train_ds:
|
99 |
print(image_batch.shape)
|
100 |
print(labels_batch.shape)
|
@@ -105,7 +100,6 @@ AUTOTUNE = tf.data.AUTOTUNE
|
|
105 |
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
|
106 |
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
|
107 |
|
108 |
-
|
109 |
normalization_layer = layers.Rescaling(1./255)
|
110 |
|
111 |
normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
|
@@ -122,6 +116,7 @@ data_augmentation = keras.Sequential(
|
|
122 |
3)),
|
123 |
layers.RandomRotation(0.1),
|
124 |
layers.RandomZoom(0.1),
|
|
|
125 |
]
|
126 |
)
|
127 |
|
@@ -133,7 +128,6 @@ for images, _ in train_ds.take(1):
|
|
133 |
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
134 |
plt.axis("off")
|
135 |
|
136 |
-
|
137 |
from tensorflow.keras.applications import EfficientNetB0
|
138 |
|
139 |
base_model = EfficientNetB0(weights='imagenet', include_top=False, input_shape=(img_height, img_width, 3))
|
@@ -149,7 +143,6 @@ x = keras.layers.GlobalAveragePooling2D()(x)
|
|
149 |
x = keras.layers.Dropout(0.2)(x)
|
150 |
outputs = keras.layers.Dense(len(class_names), activation='softmax')(x)
|
151 |
|
152 |
-
|
153 |
# Compile the model
|
154 |
model = keras.Model(inputs, outputs)
|
155 |
model.compile(optimizer='adam',
|
@@ -190,17 +183,51 @@ plt.legend(loc='upper right')
|
|
190 |
plt.title('Training and Validation Loss')
|
191 |
plt.show()
|
192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
-
|
195 |
-
results = model.evaluate(val_ds, verbose=0)
|
196 |
|
197 |
-
print("
|
198 |
-
print("
|
199 |
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
def predict_image(img):
|
206 |
img = np.array(img)
|
@@ -209,9 +236,8 @@ def predict_image(img):
|
|
209 |
prediction = model.predict(img_4d)[0]
|
210 |
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
|
211 |
|
212 |
-
image = gr.Image()
|
213 |
-
label = gr.Label(num_top_classes=
|
214 |
-
|
215 |
|
216 |
# Define custom CSS for background image
|
217 |
custom_css = """
|
|
|
52 |
|
53 |
# Path to the dataset directory
|
54 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
|
|
55 |
|
56 |
image_count = len(list(data_dir.glob('*/*.jpg')))
|
57 |
print(image_count)
|
|
|
59 |
bees = list(data_dir.glob('bees/*'))
|
60 |
print(bees[0])
|
61 |
PIL.Image.open(str(bees[0]))
|
|
|
62 |
batch_size = 32
|
63 |
img_height = 180
|
64 |
img_width = 180
|
|
|
71 |
image_size=(img_height, img_width),
|
72 |
batch_size=batch_size)
|
73 |
|
|
|
74 |
val_ds = tf.keras.utils.image_dataset_from_directory(
|
75 |
data_dir,
|
76 |
validation_split=0.2,
|
|
|
79 |
image_size=(img_height, img_width),
|
80 |
batch_size=batch_size)
|
81 |
|
|
|
82 |
class_names = train_ds.class_names
|
83 |
print(class_names)
|
84 |
|
|
|
90 |
plt.title(class_names[labels[i]])
|
91 |
plt.axis("off")
|
92 |
|
|
|
93 |
for image_batch, labels_batch in train_ds:
|
94 |
print(image_batch.shape)
|
95 |
print(labels_batch.shape)
|
|
|
100 |
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
|
101 |
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
|
102 |
|
|
|
103 |
normalization_layer = layers.Rescaling(1./255)
|
104 |
|
105 |
normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
|
|
|
116 |
3)),
|
117 |
layers.RandomRotation(0.1),
|
118 |
layers.RandomZoom(0.1),
|
119 |
+
layers.RandomContrast(0.1),
|
120 |
]
|
121 |
)
|
122 |
|
|
|
128 |
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
129 |
plt.axis("off")
|
130 |
|
|
|
131 |
from tensorflow.keras.applications import EfficientNetB0
|
132 |
|
133 |
base_model = EfficientNetB0(weights='imagenet', include_top=False, input_shape=(img_height, img_width, 3))
|
|
|
143 |
x = keras.layers.Dropout(0.2)(x)
|
144 |
outputs = keras.layers.Dense(len(class_names), activation='softmax')(x)
|
145 |
|
|
|
146 |
# Compile the model
|
147 |
model = keras.Model(inputs, outputs)
|
148 |
model.compile(optimizer='adam',
|
|
|
183 |
plt.title('Training and Validation Loss')
|
184 |
plt.show()
|
185 |
|
186 |
+
test_ds = tf.keras.utils.image_dataset_from_directory(
|
187 |
+
data_dir,
|
188 |
+
validation_split=0.2,
|
189 |
+
subset="validation",
|
190 |
+
seed=123,
|
191 |
+
image_size=(img_height, img_width),
|
192 |
+
batch_size=batch_size)
|
193 |
|
194 |
+
results = model.evaluate(test_ds, verbose=0)
|
|
|
195 |
|
196 |
+
print(" Test Loss: {:.5f}".format(results[0]))
|
197 |
+
print("Test Accuracy: {:.2f}%".format(results[1] * 100))
|
198 |
|
199 |
|
200 |
+
# Metrics
|
201 |
+
y_true = []
|
202 |
+
y_pred = []
|
203 |
+
|
204 |
+
for images, labels in test_ds:
|
205 |
+
y_true.extend(labels.numpy())
|
206 |
+
preds = model.predict(images)
|
207 |
+
y_pred.extend(np.argmax(preds, axis=1))
|
208 |
+
|
209 |
+
from sklearn.metrics import classification_report, confusion_matrix
|
210 |
+
print(classification_report(y_true, y_pred, target_names=class_names))
|
211 |
+
|
212 |
+
import pandas as pd
|
213 |
+
report = classification_report(y_true, y_pred, target_names=class_names, output_dict=True)
|
214 |
+
df = pd.DataFrame(report).transpose()
|
215 |
+
print(df)
|
216 |
+
|
217 |
+
def make_confusion_matrix(y_true, y_pred, labels):
|
218 |
+
cm = confusion_matrix(y_true, y_pred)
|
219 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
220 |
+
cax = ax.matshow(cm, cmap=plt.cm.Blues)
|
221 |
+
plt.title('Confusion Matrix')
|
222 |
+
fig.colorbar(cax)
|
223 |
+
ax.set_xticklabels([''] + labels, rotation=90)
|
224 |
+
ax.set_yticklabels([''] + labels)
|
225 |
+
plt.xlabel('Predicted')
|
226 |
+
plt.ylabel('True')
|
227 |
+
plt.show()
|
228 |
+
|
229 |
+
make_confusion_matrix(y_true, y_pred, class_names)
|
230 |
+
|
231 |
|
232 |
def predict_image(img):
|
233 |
img = np.array(img)
|
|
|
236 |
prediction = model.predict(img_4d)[0]
|
237 |
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
|
238 |
|
239 |
+
image = gr.Image(type="pil")
|
240 |
+
label = gr.Label(num_top_classes=12)
|
|
|
241 |
|
242 |
# Define custom CSS for background image
|
243 |
custom_css = """
|