File size: 38,103 Bytes
74cbf4e
 
 
 
8fb73ac
ef4ffc5
112730f
 
b8736b9
9a35c08
233ffbe
9d0f3dc
 
5d90338
 
 
78d1afe
255e202
 
 
 
 
 
a52511a
 
 
 
 
 
 
 
 
 
 
51f8c99
 
 
 
 
 
 
 
 
 
f0b85fd
ef01987
abc40b1
 
 
 
95e26bc
 
abc40b1
6f51536
 
abc40b1
 
9d5e063
abc40b1
 
 
 
 
6f51536
 
ef01987
 
 
abc40b1
 
 
8fb73ac
 
 
 
 
 
 
 
 
 
abc40b1
 
 
 
 
 
 
 
 
 
 
ef01987
 
 
abc40b1
 
8fb73ac
 
 
 
 
 
 
 
 
abc40b1
 
 
 
 
 
 
 
 
 
 
ef01987
 
 
 
abc40b1
8fb73ac
 
ef01987
8fb73ac
 
 
74cbf4e
 
 
 
 
 
 
 
 
8fb73ac
74cbf4e
a07084d
 
 
 
80cf196
93c7fa7
 
74cbf4e
beba094
8fb73ac
 
 
74cbf4e
 
8fb73ac
 
 
beba094
8fb73ac
 
74cbf4e
8f47913
 
 
 
 
 
beba094
8f47913
 
 
74cbf4e
8fb73ac
74cbf4e
8fb73ac
 
fd071ce
255e202
8fb73ac
beba094
8fb73ac
2a884d0
 
 
 
8fc1135
8fb73ac
 
 
 
 
 
74cbf4e
8fb73ac
 
40db560
74cbf4e
d6409d1
 
74cbf4e
8fb73ac
 
d6409d1
 
255e202
2a884d0
 
 
 
 
8fb73ac
1ea4974
 
 
 
 
 
 
 
 
40db560
1ea4974
 
 
 
 
 
fd071ce
 
255e202
1ea4974
 
 
 
 
8fb73ac
74cbf4e
afab141
 
400c7f6
afab141
c573e09
 
 
400c7f6
afab141
 
 
 
c573e09
afab141
 
 
 
40db560
afab141
 
 
 
 
 
 
40db560
afab141
 
 
 
c573e09
 
afab141
 
7f5a293
 
 
 
8c0b505
7f5a293
 
 
8c0b505
7f5a293
 
8c0b505
7f5a293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef4ffc5
281ec10
 
ef4ffc5
74cbf4e
 
6820ae0
 
3ebdc9e
 
74cbf4e
8f47913
59fd7c2
 
 
 
5268010
59fd7c2
 
beba094
 
8f47913
796fcb3
 
 
59fd7c2
8f47913
281ec10
 
 
 
 
44a9bac
281ec10
 
 
 
 
74cbf4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc243ed
e0c86d4
 
dc243ed
 
 
e0c86d4
 
 
 
 
 
dc243ed
 
 
 
 
 
 
 
 
e0c86d4
 
 
15caa8a
80cf196
 
 
 
 
 
 
 
 
 
 
 
4020ae3
80cf196
 
 
 
 
 
 
1f6e328
80cf196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c656414
80cf196
 
 
 
 
 
 
 
 
089632b
 
 
 
 
80cf196
233ffbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84a785c
 
 
 
 
 
 
 
 
 
5e088e3
84a785c
 
 
 
 
 
 
9e4c0ea
 
 
 
 
 
 
 
 
 
fc8e87b
fb605c3
 
 
 
 
 
 
 
 
5d90338
 
 
 
 
 
 
 
 
 
 
 
 
fc8e87b
dd4ba9a
 
 
 
be1f406
dd4ba9a
03b27a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc8e87b
e4ec47c
e3bfdea
f7bb298
f56630e
ea8e2fe
f56630e
ea8e2fe
04c4d28
acf67b7
04c4d28
 
 
 
 
 
 
ea8e2fe
83d3b56
ea8e2fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3960861
ea8e2fe
 
 
 
 
 
 
 
 
 
 
 
fc8e87b
 
ea8e2fe
fc8e87b
 
 
1ff1c62
ea8e2fe
 
 
 
 
 
 
 
 
 
 
fc8e87b
 
ea8e2fe
fc8e87b
 
ea8e2fe
fc8e87b
 
 
ea8e2fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc8e87b
 
ea8e2fe
fc8e87b
 
ea8e2fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc8e87b
ea8e2fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335d6f5
ea8e2fe
 
8ee5251
ea8e2fe
179b59b
 
 
 
 
 
ea8e2fe
335d6f5
 
 
ea8e2fe
 
 
 
179b59b
ea8e2fe
 
 
 
 
 
 
 
179b59b
 
ea8e2fe
 
 
 
 
 
 
 
 
 
 
179b59b
 
 
ea8e2fe
 
 
 
fc8e87b
8ee5251
ea8e2fe
 
 
 
 
 
335d6f5
 
 
 
 
fc8e87b
ea8e2fe
 
1cbab06
9e4c0ea
 
 
 
 
 
 
 
 
a977207
9e4c0ea
 
 
 
 
a977207
9e4c0ea
 
 
 
 
a977207
9e4c0ea
 
 
a977207
9e4c0ea
 
 
 
233ffbe
 
 
919c72a
233ffbe
 
 
 
a977207
1d1f203
a977207
233ffbe
1d1f203
a977207
233ffbe
9e4c0ea
 
 
fc8e87b
ea8e2fe
 
 
 
 
 
 
 
 
 
 
 
9a77817
 
 
 
 
 
 
bc50a22
9a77817
 
0ef8f45
5d90338
0ef8f45
9a77817
 
 
 
fc8e87b
ea8e2fe
2d9caaf
fe3e7db
b8736b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d9caaf
9d0f3dc
 
ea24af7
 
 
233ffbe
 
 
 
 
9d0f3dc
 
 
ea8e2fe
cebd2dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from scipy.stats import norm, t
from scipy.cluster.hierarchy import linkage, dendrogram, fcluster
import plotly.figure_factory as ff
from huggingface_hub import InferenceClient
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import json
import math
from transformers import pipeline

classifier = pipeline('zero-shot-classification', model='MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33')

def sorting(df):
    df.index = list(map(float, df.index))
    df = df.sort_index

    return df

def edit_strings(string_list):
  edited_list = []
  for string in string_list:
    if "_" in string:
      last_underscore_index = string.rfind("_")
      edited_string = string[:last_underscore_index]
      edited_list.append(edited_string)
    else:
      edited_list.append(string)
  return edited_list

def equalize_list_lengths(input_dict):
  max_len = 0
  for key in input_dict:
    max_len = max(max_len, len(input_dict[key]))
  
  for key in input_dict:
    while len(input_dict[key]) < max_len:
      input_dict[key].append(None)
      
  return pd.DataFrame(input_dict)

def figo(plot_type, df, title, xlabel=None, ylabel=None, legend_title=None, colorscale='Plotly3', width=800, height=600):
    if plot_type == "Scatter":
        fig = go.Figure()

        for column in df.columns[0:]:
            df.index = list(map(float, list(df.index)))
            sorted_data = df.sort_index()
            fig.add_trace(go.Scatter(
                x=sorted_data[column],
                y=sorted_data.index,
                mode='lines+markers+text',
                name=column,
                text=sorted_data[column].round(2),
                textposition="middle right"
            ))
        
        fig.update_layout(
            title=title,
            xaxis_title="Percentage",
            yaxis_title="Category",
            yaxis={'categoryorder': 'array', 'categoryarray': sorted_data.index},
            width=width,
            height=height
        )
    
    elif plot_type == "Heatmap":
        df = df.apply(pd.to_numeric, errors='coerce')

        fig = go.Figure(data=go.Heatmap(
            z=df.values,
            x=df.columns,
            y=df.index,
            hoverongaps=False,
            colorscale=colorscale
        ))

        fig.update_layout(
            title={
                'text': title,
                'y':0.95,
                'x':0.5,
                'xanchor': 'center',
                'yanchor': 'top'
            },
            xaxis_title=xlabel,
            yaxis_title=ylabel,
            legend_title=legend_title,
            template="plotly_white",
            width=width,
            height=height
        )

    elif plot_type == "Bar":
        fig = go.Figure()
        col = df.name
        fig.add_trace(go.Bar(
            x=df.index,
            y=df,
            name=col
        ))
        
        fig.update_layout(
            title={
                'text': title,
                'y':0.95,
                'x':0.5,
                'xanchor': 'center',
                'yanchor': 'top'
            },
            xaxis_title=xlabel,
            yaxis_title=ylabel,
            legend_title=legend_title,
            template="plotly_white",
            barmode='group',
            width=width,
            height=height
        )

    else:
        raise ValueError("Invalid plot_type. Supported types are 'Scatter', 'Heatmap', and 'Bar'.")

    return fig

def is_matching_pattern(column, prefix):
    if not column.startswith(prefix + '_'):
        return False
    suffix = column[len(prefix) + 1:]
    if 1 <= len(suffix) <= 3 and suffix.isdigit():
        return True
    return False

def multi_answer(df):
    friquency = {}
    for i in df.columns:
        try:
            unique_values = list(set(df[i].dropna()))[0]
            friquency[str(unique_values)] = df[i].value_counts().get(unique_values, 0)
        except Exception as e:
            #st.error(f"Warning: One of the data columns has no value.: {e}")
            friquency[i] = 0
            

    friquency_dataframe = pd.DataFrame({"Value": friquency.keys(), 'Frequency': friquency.values(), "Percentage": np.array(list(friquency.values()))/len(df.dropna(how='all'))}).sort_values(by='Value')
    friquency_dataframe.loc[len(friquency_dataframe)] = ['Sample_size', len(df.dropna(how='all')), 1]
    return friquency_dataframe
    
def single_answer(df):
    counter = df.value_counts()
    friquency_dataframe = pd.DataFrame({
        'Value': counter.index, 
        'Frequency': counter.values, 
        'Percentage': (counter.values / counter.sum())}).sort_values(by='Value')
    friquency_dataframe.loc[len(friquency_dataframe)] = ['Sample_size', len(df.dropna()), 1]
    return friquency_dataframe

def score_answer(df):
    counter = df.value_counts().sort_index()

    friquency_dataframe = pd.DataFrame({
        'Value': list(counter.index)+["Meen", "Variance"],
        'Frequency': list(counter.values)+[df.mean(), df.var()], 
        'Percentage': list((counter.values / counter.sum()))+["", ""]})
    
    return friquency_dataframe

def two_variable_ss(df, var1, var2):

    counter = df.groupby(var1)[var2].value_counts()
    friquency_dataframe = counter.unstack(fill_value=0)

    #friquency_dataframe = sorting(friquency_dataframe)

    column_sums = friquency_dataframe.sum(axis=0)
    percentage_dataframe = friquency_dataframe.div(column_sums, axis=1)

    friquency_dataframe['Total'] = list(single_answer(df[var1]).iloc[:,1])[:-1]
    friquency_dataframe.loc['Sample_size'] = list(single_answer(df[var2]).iloc[:,1])
    percentage_dataframe['Total'] = list(single_answer(df[var1]).iloc[:,2])[:-1]
    percentage_dataframe.loc['Sample_size'] = list(single_answer(df[var2]).iloc[:,1])
    
    return percentage_dataframe, friquency_dataframe

def two_variable_sm(df, var1, var2):
    unique_values = list(set(df[var1].dropna()))
    value = multi_answer(df[var2]).iloc[:-1,0]
    friquency_dataframe, percentage_dataframe = {}, {}

    for i in unique_values:
        dataframe = multi_answer(df[df[var1] == i][var2]).iloc[:-1,:]
        friquency_dataframe[i], percentage_dataframe[i] = dataframe['Frequency'], dataframe['Percentage']

    friquency_dataframe = pd.DataFrame(friquency_dataframe)
    percentage_dataframe = pd.DataFrame(percentage_dataframe)

    friquency_dataframe.index, percentage_dataframe.index = value, value

    #friquency_dataframe = sorting(friquency_dataframe)
    #percentage_dataframe = sorting(percentage_dataframe)

    friquency_dataframe['Total'] = list(multi_answer(df[var2]).iloc[:,1])[:-1]
    friquency_dataframe.loc['Sample_size'] = list(single_answer(df[var1]).iloc[:,1])
    percentage_dataframe['Total'] = list(multi_answer(df[var2]).iloc[:,2])[:-1]
    percentage_dataframe.loc['Sample_size'] = list(single_answer(df[var1]).iloc[:,1])
    

    return percentage_dataframe, friquency_dataframe

def two_variable_mm(df, var1, var2):
    friquency_dataframe, percentage_dataframe = {}, {}
    value = multi_answer(df[var2]).iloc[:-1,0]

    for i in var1:
        unique_values = list(set(df[i].dropna()))[0]
        dataframe = multi_answer(df[df[i] == unique_values][var2]).iloc[:-1,:]
        friquency_dataframe[i], percentage_dataframe[i] = dataframe['Frequency'], dataframe['Percentage']

    friquency_dataframe = pd.DataFrame(friquency_dataframe)
    percentage_dataframe = pd.DataFrame(percentage_dataframe)

    friquency_dataframe.index, percentage_dataframe.index = value, value

    #friquency_dataframe = sorting(friquency_dataframe)
    #percentage_dataframe = sorting(percentage_dataframe)

    friquency_dataframe['Total'] = list(multi_answer(df[var2]).iloc[:,1])[:-1]
    friquency_dataframe.loc['Sample_size'] = list(multi_answer(df[var1]).iloc[:,1])
    percentage_dataframe['Total'] = list(multi_answer(df[var2]).iloc[:,2])[:-1]
    percentage_dataframe.loc['Sample_size'] = list(multi_answer(df[var1]).iloc[:,1])

    return percentage_dataframe, friquency_dataframe

def two_variable_ssc(df, var1, var2):
    unique_values = list(set(df[var1].dropna()))
    mean_dataframe = {'Mean': [], 'Variation': [], 'Frequency': []}
    for i in unique_values:
        d = df[df[var1] == i][var2]
        mean_dataframe['Mean'] += [d.mean()]
        mean_dataframe['Variation'] += [d.var()]
        mean_dataframe['Frequency'] += [len(d)]

    mean_dataframe = pd.DataFrame(mean_dataframe)
    mean_dataframe.index = unique_values

    mean_dataframe.loc['Total'] = [df[var2].mean(), df[var2].var(), len(df[var2])]

    return mean_dataframe

def two_variable_msc(df, var1, var2):
    mean_dataframe, unique_values = {'Mean': [], 'Variation': [], 'Frequency': []}, []
    for i in var1:
        d = df[i].dropna()
        j = list(set(df[i].dropna()))[0]
        d = df[df[i]==j][var2]
        unique_values += [j]
        mean_dataframe['Mean'] += [d.mean()]
        mean_dataframe['Variation'] += [d.var()]
        mean_dataframe['Frequency'] += [len(d)]

    mean_dataframe = pd.DataFrame(mean_dataframe)
    mean_dataframe.index = unique_values

    mean_dataframe.loc['Total'] = [df[var2].mean(), df[var2].var(), len(df[var2])]

    return mean_dataframe

def funnel(df, dictionary):
    friquency = {}
    for i in dictionary.keys():
        if dictionary[i] == "Single":
            friquency[i] = list(single_answer(df[i])['Frequency'])[:-1]

        elif dictionary[i] == "Multi":
            matching_cols = [col for col in df.columns if is_matching_pattern(col, i)]
            friquency[i] = list(multi_answer(df[matching_cols])['Frequency'])[:-1]

        elif dictionary[i] == "Score":
            friquency[i] = list(score_answer(df[i])['Frequency'])[:-1]

    try:
        friquency = pd.DataFrame(friquency)
    except:
        friquency = equalize_list_lengths(friquency)
    
    first = None
    for key, value in dictionary.items():
        if value == "Single":
            first = key
            break
    
    percentage = friquency/len(df[first])

    return friquency, percentage

def t_test(m1, m2, n1, n2, v1, v2):
    te = (m1 - m2) / ((v1/n1 + v2/n2)**0.5)
    p_value = 2 * (1 - t.cdf(abs(te), n1+n2-2))
    return p_value

def z_testes(n1, n2, p1, p2):
    p_hat = ((n1*p1) + (n2*p2)) / (n1 + n2)
    z = (p1 - p2) / ((p_hat * (1 - p_hat) * (1 / n1 + 1 / n2)) ** 0.5)
    p_value = 2 * (1 - norm.cdf(abs(z)))
    return p_value

def z_test_data(df):
    styles = pd.DataFrame('', index=df.index, columns=df.columns)
    num_rows, num_cols = df.shape
    
    for i in range(num_rows -1):
        for j in range(num_cols -1):
            n1 = df.iloc[-1, -1]
            n2 = df.iloc[-1, j]
            p1 = df.iloc[i, -1]
            p2 = df.iloc[i, j]
            p_value = z_testes(n1, n2, p1, p2)
            if pd.notnull(p_value) and p_value <= 0.05:
                styles.iloc[i, j] = 'background-color: lightgreen'
                
    return df.style.apply(lambda _: styles, axis=None)

def t_test_data(df):
    rows, cols = df.shape
    styles = pd.DataFrame('', index=df.index, columns=df.columns)

    for i in range(rows-1):
        p_value = t_test(df['Mean'].iloc[-1,], df['Mean'].iloc[i], df['Frequency'].iloc[-1], df['Frequency'].iloc[i], df['Variation'].iloc[-1], df['Variation'].iloc[i])
        if p_value <= 0.05:
            styles.iloc[i, :] = 'background-color: lightgreen'

    return df.style.apply(lambda _: styles, axis=None)

def Z_test_dataframes(sheets_data):
    """Processes each sheet's DataFrame and computes new DataFrames with Z-test results."""
    result_dataframes = {}
    for sheet_name, df in sheets_data.items():
        if df.empty:
            st.warning(f"⚠️ Sheet '{sheet_name}' is empty and has been skipped.")
            continue
        df = df.set_index(df.columns[0])  # Use the first column as index
        rows, cols = df.shape
        if cols < 2:
            st.warning(f"⚠️ Sheet '{sheet_name}' does not have enough columns for analysis and has been skipped.")
            continue
        new_df = pd.DataFrame(index=df.index[:-1], columns=df.columns[1:])
        for i, row_name in enumerate(df.index[:-1]):
            for j, col_name in enumerate(df.columns[1:]):
                try:
                    n1 = df.iloc[-1, 0]  # x_I1
                    n2 = df.iloc[-1, j+1]  # x_Ij
                    p1 = df.iloc[i, 0]  # x_1J
                    p2 = df.iloc[i, j+1]  # x_ij
                    p_value = z_testes(n1, n2, p1, p2)
                    new_df.iloc[i, j] = p_value
                except Exception as e:
                    st.error(f"❌ Error processing sheet '{sheet_name}', row '{row_name}', column '{col_name}': {e}")
                    new_df.iloc[i, j] = np.nan

        result_dataframes[sheet_name] = new_df

    return result_dataframes

def analyze_z_test(file):
    """
    Performs Z-Test analysis on the uploaded Excel file.

    Parameters:
    - file: Uploaded Excel file

    Returns:
    - result_dataframes: Dictionary of DataFrames with p-values
    """
    sheets_data = read_excel_sheets(file)
    if sheets_data is None:
        return None

    result_dataframes = Z_test_dataframes(sheets_data)

    if not result_dataframes:
        st.error("❌ No valid sheets found for Z-Test analysis.")
        return None

    st.write("### 📈 Processed Tables with Z-Test Results")
    for sheet_name, df in result_dataframes.items():
        st.write(f"#### Sheet: {sheet_name}")
        
        # Apply color coding based on p-value
        def color_p_value(val):
            try:
                if pd.isna(val):
                    return 'background-color: lightgray'
                elif val < 0.05:
                    return 'background-color: lightgreen'
                else:
                    return 'background-color: lightcoral'
            except:
                return 'background-color: lightgray'
        
        styled_df = df.style.applymap(color_p_value)
        
        # Display the styled DataFrame
        st.dataframe(styled_df, use_container_width=True)
    
    return result_dataframes

def join_dataframes(mlist, dataframes):
    max_rows = max(df.shape[0] for df in dataframes)
    result = pd.DataFrame()
    col_counts = {}  # Dictionary to track column name occurrences

    for i, df in enumerate(dataframes):
        rows_to_add = max_rows - df.shape[0]
        if rows_to_add > 0:
            empty_rows = pd.DataFrame(index=range(rows_to_add), columns=df.columns)
            empty_rows = empty_rows.fillna(np.nan)
            df = pd.concat([df, empty_rows], ignore_index=True)

        for col in df.columns:
            original_col = col
            count = 1
            while col in result.columns:
                col = f"{original_col}_{count}"
                count += 1
            col_counts[original_col] = col_counts.get(original_col, 0) + 1
            df = df.rename(columns={original_col: col})
        
        result = pd.concat([result, df.reset_index(drop=True)], axis=1)

    return result

def all_tabulation(df, main_dict, follow_dict):

    for j in main_dict["single"]:

        dataframe_list, name_list = (single_answer(df[j]),), [j]

        for i in follow_dict["single"]:
            dataframe_list = dataframe_list + (two_variable_ss(df[[j, i]], j, i)[0], )
            name_list.append(i)

        for i in follow_dict["multi"]:
            matching_cols1 = [col for col in df.columns if is_matching_pattern(col, i)]
            dataframe_list = dataframe_list + (two_variable_sm(df[[j] + matching_cols1], j, matching_cols1)[0].T, )
            name_list.append(i)

        for i in follow_dict["score"]:
            dataframe_list = dataframe_list + (two_variable_ssc(df[[j, i]], j, i), )
            name_list.append(i)

        st.subheader(j)
        st.markdown(j + ": " + ", ".join(follow_dict['single'] + follow_dict['multi'] + follow_dict['score']))
        st.dataframe(join_dataframes(name_list, dataframe_list))

    for j in main_dict["multi"]:

        matching_cols0 = [col for col in df.columns if is_matching_pattern(col, j)]
        dataframe_list, name_list = (multi_answer(df[matching_cols0]), ), [j]

        #for i in follow_dict["single"]:
            #dataframe_list.append(two_variable_ms(df[matching_cols0, i], matching_cols0, i).drop(columns=['Value'])[0])

        for i in follow_dict["multi"]:
            matching_cols1 = [col for col in df.columns if is_matching_pattern(col, i)]
            dataframe_list = dataframe_list + (two_variable_mm(df[matching_cols0 + matching_cols1], matching_cols0, matching_cols1)[0], )
            name_list.append(i)

        for i in follow_dict["score"]:
            dataframe_list = dataframe_list + (two_variable_msc(df[matching_cols0 + [i]], matching_cols0, i), )
            name_list.append(i)

        st.subheader(j)
        st.markdown(j + ": " + ", ".join(follow_dict['multi'] + follow_dict['score']))
        st.dataframe(join_dataframes(name_list, dataframe_list))

    for j in main_dict["score"]:

        dataframe_list, name_list = [single_answer(df[j])], [j]

        st.subheader(j)
        st.dataframe(join_dataframes(name_list, dataframe_list))

def process_dataframe(df):
  df = df.fillna(0)
  for col in df.columns:
    df[col] = pd.Categorical(df[col])
  return df

import numpy as np
from sklearn.decomposition import PCA

def pca_with_variance_threshold(data, threshold=0.80):
    pca = PCA()
    pca.fit(data)
    
    cumulative_variance = np.cumsum(pca.explained_variance_ratio_)
    n_components = np.argmax(cumulative_variance >= threshold) + 1

    pca = PCA(n_components=n_components)
    transformed_data = pca.fit_transform(data)
    
    return transformed_data

def hierarchical_clustering_with_plotly(df, linkage_method):

    df_encoded = df.apply(lambda x: pd.factorize(x)[0])

    Z = linkage(df_encoded, method=linkage_method)

    fig = ff.create_dendrogram(df_encoded, linkagefun=lambda x: Z, orientation='bottom')
    fig.update_layout(width=800, height=500)
    st.plotly_chart(fig)

    num_clusters = int(st.text_input("Enter the desired number of clusters"))

    clusters = fcluster(Z, num_clusters, criterion='maxclust')

    df['Cluster'] = clusters

    return df

def kmeans_clustering(df, k):

  numeric_df = df.select_dtypes(include=['number'])

  if numeric_df.empty:
    raise ValueError("DataFrame does not contain any numeric columns for clustering.")
    
  kmeans = KMeans(n_clusters=k, random_state=0) # You can modify random_state
  df['cluster'] = kmeans.fit_predict(numeric_df)
  return df

def sample_size_calculator(confidence_level, p, E):
    Z = norm.ppf(1 - (1 - confidence_level) / 2)
    
    n = (Z**2 * p * (1 - p)) / (E**2)
    
    n = math.ceil(n)
    
    return n

import pandas as pd

def categorize_sentences(prompt, df, Text_name):
    texts = df[Text_name].tolist()

    labels = []
    for text in texts:
        result = classifier(text, candidate_labels=[prompt])
        labels.append(result['labels'][0])

    df['labels'] = labels
    return df

def upload_and_select_dataframe():
    st.sidebar.title("File Upload")
    uploaded_files = st.sidebar.file_uploader("Choose CSV or Excel files", type=["csv", "xlsx", "xls", "xlsb"], accept_multiple_files=True)
      
    dataframes = {}
    dataframes["Sample Dataset"] = pd.read_excel("Sample dataset.xlsx")

    try:
        for uploaded_file in uploaded_files:
            try:
                if uploaded_file.name.endswith(('.csv')):
                    df = pd.read_csv(uploaded_file)
                elif uploaded_file.name.endswith(('.xls', '.xlsx', '.xlsb')):
                    df = pd.read_excel(uploaded_file)
                else:
                    st.sidebar.error(f"Unsupported file type: {uploaded_file.name}")
                    continue
                dataframes[uploaded_file.name] = df
            except Exception as e:
                  st.sidebar.error(f"Error reading {uploaded_file.name}: {e}")
      
        if len(uploaded_files) > 7:
            st.sidebar.error('Maximum 7 files can be uploaded.')
            return None
    
        if dataframes:
            selected_file = st.sidebar.selectbox("Select a DataFrame", ["Select a dataset"] + list(dataframes.keys()))
            return dataframes[selected_file]
        else:
            st.sidebar.info("Please upload some files.")
            return None
    except:
        pass

#st.markdown('[Click to register a suggestion or comment](https://docs.google.com/forms/d/e/1FAIpQLScLyP7bBbqMfGdspjL7Ij64UZ6v2KjqjKNbm8gwEsgWsFs_Qg/viewform?usp=header)')

st.image("Insightzen.png", width=600)

df = upload_and_select_dataframe()

try:
    try:
        d = df.head()
        st.subheader("Data preview")
        st.dataframe(df.head())

        cols = edit_strings(df.columns)
        cols = sorted(list(set(cols)))
    except:
        pass
    
    main_option = st.selectbox("Please select an option:", ["Select a Task","Tabulation", "Funnel Analysis", "Segmentation Analysis", "Hypothesis test", "Machine Learning", "Sample Size Calculator" ,"Coding", "AI Chat"])
    
    if main_option == "Tabulation":
        st.header("Tabulation Analysis")
    
        tabulation_option = st.selectbox("Please select the type of analysis:", ["Univariate", "Multivariate", "All"])
    
        if tabulation_option == "All":
            
            st.sidebar.header("Settings")
    
            main_dict = {"single": [], "multi": [], "score": []}
            
            st.sidebar.subheader("Main")
            main_dict["single"] = st.sidebar.multiselect(
                'Main: Single answer questions', 
                cols,
                default=[]
            )
            
            main_dict["multi"] = st.sidebar.multiselect(
                'Main: Multi answer questions',
                cols,
                default=[]
            )
    
            main_dict["score"] = st.sidebar.multiselect(
                'Main: Score answer questions',
                cols,
                default=[]
            )
    
            follow_dict = {"single": [], "multi": [], "score": []}
            
            st.sidebar.subheader("Follow")
            follow_dict["single"] = st.sidebar.multiselect(
                'Follow: Single answer questions', 
                cols,
                default=[]
            )
            
            follow_dict["multi"] = st.sidebar.multiselect(
                'Follow: Multi answer questions',
                cols,
                default=[]
            )
    
            follow_dict["score"] = st.sidebar.multiselect(
                'Follow: Score answer questions',
                cols,
                default=[]
            )
    
            all_tabulation(df, main_dict, follow_dict)
            
        elif tabulation_option == "Univariate":
            uni_option = st.selectbox("Select the type of univariate analysis:", ["Multiple answer", "Single answer", "Score answer"])
    
            if uni_option == "Single answer":
                var = st.text_input("Please enter the name of the desired column:")
                if var:
                    if var in df.columns:
                        result_df = single_answer(df[var])
                        st.subheader("Univariate Analysis Results")
                        st.dataframe(result_df)
    
                        fig = figo('Bar', result_df["Percentage"][:-1, ], title='Percentage Histogram', xlabel=var, ylabel='Percentage', colorscale='Plotly3')
                        st.plotly_chart(fig, use_container_width=True)
                    else:
                        st.error("The entered column was not found.")
            elif uni_option == "Multiple answer":
                var = st.text_input("Please enter the name of the desired column:")
                if var:
                    matching_cols = [col for col in df.columns if is_matching_pattern(col, var)]
                    if matching_cols:
                        subset_df = df[matching_cols]
                        result_df = multi_answer(subset_df)
                            
                        st.subheader("Multiple Answer Analysis Results")
                        st.dataframe(result_df)
                        
                        fig = figo('Bar', result_df["Percentage"][:-1], title='Percentage Histogram', xlabel=var, ylabel='Percentage', colorscale='Plotly3')
                        st.plotly_chart(fig, use_container_width=True)
                    else:
                        st.error("No columns matching the entered pattern were found.")
    
            elif uni_option == "Score answer":
                var = st.text_input("Please enter the name of the desired column:")
                if var:
                    subset_df = df[var]
                    result_df = score_answer(subset_df)
    
                    st.subheader("Score Answer Analysis Results")
                    st.dataframe(result_df)
                    
                    fig = figo('Bar', result_df["Percentage"][:-2], title='Percentage Histogram', xlabel=var, ylabel='Percentage', colorscale='Plotly3')
                    st.plotly_chart(fig, use_container_width=True)
                else:
                    st.error("No columns matching the entered pattern were found.")
                    
        elif tabulation_option == "Multivariate":
            st.subheader("Multivariate Analysis")
            var1 = st.text_input("Please enter the name of the first column:")
            var2 = st.text_input("Please enter the name of the second column:")
    
            if var1 and var2:
                type1 = st.selectbox("Select the type of analysis for the first column:", ["Multiple answer", "Single answer"], key='type1')
                type2 = st.selectbox("Select the type of analysis for the second column:", ["Multiple answer", "Single answer", "Score answer"], key='type2')
    
                if type1 == "Single answer" and type2 == "Single answer":
                    percentile_df, frequency_df = two_variable_ss(df[[var1, var2]], var1, var2)
                    st.subheader("Percentage Table")
                    st.write(z_test_data(percentile_df))
    
                    st.subheader("Frequency Table")
                    st.dataframe(frequency_df)
    
                    row, col = df.shape
                    fig = figo('Scatter', percentile_df.iloc[:-1,:], title='Percentage Scatter plot', width=(col*5)+5, height=(row*25) + 10)
                    st.plotly_chart(fig, use_container_width=True)
    
                elif type1 == "Single answer" and type2 == "Multiple answer":
                    matching_cols = [col for col in df.columns if is_matching_pattern(col, var2)]
                    if matching_cols:
                        percentile_df, frequency_df = two_variable_sm(df[[var1] + matching_cols], var1, matching_cols)
                        st.subheader("Percentage Table")
                        st.write(z_test_data(percentile_df))
    
                        st.subheader("Frequency Table")
                        st.dataframe(frequency_df)
    
                        row, col = df.shape
                        fig = figo('Scatter', percentile_df.iloc[:-1,:], title='Percentage Scatter plot', width=(col*5)+5, height=(row*25) + 10)
                        st.plotly_chart(fig, use_container_width=True)
                        
                    else:
                        st.error("No columns matching the entered pattern were found.")
    
                elif type1 == "Multiple answer" and type2 == "Multiple answer":
                    matching_cols1 = [col for col in df.columns if is_matching_pattern(col, var1)]
                    matching_cols2 = [col for col in df.columns if is_matching_pattern(col, var2)]
                    if matching_cols1 and matching_cols2:
                        percentile_df, frequency_df = two_variable_mm(df[matching_cols1 + matching_cols2], matching_cols1, matching_cols2)
                        st.subheader("Percentage Table")
                        st.write(z_test_data(percentile_df))
    
                        st.subheader("Frequency Table")
                        st.dataframe(frequency_df)
    
                        row, col = df.shape
                        fig = figo('Scatter', percentile_df.iloc[:-1,:], title='Percentage Scatter plot', width=(col*5)+5, height=(row*25) + 10)
                        st.plotly_chart(fig, use_container_width=True)
    
                elif type1 == "Single answer" and type2 == "Score answer":
    
                    mean_df = two_variable_ssc(df[[var1, var2]], var1, var2)
                    st.subheader("Mean Table")
                    st.write(t_test_data(mean_df))
    
                    row, col = df.shape
                    fig = figo('Bar', mean_df["Mean"][:-1], title='Mean Histogram', xlabel=var1, ylabel='Mean', colorscale='Plotly3')
                    st.plotly_chart(fig, use_container_width=True)                            
    
    
                elif type1 == "Multiple answer" and type2 == "Score answer":
                    matching_cols1 = [col for col in df.columns if is_matching_pattern(col, var1)]
                    if matching_cols1:
                        mean_df = two_variable_msc(df[matching_cols1 + [var2]], matching_cols1, var2)
                        st.subheader("Mean Table")
                        st.write(t_test_data(mean_df))
    
                        row, col = df.shape
                        fig = figo('Bar', mean_df["Mean"][:-1], title='Mean Histogram', xlabel=var1, ylabel='Mean', colorscale='Plotly3')
                        st.plotly_chart(fig, use_container_width=True)                    
                else:
                    st.info("This section of the program is under development.")
    
    elif main_option == "Funnel Analysis":
        st.header("Funnel")
        
        st.sidebar.header("Funnel Settings")
        single_list = st.sidebar.multiselect(
            'Single answer questions', 
            cols,
            default=[]
        )
        
        multi_list = st.sidebar.multiselect(
            'Multi answer questions',
            cols,
            default=[]
        )
        selected_dict = {}
        
        for option in single_list:
            selected_dict[option] = "Single"
        for option in multi_list:
            selected_dict[option] = "Multi"
        
        funnel_frequency, funnel_percentage = funnel(df, selected_dict)
        st.subheader("Percentage Table")
        st.dataframe(funnel_percentage)
        
        st.subheader("Frequency Table")
        st.dataframe(funnel_frequency)
        
        st.sidebar.header("Chart Settings")
        
        bar_columns = st.sidebar.multiselect('Which columns should be displayed as bar charts?', sorted(funnel_percentage.columns))
        line_columns = st.sidebar.multiselect('Which columns should be displayed as line charts?', sorted(funnel_percentage.columns))
        
        funnel_percentage_cleaned = funnel_percentage.dropna(axis=0, how='all')
        
        columns = st.sidebar.multiselect('Sort by which questions?', sorted(funnel_percentage_cleaned.columns))
        sort_order = st.sidebar.radio('Sort Order', ['Ascending', 'Descending'])
        
        ascending = True if sort_order == 'Ascending' else False
        funnel_percentage_cleaned = funnel_percentage_cleaned.sort_values(by=columns, ascending=ascending)
        
        # Update index to string to ensure proper sorting in Plotly
        funnel_percentage_cleaned.index = funnel_percentage_cleaned.index.astype(str)
        
        fig = go.Figure()
        
        # Define modern and diverse color palette
        modern_colors = [
            "#FF6F61", "#6B5B95", "#88B04B", "#F7CAC9", "#92A8D1", 
            "#955251", "#B565A7", "#009B77", "#DD4124", "#45B8AC"
        ]
        
        # Add Bar traces with transparency and custom colors
        for idx, col in enumerate(bar_columns):
            funnel_percentage_col = funnel_percentage_cleaned[col]
            fig.add_trace(
                go.Bar(
                    x=funnel_percentage_cleaned.index, 
                    y=funnel_percentage_col, 
                    name=col,
                    marker_color=modern_colors[idx % len(modern_colors)],  # Cycle through colors
                    opacity=0.8  # Set transparency
                )
            )
        
        # Add Line traces with transparency and custom colors
        for idx, col in enumerate(line_columns):
            funnel_percentage_col = funnel_percentage_cleaned[col]
            fig.add_trace(
                go.Scatter(
                    x=funnel_percentage_cleaned.index, 
                    y=funnel_percentage_col, 
                    mode='lines', 
                    name=col,
                    line=dict(color=modern_colors[(idx + len(bar_columns)) % len(modern_colors)]),  # Cycle through colors
                    opacity=0.8  # Set transparency
                )
            )
        
        fig.update_layout(
            title="Combined Bar and Line Chart",
            xaxis_title="Brands",
            yaxis_title="Percentage",
            template="plotly_dark",
            barmode="group",
            xaxis=dict(
                tickmode='array', 
                categoryorder='array', 
                categoryarray=funnel_percentage_cleaned.index.tolist()  # Ensure sorting of x-axis matches the DataFrame index
            )
        )
        
        st.plotly_chart(fig)

    elif main_option == "Segmentation Analysis":
        st.header("Segmentation Analysis")
        
        st.sidebar.header("Selection of questions")
        single_list = st.sidebar.multiselect(
            'Single answer questions', 
            cols,
            default=[]
        )
    
        multi_list = st.sidebar.multiselect(
            'Multi answer questions', 
            cols,
            default=[]
        )
    
        score_list = st.sidebar.multiselect(
            'Score answer questions', 
            cols,
            default=[]
        )
    
        matching_cols1 = []
        for i in multi_list:
            matching_cols1 += [col for col in df.columns if is_matching_pattern(col, i)]
    
        df_clean = process_dataframe(df[single_list + matching_cols1])
        st.subheader("Selected Table")
        st.dataframe(df_clean)

        PCA_radio = st.sidebar.radio('PCA', ['Yes', 'No'])

        if PCA_radio == 'Yes':
            dfc = pd.DataFrame(pca_with_variance_threshold(df_clean, threshold=0.80))
        else:
            dfc = df_clean

        
        selected_method = st.sidebar.selectbox("Select the Linkage Method of Segmentation Analysis:", ['Hierarchical Clustering', 'K-means Clustering'])
        if selected_method == 'Hierarchical Clustering':
            linkage_method = st.sidebar.selectbox("Select the Linkage Method of Segmentation Analysis:", ['average', 'single', 'complete', 'weighted', 'centroid', 'median', 'ward'])
            df_cluster = hierarchical_clustering_with_plotly(dfc, linkage_method)
        if selected_method == 'K-means Clustering':
            k = int(st.text_input("Enter the desired number of clusters"))
            df_clean = kmeans_clustering(dfc, k)

        st.subheader("Cluster Table")
        st.dataframe(df_clean)
    
    elif main_option == "Hypothesis test":
        st.header("Hypothesis Testing")
        hypothesis_option = st.selectbox("Please select the type of hypothesis test:", ["Z test", "T test", "Chi-Square test", "ANOVA test"])
    
        if hypothesis_option != "Z test":
            st.info("This section of the program is under development.")
        else:
            uploaded_file = st.file_uploader("Please upload your Excel file for Z-Test", type=["xlsx", "xls"])
            if uploaded_file:
                result = analyze_z_test(uploaded_file)
                if result:
                    st.success("Z-Test analysis completed successfully.")

    elif main_option == "Coding":
        selected_list = st.sidebar.multiselect(
            'Select the desired "Open Question" column.', 
            cols,
            default=[]
        )
        df["id"] = df.index
        prompt_user = st.text_input("Write a brief description of the selected column question.")
        if st.button("Submit"):

            df2 = categorize_sentences(prompt_user, df, selected_list)
            
            st.subheader("Categorized data")
            st.dataframe(df2)
        
    elif main_option == "Machine Learning":
        st.info("This section of the program is under development.")

    elif main_option == "AI Chat":

        client = InferenceClient(
        	provider="together",
        	api_key="hf_xxxxxxxxxxxxxxxxxxxxxxxx"
        )
        
        messages = [
        	{
        		"role": "user",
        		"content": "What is the capital of France?"
        	}
        ]
        
        stream = client.chat.completions.create(
        	model="deepseek-ai/DeepSeek-R1", 
        	messages=messages, 
        	max_tokens=500,
        	stream=True
        )
        
        for chunk in stream:
            st.warning(chunk.choices[0].delta.content, end="")

    elif main_option == "Sample Size Calculator":
        st.header("Sample Size Calculator")
        confidence_level = st.text_input("Confidence levels: (In percentage terms)")
        p = st.text_input("Estimated probability of success: (In percentage terms)")
        E = st.text_input("Margin of error: (In percentage terms)")
        try:
            confidence_level, p, E = float(confidence_level)/100, float(p)/100, float(E)/100
            n = sample_size_calculator(confidence_level, p, E)
        except:
            pass

        st.write(f"Sample size: {n}")

except Exception as e:
    st.error(f"❌ Error: {e}")