NORLIE JHON MALAGDAO commited on
Commit
269a57e
·
verified ·
1 Parent(s): 3270925

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +121 -47
app.py CHANGED
@@ -9,11 +9,14 @@ from tensorflow import keras
9
  from tensorflow.keras import layers
10
  from tensorflow.keras.models import Sequential
11
 
 
12
  from PIL import Image
13
  import gdown
14
  import zipfile
 
15
  import pathlib
16
 
 
17
  # Define the Google Drive shareable link
18
  gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
19
 
@@ -53,98 +56,161 @@ for root, dirs, files in os.walk(extracted_path):
53
  for f in files:
54
  print(f"{subindent}{f}")
55
 
 
56
  # Path to the dataset directory
57
  data_dir = pathlib.Path('extracted_files/Pest_Dataset')
58
  data_dir = pathlib.Path(data_dir)
59
 
 
 
 
 
 
 
60
  bees = list(data_dir.glob('bees/*'))
61
  print(bees[0])
62
  PIL.Image.open(str(bees[0]))
63
 
 
 
64
  batch_size = 32
65
  img_height = 180
66
  img_width = 180
67
 
 
68
  train_ds = tf.keras.utils.image_dataset_from_directory(
69
- data_dir,
70
- validation_split=0.2,
71
- subset="training",
72
- seed=123,
73
- image_size=(img_height, img_width),
74
- batch_size=batch_size
75
- )
76
 
77
  val_ds = tf.keras.utils.image_dataset_from_directory(
78
- data_dir,
79
- validation_split=0.2,
80
- subset="validation",
81
- seed=123,
82
- image_size=(img_height, img_width),
83
- batch_size=batch_size
84
- )
85
 
86
  class_names = train_ds.class_names
87
  print(class_names)
88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
  AUTOTUNE = tf.data.AUTOTUNE
90
 
91
  train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
92
  val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
93
 
 
94
  normalization_layer = layers.Rescaling(1./255)
95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
  num_classes = len(class_names)
97
 
 
 
 
98
  data_augmentation = keras.Sequential(
99
- [
100
- layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
101
- layers.RandomRotation(0.1),
102
- layers.RandomZoom(0.1),
103
- ]
 
 
 
104
  )
105
 
106
- # Define a deeper convolutional neural network
 
 
 
 
 
 
 
 
 
 
 
 
107
  model = Sequential([
108
- data_augmentation,
109
- normalization_layer,
110
- layers.Conv2D(32, 3, padding='same', activation='relu', input_shape=(img_height, img_width, 3)),
111
- layers.MaxPooling2D(),
112
- layers.Conv2D(64, 3, padding='same', activation='relu'),
113
- layers.MaxPooling2D(),
114
- layers.Conv2D(128, 3, padding='same', activation='relu'),
115
- layers.MaxPooling2D(),
116
- layers.Conv2D(256, 3, padding='same', activation='relu'),
117
- layers.MaxPooling2D(),
118
- layers.Conv2D(512, 3, padding='same', activation='relu'),
119
- layers.MaxPooling2D(),
120
- layers.Conv2D(512, 3, padding='same', activation='relu'),
121
- layers.MaxPooling2D(),
122
- layers.Dropout(0.5),
123
- layers.Flatten(),
124
- layers.Dense(1024, activation='relu'),
125
- layers.Dropout(0.5),
126
- layers.Dense(num_classes, activation='softmax')
127
  ])
128
 
129
- # Ensure the input shape is correctly passed
130
- model.build((None, img_height, img_width, 3))
131
 
132
- model.compile(optimizer=keras.optimizers.Adam(learning_rate=0.001),
133
- loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
 
 
134
  metrics=['accuracy'])
135
 
 
136
  model.summary()
137
 
 
 
138
  epochs = 15
139
  history = model.fit(
140
- train_ds,
141
- validation_data=val_ds,
142
- epochs=epochs
143
  )
144
 
 
 
145
  def predict_image(img):
146
  img = np.array(img)
147
- img_resized = tf.image.resize(img, (img_height, img_width))
148
  img_4d = tf.expand_dims(img_resized, axis=0)
149
  prediction = model.predict(img_4d)[0]
150
  return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
@@ -152,6 +218,7 @@ def predict_image(img):
152
  image = gr.Image()
153
  label = gr.Label(num_top_classes=1)
154
 
 
155
  custom_css = """
156
  body {
157
  background-image: url('extracted_files/Pest_Dataset/bees/bees (444).jpg');
@@ -170,3 +237,10 @@ gr.Interface(
170
  description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
171
  css=custom_css
172
  ).launch(debug=True)
 
 
 
 
 
 
 
 
9
  from tensorflow.keras import layers
10
  from tensorflow.keras.models import Sequential
11
 
12
+
13
  from PIL import Image
14
  import gdown
15
  import zipfile
16
+
17
  import pathlib
18
 
19
+
20
  # Define the Google Drive shareable link
21
  gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
22
 
 
56
  for f in files:
57
  print(f"{subindent}{f}")
58
 
59
+
60
  # Path to the dataset directory
61
  data_dir = pathlib.Path('extracted_files/Pest_Dataset')
62
  data_dir = pathlib.Path(data_dir)
63
 
64
+
65
+ bees = list(data_dir.glob('bees/*'))
66
+ print(bees[0])
67
+ PIL.Image.open(str(bees[0]))
68
+
69
+
70
  bees = list(data_dir.glob('bees/*'))
71
  print(bees[0])
72
  PIL.Image.open(str(bees[0]))
73
 
74
+
75
+
76
  batch_size = 32
77
  img_height = 180
78
  img_width = 180
79
 
80
+
81
  train_ds = tf.keras.utils.image_dataset_from_directory(
82
+ data_dir,
83
+ validation_split=0.2,
84
+ subset="training",
85
+ seed=123,
86
+ image_size=(img_height, img_width),
87
+ batch_size=batch_size)
88
+
89
 
90
  val_ds = tf.keras.utils.image_dataset_from_directory(
91
+ data_dir,
92
+ validation_split=0.2,
93
+ subset="validation",
94
+ seed=123,
95
+ image_size=(img_height, img_width),
96
+ batch_size=batch_size)
97
+
98
 
99
  class_names = train_ds.class_names
100
  print(class_names)
101
 
102
+
103
+ import matplotlib.pyplot as plt
104
+
105
+ plt.figure(figsize=(10, 10))
106
+ for images, labels in train_ds.take(1):
107
+ for i in range(9):
108
+ ax = plt.subplot(3, 3, i + 1)
109
+ plt.imshow(images[i].numpy().astype("uint8"))
110
+ plt.title(class_names[labels[i]])
111
+ plt.axis("off")
112
+
113
+
114
+
115
+ for image_batch, labels_batch in train_ds:
116
+ print(image_batch.shape)
117
+ print(labels_batch.shape)
118
+ break
119
+
120
+
121
  AUTOTUNE = tf.data.AUTOTUNE
122
 
123
  train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
124
  val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
125
 
126
+
127
  normalization_layer = layers.Rescaling(1./255)
128
 
129
+
130
+
131
+
132
+
133
+
134
+ normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
135
+ image_batch, labels_batch = next(iter(normalized_ds))
136
+ first_image = image_batch[0]
137
+ # Notice the pixel values are now in `[0,1]`.
138
+ print(np.min(first_image), np.max(first_image))
139
+
140
+
141
+
142
+
143
+
144
+
145
+
146
  num_classes = len(class_names)
147
 
148
+
149
+
150
+
151
  data_augmentation = keras.Sequential(
152
+ [
153
+ layers.RandomFlip("horizontal",
154
+ input_shape=(img_height,
155
+ img_width,
156
+ 3)),
157
+ layers.RandomRotation(0.1),
158
+ layers.RandomZoom(0.1),
159
+ ]
160
  )
161
 
162
+
163
+
164
+ plt.figure(figsize=(10, 10))
165
+ for images, _ in train_ds.take(1):
166
+ for i in range(9):
167
+ augmented_images = data_augmentation(images)
168
+ ax = plt.subplot(3, 3, i + 1)
169
+ plt.imshow(augmented_images[0].numpy().astype("uint8"))
170
+ plt.axis("off")
171
+
172
+
173
+
174
+
175
  model = Sequential([
176
+ data_augmentation,
177
+ layers.Rescaling(1./255),
178
+ layers.Conv2D(16, 3, padding='same', activation='relu'),
179
+ layers.MaxPooling2D(),
180
+ layers.Conv2D(32, 3, padding='same', activation='relu'),
181
+ layers.MaxPooling2D(),
182
+ layers.Conv2D(64, 3, padding='same', activation='relu'),
183
+ layers.MaxPooling2D(),
184
+ layers.Dropout(0.2),
185
+ layers.Flatten(),
186
+ layers.Dense(128, activation='relu'),
187
+ layers.Dense(num_classes, name="outputs")
 
 
 
 
 
 
 
188
  ])
189
 
 
 
190
 
191
+
192
+
193
+ model.compile(optimizer='adam',
194
+ loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
195
  metrics=['accuracy'])
196
 
197
+
198
  model.summary()
199
 
200
+
201
+
202
  epochs = 15
203
  history = model.fit(
204
+ train_ds,
205
+ validation_data=val_ds,
206
+ epochs=epochs
207
  )
208
 
209
+
210
+
211
  def predict_image(img):
212
  img = np.array(img)
213
+ img_resized = tf.image.resize(img, (180, 180))
214
  img_4d = tf.expand_dims(img_resized, axis=0)
215
  prediction = model.predict(img_4d)[0]
216
  return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
 
218
  image = gr.Image()
219
  label = gr.Label(num_top_classes=1)
220
 
221
+ # Define custom CSS for background image
222
  custom_css = """
223
  body {
224
  background-image: url('extracted_files/Pest_Dataset/bees/bees (444).jpg');
 
237
  description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
238
  css=custom_css
239
  ).launch(debug=True)
240
+
241
+
242
+
243
+
244
+
245
+
246
+