Spaces:
Runtime error
Runtime error
File size: 17,564 Bytes
d9836f1 e34e22a d9836f1 e34e22a d9836f1 bbd4a95 d9836f1 bbd4a95 d9836f1 19ffaa2 d9836f1 19ffaa2 d9836f1 9035e7b 9d1f80a d9836f1 8af2763 d9836f1 e34e22a d9836f1 bbd4a95 d9836f1 bbd4a95 d9836f1 5e42be8 269a57e d9836f1 269a57e 5e42be8 d9836f1 5e42be8 269a57e d9836f1 269a57e 5e42be8 bbd4a95 d9836f1 269a57e d9836f1 269a57e d9836f1 5e42be8 269a57e d9836f1 e34e22a d9836f1 e34e22a d9836f1 e34e22a d9836f1 e34e22a d9836f1 e34e22a d9836f1 e34e22a d9836f1 e34e22a d9836f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
# Import Data Science Libraries
import gradio as gr
import os
import gdown
import zipfile
import pandas as pd
from pathlib import Path
from PIL import Image, UnidentifiedImageError
import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
import itertools
import random
# Import visualization libraries
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import cv2
import seaborn as sns
# Tensorflow Libraries
from tensorflow import keras
from tensorflow.keras import layers, models
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import Dense, Dropout, Flatten, BatchNormalization
from tensorflow.keras.callbacks import Callback, EarlyStopping, ModelCheckpoint
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras import Model
from tensorflow.keras.layers import Rescaling, RandomFlip, RandomRotation, RandomZoom, RandomContrast, Resizing
# System libraries
from pathlib import Path
import os.path
# Metrics
from sklearn.metrics import classification_report, confusion_matrix
sns.set(style='darkgrid')
# Seed Everything to reproduce results for future use cases
def seed_everything(seed=42):
# Seed value for TensorFlow
tf.random.set_seed(seed)
# Seed value for NumPy
np.random.seed(seed)
# Seed value for Python's random library
random.seed(seed)
# Force TensorFlow to use single thread
# Multiple threads are a potential source of non-reproducible results.
session_conf = tf.compat.v1.ConfigProto(
intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1
)
def seed_everything(seed=42)
# Seed value for Python's random library
random.seed(seed)
# Seed value for NumPy
np.random.seed(seed)
# Seed value for TensorFlow
tf.random.set_seed(seed)
# Ensure deterministic behavior
os.environ['PYTHONHASHSEED'] = str(seed)
os.environ['TF_DETERMINISTIC_OPS'] = '1'
os.environ['TF_CUDNN_DETERMINISTIC'] = '1'
# Set session configuration to ensure single-threaded execution
session_conf = tf.compat.v1.ConfigProto(
intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1
)
sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=session_conf)
tf.compat.v1.keras.backend.set_session(sess)
seed_everything()
import requests
# URL of the file
url = "https://raw.githubusercontent.com/mrdbourke/tensorflow-deep-learning/main/extras/helper_functions.py"
# Send a GET request to the URL
response = requests.get(url)
# Check if the request was successful
if response.status_code == 200:
# Save the content to a file
with open("helper_functions.py", "wb") as f:
f.write(response.content)
print("File downloaded successfully.")
else:
print("Failed to download the file.")
# Import series of helper functions for our notebook
from helper_functions import create_tensorboard_callback, plot_loss_curves, unzip_data, compare_historys, walk_through_dir, pred_and_plot
BATCH_SIZE = 32
TARGET_SIZE = (224, 224)
# Define the Google Drive shareable link
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
# Extract the file ID from the URL
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
direct_download_url = f'https://drive.google.com/uc?id={file_id}'
# Define the local filename to save the ZIP file
local_zip_file = 'file.zip'
# Download the ZIP file
gdown.download(direct_download_url, local_zip_file, quiet=False)
# Directory to extract files
extracted_path = 'extracted_files'
# Verify if the downloaded file is a ZIP file and extract it
try:
with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
zip_ref.extractall(extracted_path)
print("Extraction successful!")
except zipfile.BadZipFile:
print("Error: The downloaded file is not a valid ZIP file.")
# Optionally, you can delete the ZIP file after extraction
os.remove(local_zip_file)
# Convert the extracted directory path to a pathlib.Path object
data_dir = Path(extracted_path)
# Print the directory structure to debug
for root, dirs, files in os.walk(extracted_path):
level = root.replace(extracted_path, '').count(os.sep)
indent = ' ' * 4 * (level)
print(f"{indent}{os.path.basename(root)}/")
subindent = ' ' * 4 * (level + 1)
for f in files:
print(f"{subindent}{f}")
# Function to convert the directory path to a DataFrame
def convert_path_to_df(dataset):
image_dir = Path(dataset)
# Get filepaths and labels
filepaths = list(image_dir.glob(r'**/*.JPG')) + list(image_dir.glob(r'**/*.jpg')) + list(image_dir.glob(r'**/*.png')) + list(image_dir.glob(r'**/*.PNG'))
labels = list(map(lambda x: os.path.split(os.path.split(x)[0])[1], filepaths))
filepaths = pd.Series(filepaths, name='Filepath').astype(str)
labels = pd.Series(labels, name='Label')
# Concatenate filepaths and labels
image_df = pd.concat([filepaths, labels], axis=1)
return image_df
# Path to the dataset directory
data_dir = Path('extracted_files/Pest_Dataset')
image_df = convert_path_to_df(data_dir)
# Check for corrupted images within the dataset
for img_p in data_dir.rglob("*.jpg"):
try:
img = Image.open(img_p)
except UnidentifiedImageError:
print(f"Corrupted image file: {img_p}")
# You can save the DataFrame to a CSV for further use
image_df.to_csv('image_dataset.csv', index=False)
print("DataFrame created and saved successfully!")
label_counts = image_df['Label'].value_counts()
plt.figure(figsize=(10, 6))
sns.barplot(x=label_counts.index, y=label_counts.values, alpha=0.8, palette='rocket')
plt.title('Distribution of Labels in Image Dataset', fontsize=16)
plt.xlabel('Label', fontsize=14)
plt.ylabel('Count', fontsize=14)
plt.xticks(rotation=45)
plt.show()
# Display 16 picture of the dataset with their labels
random_index = np.random.randint(0, len(image_df), 16)
fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(10, 10),
subplot_kw={'xticks': [], 'yticks': []})
for i, ax in enumerate(axes.flat):
ax.imshow(plt.imread(image_df.Filepath[random_index[i]]))
ax.set_title(image_df.Label[random_index[i]])
plt.tight_layout()
plt.show()
# Function to return a random image path from a given directory
def random_sample(directory):
images = [os.path.join(directory, img) for img in os.listdir(directory) if img.endswith(('.jpg', '.jpeg', '.png'))]
return random.choice(images)
# Function to compute the Error Level Analysis (ELA) of an image
def compute_ela_cv(path, quality):
temp_filename = 'temp.jpg'
orig = cv2.imread(path)
cv2.imwrite(temp_filename, orig, [int(cv2.IMWRITE_JPEG_QUALITY), quality])
compressed = cv2.imread(temp_filename)
ela_image = cv2.absdiff(orig, compressed)
ela_image = np.clip(ela_image * 10, 0, 255).astype(np.uint8)
return ela_image
# View random sample from the dataset
p = random_sample('extracted_files/Pest_Dataset/beetle')
orig = cv2.imread(p)
orig = cv2.cvtColor(orig, cv2.COLOR_BGR2RGB) / 255.0
init_val = 100
columns = 3
rows = 3
fig=plt.figure(figsize=(15, 10))
for i in range(1, columns*rows +1):
quality=init_val - (i-1) * 8
img = compute_ela_cv(path=p, quality=quality)
if i == 1:
img = orig.copy()
ax = fig.add_subplot(rows, columns, i)
ax.title.set_text(f'q: {quality}')
plt.imshow(img)
plt.show()
# Separate in train and test data
train_df, test_df = train_test_split(image_df, test_size=0.2, shuffle=True, random_state=42)
train_generator = ImageDataGenerator(
preprocessing_function=tf.keras.applications.efficientnet_v2.preprocess_input,
validation_split=0.2
)
test_generator = ImageDataGenerator(
preprocessing_function=tf.keras.applications.efficientnet_v2.preprocess_input
)
# Split the data into three categories.
train_images = train_generator.flow_from_dataframe(
dataframe=train_df,
x_col='Filepath',
y_col='Label',
target_size=(224, 224),
color_mode='rgb',
class_mode='categorical',
batch_size=32,
shuffle=True,
seed=42,
subset='training'
)
val_images = train_generator.flow_from_dataframe(
dataframe=train_df,
x_col='Filepath',
y_col='Label',
target_size=(224, 224),
color_mode='rgb',
class_mode='categorical',
batch_size=32,
shuffle=True,
seed=42,
subset='validation'
)
test_images = test_generator.flow_from_dataframe(
dataframe=test_df,
x_col='Filepath',
y_col='Label',
target_size=(224, 224),
color_mode='rgb',
class_mode='categorical',
batch_size=32,
shuffle=False
)
# Data Augmentation Step
augment = tf.keras.Sequential([
layers.experimental.preprocessing.Resizing(224,224),
layers.experimental.preprocessing.Rescaling(1./255),
layers.experimental.preprocessing.RandomFlip("horizontal"),
layers.experimental.preprocessing.RandomRotation(0.1),
layers.experimental.preprocessing.RandomZoom(0.1),
layers.experimental.preprocessing.RandomContrast(0.1),
])
# Load the pretained model
pretrained_model = tf.keras.applications.efficientnet_v2.EfficientNetV2L(
input_shape=(224, 224, 3),
include_top=False,
weights='imagenet',
pooling='max'
)
pretrained_model.trainable = False
# Create checkpoint callback
checkpoint_path = "pests_cats_classification_model_checkpoint"
checkpoint_callback = ModelCheckpoint(checkpoint_path,
save_weights_only=True,
monitor="val_accuracy",
save_best_only=True)
# Setup EarlyStopping callback to stop training if model's val_loss doesn't improve for 3 epochs
early_stopping = EarlyStopping(monitor = "val_loss", # watch the val loss metric
patience = 5,
restore_best_weights = True) # if val loss decreases for 3 epochs in a row, stop training
inputs = pretrained_model.input
x = augment(inputs)
# x = Dense(128, activation='relu')(pretrained_model.output)
# x = Dropout(0.45)(x)
# x = Dense(256, activation='relu')(x)
# x = Dropout(0.45)(x)
# Add new classification layers
x = Flatten()(pretrained_model.output)
x = Dense(256, activation='relu')(x)
x = Dropout(0.5)(x)
x = BatchNormalization()(x)
x = Dense(128, activation='relu')(x)
x = Dropout(0.5)(x)
outputs = Dense(12, activation='softmax')(x)
model = Model(inputs=inputs, outputs=outputs)
model.compile(
optimizer=Adam(0.00001),
loss='categorical_crossentropy',
metrics=['accuracy']
)
history = model.fit(
train_images,
steps_per_epoch=len(train_images),
validation_data=val_images,
validation_steps=len(val_images),
epochs=50,
callbacks=[
early_stopping,
create_tensorboard_callback("training_logs",
"pests_cats_classification"),
checkpoint_callback,
]
)
results = model.evaluate(test_images, verbose=0)
print(" Test Loss: {:.5f}".format(results[0]))
print("Test Accuracy: {:.2f}%".format(results[1] * 100))
accuracy = history.history['accuracy']
val_accuracy = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(accuracy))
plt.plot(epochs, accuracy, 'b', label='Training accuracy')
plt.plot(epochs, val_accuracy, 'r', label='Validation accuracy')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'b', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
# Predict the label of the test_images
pred = model.predict(test_images)
pred = np.argmax(pred,axis=1)
# Map the label
labels = (train_images.class_indices)
labels = dict((v,k) for k,v in labels.items())
pred = [labels[k] for k in pred]
# Display the result
print(f'The first 5 predictions: {pred[:5]}')
# Display 25 random pictures from the dataset with their labels
random_index = np.random.randint(0, len(test_df) - 1, 15)
fig, axes = plt.subplots(nrows=3, ncols=5, figsize=(25, 15),
subplot_kw={'xticks': [], 'yticks': []})
for i, ax in enumerate(axes.flat):
ax.imshow(plt.imread(test_df.Filepath.iloc[random_index[i]]))
if test_df.Label.iloc[random_index[i]] == pred[random_index[i]]:
color = "green"
else:
color = "red"
ax.set_title(f"True: {test_df.Label.iloc[random_index[i]]}\nPredicted: {pred[random_index[i]]}", color=color)
plt.show()
plt.tight_layout()
y_test = list(test_df.Label)
print(classification_report(y_test, pred))
report = classification_report(y_test, pred, output_dict=True)
df = pd.DataFrame(report).transpose()
df
from sklearn.metrics import confusion_matrix
# Assuming y_test contains the true labels and pred contains the predicted labels
cm = confusion_matrix(y_test, pred)
print(cm)
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.applications.efficientnet_v2 import preprocess_input
from tensorflow.keras.preprocessing import image
import tensorflow as tf
import cv2
def get_img_array(img_path, size):
# Load image and convert to array
img = image.load_img(img_path, target_size=size)
array = image.img_to_array(img)
array = np.expand_dims(array, axis=0)
return array
def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
# Create a model that maps the input image to the activations of the last conv layer
grad_model = tf.keras.models.Model(
[model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
)
# Compute the gradient of the top predicted class for the input image
with tf.GradientTape() as tape:
last_conv_layer_output, preds = grad_model(img_array)
if pred_index is None:
pred_index = tf.argmax(preds[0])
class_channel = preds[:, pred_index]
# Gradient of the predicted class with respect to the output feature map of the last conv layer
grads = tape.gradient(class_channel, last_conv_layer_output)
# Vector where each entry is the mean intensity of the gradient over a specific feature map channel
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
# Multiply each channel in the feature map array by the "importance" of the channel
last_conv_layer_output = last_conv_layer_output[0]
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
heatmap = tf.squeeze(heatmap)
# For visualization purpose, normalize the heatmap between 0 & 1
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
return heatmap.numpy()
def save_and_display_gradcam(img_path, heatmap, alpha=0.4):
# Load the original image
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# Rescale heatmap to a range 0-255
heatmap = np.uint8(255 * heatmap)
# Use jet colormap to colorize the heatmap
jet = cm.get_cmap("jet")
# Use RGB values of the colormap
jet_colors = jet(np.arange(256))[:, :3]
jet_heatmap = jet_colors[heatmap]
# Create an image with RGB colorized heatmap
jet_heatmap = tf.keras.preprocessing.image.array_to_img(jet_heatmap)
jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
jet_heatmap = tf.keras.preprocessing.image.img_to_array(jet_heatmap)
# Superimpose the heatmap on the original image
superimposed_img = jet_heatmap * alpha + img
superimposed_img = tf.keras.preprocessing.image.array_to_img(superimposed_img)
# Save the superimposed image
cam_path = "cam.jpg"
superimposed_img.save(cam_path)
return cam_path
import matplotlib.cm as cm
import pandas as pd
# Assuming you have test_df, model, and other variables defined
random_index = np.random.randint(0, len(test_df), 15)
img_size = (224, 224)
last_conv_layer_name = 'top_conv'
fig, axes = plt.subplots(nrows=3, ncols=5, figsize=(15, 10),
subplot_kw={'xticks': [], 'yticks': []})
for i, ax in enumerate(axes.flat):
img_path = test_df.Filepath.iloc[random_index[i]]
img_array = preprocess_input(get_img_array(img_path, size=img_size))
heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name)
cam_path = save_and_display_gradcam(img_path, heatmap)
ax.imshow(plt.imread(cam_path))
ax.set_title(f"True: {test_df.Label.iloc[random_index[i]]}\nPredicted: {pred[random_index[i]]}")
plt.tight_layout()
plt.show()
class_names = train_images.class_indices
class_names = {v: k for k, v in class_names.items()}
# Gradio Interface for Prediction
def predict_image(img):
img = np.array(img)
img_resized = tf.image.resize(img, (TARGET_SIZE[0], TARGET_SIZE[1]))
img_4d = tf.expand_dims(img_resized, axis=0)
prediction = model.predict(img_4d)[0]
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
# Launch Gradio interface
image = gr.Image()
label = gr.Label(num_top_classes=1)
gr.Interface(
fn=predict_image,
inputs=image,
outputs=label,
title="Welcome to Agricultural Pest Image Classification",
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
).launch(debug=True) |