File size: 5,864 Bytes
e34e22a
 
 
 
bbd4a95
e34e22a
bbd4a95
 
 
 
 
e34e22a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbd4a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269a57e
 
 
 
e34e22a
bbd4a95
 
e34e22a
bbd4a95
269a57e
 
 
 
 
 
 
bbd4a95
269a57e
 
 
 
 
 
 
e34e22a
 
 
bbd4a95
 
 
 
 
 
 
269a57e
 
 
 
 
 
5e42be8
269a57e
5e42be8
 
 
 
 
 
 
 
 
 
 
 
269a57e
5e42be8
 
 
269a57e
5e42be8
269a57e
5e42be8
 
 
 
 
 
269a57e
5e42be8
 
269a57e
5e42be8
 
bbd4a95
5e42be8
269a57e
5e42be8
 
 
 
 
 
269a57e
5e42be8
 
 
 
 
 
269a57e
bbd4a95
269a57e
 
 
 
 
 
 
 
e34e22a
 
269a57e
 
 
 
 
 
 
 
e34e22a
269a57e
 
 
 
 
 
 
 
 
 
 
 
e34e22a
 
269a57e
 
e34e22a
 
 
 
 
 
269a57e
 
 
e34e22a
 
 
 
269a57e
e34e22a
 
5e42be8
 
 
e34e22a
 
 
 
269a57e
e34e22a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
import tensorflow as tf

from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
from PIL import Image
import gdown
import zipfile
import pathlib

# Define the Google Drive shareable link
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'

# Extract the file ID from the URL
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
direct_download_url = f'https://drive.google.com/uc?id={file_id}'

# Define the local filename to save the ZIP file
local_zip_file = 'file.zip'

# Download the ZIP file
gdown.download(direct_download_url, local_zip_file, quiet=False)

# Directory to extract files
extracted_path = 'extracted_files'

# Verify if the downloaded file is a ZIP file and extract it
try:
    with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
        zip_ref.extractall(extracted_path)
    print("Extraction successful!")
except zipfile.BadZipFile:
    print("Error: The downloaded file is not a valid ZIP file.")

# Optionally, you can delete the ZIP file after extraction
os.remove(local_zip_file)

# Convert the extracted directory path to a pathlib.Path object
data_dir = pathlib.Path(extracted_path)

# Print the directory structure to debug
for root, dirs, files in os.walk(extracted_path):
    level = root.replace(extracted_path, '').count(os.sep)
    indent = ' ' * 4 * (level)
    print(f"{indent}{os.path.basename(root)}/")
    subindent = ' ' * 4 * (level + 1)
    for f in files:
        print(f"{subindent}{f}")

# Path to the dataset directory
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
data_dir = pathlib.Path(data_dir)

bees = list(data_dir.glob('bees/*'))
print(bees[0])
PIL.Image.open(str(bees[0]))

batch_size = 32
img_height = 180
img_width = 180

train_ds = tf.keras.utils.image_dataset_from_directory(
  data_dir,
  validation_split=0.2,
  subset="training",
  seed=123,
  image_size=(img_height, img_width),
  batch_size=batch_size)

val_ds = tf.keras.utils.image_dataset_from_directory(
  data_dir,
  validation_split=0.2,
  subset="validation",
  seed=123,
  image_size=(img_height, img_width),
  batch_size=batch_size)

class_names = train_ds.class_names
print(class_names)

AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

normalization_layer = layers.Rescaling(1./255)

normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
image_batch, labels_batch = next(iter(normalized_ds))
first_image = image_batch[0]
# Notice the pixel values are now in `[0,1]`.
print(np.min(first_image), np.max(first_image))

num_classes = len(class_names)

model = Sequential([
  layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(32, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(64, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Flatten(),
  layers.Dense(128, activation='relu'),
  layers.Dense(num_classes)
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

model.summary()

epochs=10
history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

data_augmentation = keras.Sequential(
  [
    layers.RandomFlip("horizontal",
                      input_shape=(img_height,
                                  img_width,
                                  3)),
    layers.RandomRotation(0.1),
    layers.RandomZoom(0.1),
  ]
)

plt.figure(figsize=(10, 10))
for images, _ in train_ds.take(1):
  for i in range(9):
    augmented_images = data_augmentation(images)
    ax = plt.subplot(3, 3, i + 1)
    plt.imshow(augmented_images[0].numpy().astype("uint8"))
    plt.axis("off")

model = Sequential([
  data_augmentation,
  layers.Rescaling(1./255),
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(32, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(64, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Dropout(0.2),
  layers.Flatten(),
  layers.Dense(128, activation='relu'),
  layers.Dense(num_classes, name="outputs")
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

model.summary()

epochs = 15
history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)

def predict_image(img):
    img = np.array(img)
    img_resized = tf.image.resize(img, (180, 180))
    img_4d = tf.expand_dims(img_resized, axis=0)
    prediction = model.predict(img_4d)[0]
    probabilities = tf.nn.softmax(prediction).numpy()
    class_probabilities = {class_names[i]: probabilities[i] * 100 for i in range(len(class_names))}
    return class_probabilities

image = gr.Image()
label = gr.Label(num_top_classes=1)

# Define custom CSS for background image
custom_css = """