NORLIE JHON MALAGDAO commited on
Commit
5d28c8b
·
verified ·
1 Parent(s): 7450c4a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -23
app.py CHANGED
@@ -2,14 +2,9 @@ import gradio as gr
2
  import matplotlib.pyplot as plt
3
  import numpy as np
4
  import os
5
- import PIL
6
  import tensorflow as tf
7
-
8
- from tensorflow import keras
9
- from tensorflow.keras import layers
10
- from tensorflow.keras.models import Sequential
11
-
12
- from PIL import Image
13
  import gdown
14
  import zipfile
15
  import pathlib
@@ -42,20 +37,7 @@ except zipfile.BadZipFile:
42
  os.remove(local_zip_file)
43
 
44
  # Convert the extracted directory path to a pathlib.Path object
45
- data_dir = pathlib.Path(extracted_path)
46
-
47
- # Print the directory structure to debug
48
- for root, dirs, files in os.walk(extracted_path):
49
- level = root.replace(extracted_path, '').count(os.sep)
50
- indent = ' ' * 4 * (level)
51
- print(f"{indent}{os.path.basename(root)}/")
52
- subindent = ' ' * 4 * (level + 1)
53
- for f in files:
54
- print(f"{subindent}{f}")
55
-
56
- # Path to the dataset directory
57
- data_dir = pathlib.Path('extracted_files/Pest_Dataset')
58
- data_dir = pathlib.Path(data_dir)
59
 
60
  # Verify if the path exists
61
  assert data_dir.exists(), f"Path {data_dir} does not exist."
@@ -95,7 +77,7 @@ for images, labels in train_ds.take(1):
95
  plt.axis("off")
96
 
97
  # Define data augmentation
98
- data_augmentation = keras.Sequential(
99
  [
100
  layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
101
  layers.RandomRotation(0.1),
@@ -116,7 +98,7 @@ for images, _ in train_ds.take(1):
116
  num_classes = len(class_names)
117
  model = Sequential([
118
  data_augmentation,
119
- layers.Rescaling(1./255),
120
  layers.Conv2D(16, 3, padding='same', activation='relu'),
121
  layers.MaxPooling2D(),
122
  layers.Conv2D(32, 3, padding='same', activation='relu'),
 
2
  import matplotlib.pyplot as plt
3
  import numpy as np
4
  import os
 
5
  import tensorflow as tf
6
+ from tensorflow.keras import layers, Sequential
7
+ from tensorflow.keras.models import load_model
 
 
 
 
8
  import gdown
9
  import zipfile
10
  import pathlib
 
37
  os.remove(local_zip_file)
38
 
39
  # Convert the extracted directory path to a pathlib.Path object
40
+ data_dir = pathlib.Path(extracted_path) / 'Pest_Dataset'
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
  # Verify if the path exists
43
  assert data_dir.exists(), f"Path {data_dir} does not exist."
 
77
  plt.axis("off")
78
 
79
  # Define data augmentation
80
+ data_augmentation = Sequential(
81
  [
82
  layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
83
  layers.RandomRotation(0.1),
 
98
  num_classes = len(class_names)
99
  model = Sequential([
100
  data_augmentation,
101
+ layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
102
  layers.Conv2D(16, 3, padding='same', activation='relu'),
103
  layers.MaxPooling2D(),
104
  layers.Conv2D(32, 3, padding='same', activation='relu'),