Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -8,15 +8,11 @@ import tensorflow as tf
|
|
8 |
from tensorflow import keras
|
9 |
from tensorflow.keras import layers
|
10 |
from tensorflow.keras.models import Sequential
|
11 |
-
|
12 |
-
|
13 |
from PIL import Image
|
14 |
import gdown
|
15 |
import zipfile
|
16 |
-
|
17 |
import pathlib
|
18 |
|
19 |
-
|
20 |
# Define the Google Drive shareable link
|
21 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
22 |
|
@@ -56,28 +52,18 @@ for root, dirs, files in os.walk(extracted_path):
|
|
56 |
for f in files:
|
57 |
print(f"{subindent}{f}")
|
58 |
|
59 |
-
|
60 |
# Path to the dataset directory
|
61 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
62 |
data_dir = pathlib.Path(data_dir)
|
63 |
|
64 |
-
|
65 |
bees = list(data_dir.glob('bees/*'))
|
66 |
print(bees[0])
|
67 |
PIL.Image.open(str(bees[0]))
|
68 |
|
69 |
-
|
70 |
-
bees = list(data_dir.glob('bees/*'))
|
71 |
-
print(bees[0])
|
72 |
-
PIL.Image.open(str(bees[0]))
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
batch_size = 32
|
77 |
img_height = 180
|
78 |
img_width = 180
|
79 |
|
80 |
-
|
81 |
train_ds = tf.keras.utils.image_dataset_from_directory(
|
82 |
data_dir,
|
83 |
validation_split=0.2,
|
@@ -86,7 +72,6 @@ train_ds = tf.keras.utils.image_dataset_from_directory(
|
|
86 |
image_size=(img_height, img_width),
|
87 |
batch_size=batch_size)
|
88 |
|
89 |
-
|
90 |
val_ds = tf.keras.utils.image_dataset_from_directory(
|
91 |
data_dir,
|
92 |
validation_split=0.2,
|
@@ -95,58 +80,71 @@ val_ds = tf.keras.utils.image_dataset_from_directory(
|
|
95 |
image_size=(img_height, img_width),
|
96 |
batch_size=batch_size)
|
97 |
|
98 |
-
|
99 |
class_names = train_ds.class_names
|
100 |
print(class_names)
|
101 |
|
102 |
-
|
103 |
-
import matplotlib.pyplot as plt
|
104 |
-
|
105 |
-
plt.figure(figsize=(10, 10))
|
106 |
-
for images, labels in train_ds.take(1):
|
107 |
-
for i in range(9):
|
108 |
-
ax = plt.subplot(3, 3, i + 1)
|
109 |
-
plt.imshow(images[i].numpy().astype("uint8"))
|
110 |
-
plt.title(class_names[labels[i]])
|
111 |
-
plt.axis("off")
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
for image_batch, labels_batch in train_ds:
|
116 |
-
print(image_batch.shape)
|
117 |
-
print(labels_batch.shape)
|
118 |
-
break
|
119 |
-
|
120 |
-
|
121 |
AUTOTUNE = tf.data.AUTOTUNE
|
122 |
|
123 |
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
|
124 |
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
|
125 |
|
126 |
-
|
127 |
normalization_layer = layers.Rescaling(1./255)
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
|
135 |
image_batch, labels_batch = next(iter(normalized_ds))
|
136 |
first_image = image_batch[0]
|
137 |
# Notice the pixel values are now in `[0,1]`.
|
138 |
print(np.min(first_image), np.max(first_image))
|
139 |
|
|
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
|
|
|
|
|
|
142 |
|
|
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
|
|
|
|
145 |
|
146 |
-
|
|
|
147 |
|
|
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
data_augmentation = keras.Sequential(
|
152 |
[
|
@@ -159,8 +157,6 @@ data_augmentation = keras.Sequential(
|
|
159 |
]
|
160 |
)
|
161 |
|
162 |
-
|
163 |
-
|
164 |
plt.figure(figsize=(10, 10))
|
165 |
for images, _ in train_ds.take(1):
|
166 |
for i in range(9):
|
@@ -169,9 +165,6 @@ for images, _ in train_ds.take(1):
|
|
169 |
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
170 |
plt.axis("off")
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
model = Sequential([
|
176 |
data_augmentation,
|
177 |
layers.Rescaling(1./255),
|
@@ -187,18 +180,12 @@ model = Sequential([
|
|
187 |
layers.Dense(num_classes, name="outputs")
|
188 |
])
|
189 |
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
model.compile(optimizer='adam',
|
194 |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
195 |
metrics=['accuracy'])
|
196 |
|
197 |
-
|
198 |
model.summary()
|
199 |
|
200 |
-
|
201 |
-
|
202 |
epochs = 15
|
203 |
history = model.fit(
|
204 |
train_ds,
|
@@ -206,41 +193,17 @@ history = model.fit(
|
|
206 |
epochs=epochs
|
207 |
)
|
208 |
|
209 |
-
|
210 |
-
|
211 |
def predict_image(img):
|
212 |
img = np.array(img)
|
213 |
img_resized = tf.image.resize(img, (180, 180))
|
214 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
215 |
prediction = model.predict(img_4d)[0]
|
216 |
-
|
|
|
|
|
217 |
|
218 |
image = gr.Image()
|
219 |
label = gr.Label(num_top_classes=1)
|
220 |
|
221 |
# Define custom CSS for background image
|
222 |
custom_css = """
|
223 |
-
body {
|
224 |
-
background-image: url('extracted_files/Pest_Dataset/bees/bees (444).jpg');
|
225 |
-
background-size: cover;
|
226 |
-
background-repeat: no-repeat;
|
227 |
-
background-attachment: fixed;
|
228 |
-
color: white;
|
229 |
-
}
|
230 |
-
"""
|
231 |
-
|
232 |
-
gr.Interface(
|
233 |
-
fn=predict_image,
|
234 |
-
inputs=image,
|
235 |
-
outputs=label,
|
236 |
-
title="Welcome to Agricultural Pest Image Classification",
|
237 |
-
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
238 |
-
css=custom_css
|
239 |
-
).launch(debug=True)
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
|
|
8 |
from tensorflow import keras
|
9 |
from tensorflow.keras import layers
|
10 |
from tensorflow.keras.models import Sequential
|
|
|
|
|
11 |
from PIL import Image
|
12 |
import gdown
|
13 |
import zipfile
|
|
|
14 |
import pathlib
|
15 |
|
|
|
16 |
# Define the Google Drive shareable link
|
17 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
18 |
|
|
|
52 |
for f in files:
|
53 |
print(f"{subindent}{f}")
|
54 |
|
|
|
55 |
# Path to the dataset directory
|
56 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
57 |
data_dir = pathlib.Path(data_dir)
|
58 |
|
|
|
59 |
bees = list(data_dir.glob('bees/*'))
|
60 |
print(bees[0])
|
61 |
PIL.Image.open(str(bees[0]))
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
batch_size = 32
|
64 |
img_height = 180
|
65 |
img_width = 180
|
66 |
|
|
|
67 |
train_ds = tf.keras.utils.image_dataset_from_directory(
|
68 |
data_dir,
|
69 |
validation_split=0.2,
|
|
|
72 |
image_size=(img_height, img_width),
|
73 |
batch_size=batch_size)
|
74 |
|
|
|
75 |
val_ds = tf.keras.utils.image_dataset_from_directory(
|
76 |
data_dir,
|
77 |
validation_split=0.2,
|
|
|
80 |
image_size=(img_height, img_width),
|
81 |
batch_size=batch_size)
|
82 |
|
|
|
83 |
class_names = train_ds.class_names
|
84 |
print(class_names)
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
AUTOTUNE = tf.data.AUTOTUNE
|
87 |
|
88 |
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
|
89 |
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
|
90 |
|
|
|
91 |
normalization_layer = layers.Rescaling(1./255)
|
92 |
|
|
|
|
|
|
|
|
|
|
|
93 |
normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
|
94 |
image_batch, labels_batch = next(iter(normalized_ds))
|
95 |
first_image = image_batch[0]
|
96 |
# Notice the pixel values are now in `[0,1]`.
|
97 |
print(np.min(first_image), np.max(first_image))
|
98 |
|
99 |
+
num_classes = len(class_names)
|
100 |
|
101 |
+
model = Sequential([
|
102 |
+
layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
|
103 |
+
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
104 |
+
layers.MaxPooling2D(),
|
105 |
+
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
106 |
+
layers.MaxPooling2D(),
|
107 |
+
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
108 |
+
layers.MaxPooling2D(),
|
109 |
+
layers.Flatten(),
|
110 |
+
layers.Dense(128, activation='relu'),
|
111 |
+
layers.Dense(num_classes)
|
112 |
+
])
|
113 |
|
114 |
+
model.compile(optimizer='adam',
|
115 |
+
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
116 |
+
metrics=['accuracy'])
|
117 |
|
118 |
+
model.summary()
|
119 |
|
120 |
+
epochs=10
|
121 |
+
history = model.fit(
|
122 |
+
train_ds,
|
123 |
+
validation_data=val_ds,
|
124 |
+
epochs=epochs
|
125 |
+
)
|
126 |
|
127 |
+
acc = history.history['accuracy']
|
128 |
+
val_acc = history.history['val_accuracy']
|
129 |
|
130 |
+
loss = history.history['loss']
|
131 |
+
val_loss = history.history['val_loss']
|
132 |
|
133 |
+
epochs_range = range(epochs)
|
134 |
|
135 |
+
plt.figure(figsize=(8, 8))
|
136 |
+
plt.subplot(1, 2, 1)
|
137 |
+
plt.plot(epochs_range, acc, label='Training Accuracy')
|
138 |
+
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
|
139 |
+
plt.legend(loc='lower right')
|
140 |
+
plt.title('Training and Validation Accuracy')
|
141 |
|
142 |
+
plt.subplot(1, 2, 2)
|
143 |
+
plt.plot(epochs_range, loss, label='Training Loss')
|
144 |
+
plt.plot(epochs_range, val_loss, label='Validation Loss')
|
145 |
+
plt.legend(loc='upper right')
|
146 |
+
plt.title('Training and Validation Loss')
|
147 |
+
plt.show()
|
148 |
|
149 |
data_augmentation = keras.Sequential(
|
150 |
[
|
|
|
157 |
]
|
158 |
)
|
159 |
|
|
|
|
|
160 |
plt.figure(figsize=(10, 10))
|
161 |
for images, _ in train_ds.take(1):
|
162 |
for i in range(9):
|
|
|
165 |
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
166 |
plt.axis("off")
|
167 |
|
|
|
|
|
|
|
168 |
model = Sequential([
|
169 |
data_augmentation,
|
170 |
layers.Rescaling(1./255),
|
|
|
180 |
layers.Dense(num_classes, name="outputs")
|
181 |
])
|
182 |
|
|
|
|
|
|
|
183 |
model.compile(optimizer='adam',
|
184 |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
185 |
metrics=['accuracy'])
|
186 |
|
|
|
187 |
model.summary()
|
188 |
|
|
|
|
|
189 |
epochs = 15
|
190 |
history = model.fit(
|
191 |
train_ds,
|
|
|
193 |
epochs=epochs
|
194 |
)
|
195 |
|
|
|
|
|
196 |
def predict_image(img):
|
197 |
img = np.array(img)
|
198 |
img_resized = tf.image.resize(img, (180, 180))
|
199 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
200 |
prediction = model.predict(img_4d)[0]
|
201 |
+
probabilities = tf.nn.softmax(prediction).numpy()
|
202 |
+
class_probabilities = {class_names[i]: probabilities[i] * 100 for i in range(len(class_names))}
|
203 |
+
return class_probabilities
|
204 |
|
205 |
image = gr.Image()
|
206 |
label = gr.Label(num_top_classes=1)
|
207 |
|
208 |
# Define custom CSS for background image
|
209 |
custom_css = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|