Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,13 +2,21 @@ import gradio as gr
|
|
2 |
import matplotlib.pyplot as plt
|
3 |
import numpy as np
|
4 |
import os
|
|
|
5 |
import tensorflow as tf
|
6 |
-
|
7 |
-
from tensorflow
|
|
|
|
|
|
|
|
|
|
|
8 |
import gdown
|
9 |
import zipfile
|
|
|
10 |
import pathlib
|
11 |
|
|
|
12 |
# Define the Google Drive shareable link
|
13 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
14 |
|
@@ -37,37 +45,63 @@ except zipfile.BadZipFile:
|
|
37 |
os.remove(local_zip_file)
|
38 |
|
39 |
# Convert the extracted directory path to a pathlib.Path object
|
40 |
-
data_dir = pathlib.Path(extracted_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
# Verify if the path exists
|
43 |
-
assert data_dir.exists(), f"Path {data_dir} does not exist."
|
44 |
|
45 |
-
# Load the dataset
|
46 |
-
img_height, img_width = 180, 180
|
47 |
batch_size = 32
|
|
|
|
|
48 |
|
49 |
-
|
|
|
50 |
data_dir,
|
51 |
validation_split=0.2,
|
52 |
subset="training",
|
53 |
seed=123,
|
54 |
image_size=(img_height, img_width),
|
55 |
-
batch_size=batch_size
|
56 |
-
)
|
57 |
|
58 |
-
|
|
|
59 |
data_dir,
|
60 |
validation_split=0.2,
|
61 |
subset="validation",
|
62 |
seed=123,
|
63 |
image_size=(img_height, img_width),
|
64 |
-
batch_size=batch_size
|
65 |
-
|
66 |
|
67 |
class_names = train_ds.class_names
|
68 |
print(class_names)
|
69 |
|
70 |
-
|
|
|
|
|
71 |
plt.figure(figsize=(10, 10))
|
72 |
for images, labels in train_ds.take(1):
|
73 |
for i in range(9):
|
@@ -76,16 +110,57 @@ for images, labels in train_ds.take(1):
|
|
76 |
plt.title(class_names[labels[i]])
|
77 |
plt.axis("off")
|
78 |
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
[
|
82 |
-
layers.RandomFlip("horizontal",
|
|
|
|
|
|
|
83 |
layers.RandomRotation(0.1),
|
84 |
layers.RandomZoom(0.1),
|
85 |
]
|
86 |
)
|
87 |
|
88 |
-
|
|
|
89 |
plt.figure(figsize=(10, 10))
|
90 |
for images, _ in train_ds.take(1):
|
91 |
for i in range(9):
|
@@ -94,11 +169,12 @@ for images, _ in train_ds.take(1):
|
|
94 |
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
95 |
plt.axis("off")
|
96 |
|
97 |
-
|
98 |
-
|
|
|
99 |
model = Sequential([
|
100 |
data_augmentation,
|
101 |
-
layers.Rescaling(1./255
|
102 |
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
103 |
layers.MaxPooling2D(),
|
104 |
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
@@ -108,16 +184,21 @@ model = Sequential([
|
|
108 |
layers.Dropout(0.2),
|
109 |
layers.Flatten(),
|
110 |
layers.Dense(128, activation='relu'),
|
111 |
-
layers.Dense(num_classes,
|
112 |
])
|
113 |
|
|
|
|
|
|
|
114 |
model.compile(optimizer='adam',
|
115 |
-
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=
|
116 |
metrics=['accuracy'])
|
117 |
|
|
|
118 |
model.summary()
|
119 |
|
120 |
-
|
|
|
121 |
epochs = 15
|
122 |
history = model.fit(
|
123 |
train_ds,
|
@@ -125,10 +206,11 @@ history = model.fit(
|
|
125 |
epochs=epochs
|
126 |
)
|
127 |
|
128 |
-
|
|
|
129 |
def predict_image(img):
|
130 |
img = np.array(img)
|
131 |
-
img_resized = tf.image.resize(img, (
|
132 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
133 |
prediction = model.predict(img_4d)[0]
|
134 |
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
|
@@ -155,3 +237,10 @@ gr.Interface(
|
|
155 |
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
156 |
css=custom_css
|
157 |
).launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import matplotlib.pyplot as plt
|
3 |
import numpy as np
|
4 |
import os
|
5 |
+
import PIL
|
6 |
import tensorflow as tf
|
7 |
+
|
8 |
+
from tensorflow import keras
|
9 |
+
from tensorflow.keras import layers
|
10 |
+
from tensorflow.keras.models import Sequential
|
11 |
+
|
12 |
+
|
13 |
+
from PIL import Image
|
14 |
import gdown
|
15 |
import zipfile
|
16 |
+
|
17 |
import pathlib
|
18 |
|
19 |
+
|
20 |
# Define the Google Drive shareable link
|
21 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
22 |
|
|
|
45 |
os.remove(local_zip_file)
|
46 |
|
47 |
# Convert the extracted directory path to a pathlib.Path object
|
48 |
+
data_dir = pathlib.Path(extracted_path)
|
49 |
+
|
50 |
+
# Print the directory structure to debug
|
51 |
+
for root, dirs, files in os.walk(extracted_path):
|
52 |
+
level = root.replace(extracted_path, '').count(os.sep)
|
53 |
+
indent = ' ' * 4 * (level)
|
54 |
+
print(f"{indent}{os.path.basename(root)}/")
|
55 |
+
subindent = ' ' * 4 * (level + 1)
|
56 |
+
for f in files:
|
57 |
+
print(f"{subindent}{f}")
|
58 |
+
|
59 |
+
|
60 |
+
# Path to the dataset directory
|
61 |
+
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
62 |
+
data_dir = pathlib.Path(data_dir)
|
63 |
+
|
64 |
+
|
65 |
+
bees = list(data_dir.glob('bees/*'))
|
66 |
+
print(bees[0])
|
67 |
+
PIL.Image.open(str(bees[0]))
|
68 |
+
|
69 |
+
|
70 |
+
bees = list(data_dir.glob('bees/*'))
|
71 |
+
print(bees[0])
|
72 |
+
PIL.Image.open(str(bees[0]))
|
73 |
+
|
74 |
|
|
|
|
|
75 |
|
|
|
|
|
76 |
batch_size = 32
|
77 |
+
img_height = 180
|
78 |
+
img_width = 180
|
79 |
|
80 |
+
|
81 |
+
train_ds = tf.keras.utils.image_dataset_from_directory(
|
82 |
data_dir,
|
83 |
validation_split=0.2,
|
84 |
subset="training",
|
85 |
seed=123,
|
86 |
image_size=(img_height, img_width),
|
87 |
+
batch_size=batch_size)
|
|
|
88 |
|
89 |
+
|
90 |
+
val_ds = tf.keras.utils.image_dataset_from_directory(
|
91 |
data_dir,
|
92 |
validation_split=0.2,
|
93 |
subset="validation",
|
94 |
seed=123,
|
95 |
image_size=(img_height, img_width),
|
96 |
+
batch_size=batch_size)
|
97 |
+
|
98 |
|
99 |
class_names = train_ds.class_names
|
100 |
print(class_names)
|
101 |
|
102 |
+
|
103 |
+
import matplotlib.pyplot as plt
|
104 |
+
|
105 |
plt.figure(figsize=(10, 10))
|
106 |
for images, labels in train_ds.take(1):
|
107 |
for i in range(9):
|
|
|
110 |
plt.title(class_names[labels[i]])
|
111 |
plt.axis("off")
|
112 |
|
113 |
+
|
114 |
+
|
115 |
+
for image_batch, labels_batch in train_ds:
|
116 |
+
print(image_batch.shape)
|
117 |
+
print(labels_batch.shape)
|
118 |
+
break
|
119 |
+
|
120 |
+
|
121 |
+
AUTOTUNE = tf.data.AUTOTUNE
|
122 |
+
|
123 |
+
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
|
124 |
+
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
|
125 |
+
|
126 |
+
|
127 |
+
normalization_layer = layers.Rescaling(1./255)
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
|
135 |
+
image_batch, labels_batch = next(iter(normalized_ds))
|
136 |
+
first_image = image_batch[0]
|
137 |
+
# Notice the pixel values are now in `[0,1]`.
|
138 |
+
print(np.min(first_image), np.max(first_image))
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
num_classes = len(class_names)
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
data_augmentation = keras.Sequential(
|
152 |
[
|
153 |
+
layers.RandomFlip("horizontal",
|
154 |
+
input_shape=(img_height,
|
155 |
+
img_width,
|
156 |
+
3)),
|
157 |
layers.RandomRotation(0.1),
|
158 |
layers.RandomZoom(0.1),
|
159 |
]
|
160 |
)
|
161 |
|
162 |
+
|
163 |
+
|
164 |
plt.figure(figsize=(10, 10))
|
165 |
for images, _ in train_ds.take(1):
|
166 |
for i in range(9):
|
|
|
169 |
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
170 |
plt.axis("off")
|
171 |
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
model = Sequential([
|
176 |
data_augmentation,
|
177 |
+
layers.Rescaling(1./255),
|
178 |
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
179 |
layers.MaxPooling2D(),
|
180 |
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
|
|
184 |
layers.Dropout(0.2),
|
185 |
layers.Flatten(),
|
186 |
layers.Dense(128, activation='relu'),
|
187 |
+
layers.Dense(num_classes, name="outputs")
|
188 |
])
|
189 |
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
model.compile(optimizer='adam',
|
194 |
+
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
195 |
metrics=['accuracy'])
|
196 |
|
197 |
+
|
198 |
model.summary()
|
199 |
|
200 |
+
|
201 |
+
|
202 |
epochs = 15
|
203 |
history = model.fit(
|
204 |
train_ds,
|
|
|
206 |
epochs=epochs
|
207 |
)
|
208 |
|
209 |
+
|
210 |
+
|
211 |
def predict_image(img):
|
212 |
img = np.array(img)
|
213 |
+
img_resized = tf.image.resize(img, (180, 180))
|
214 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
215 |
prediction = model.predict(img_4d)[0]
|
216 |
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
|
|
|
237 |
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
238 |
css=custom_css
|
239 |
).launch(debug=True)
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
|