Spaces:
Running
Running
File size: 38,103 Bytes
74cbf4e 8fb73ac ef4ffc5 112730f b8736b9 9a35c08 233ffbe 9d0f3dc 5d90338 78d1afe 255e202 a52511a 51f8c99 f0b85fd ef01987 abc40b1 95e26bc abc40b1 6f51536 abc40b1 9d5e063 abc40b1 6f51536 ef01987 abc40b1 8fb73ac abc40b1 ef01987 abc40b1 8fb73ac abc40b1 ef01987 abc40b1 8fb73ac ef01987 8fb73ac 74cbf4e 8fb73ac 74cbf4e a07084d 80cf196 93c7fa7 74cbf4e beba094 8fb73ac 74cbf4e 8fb73ac beba094 8fb73ac 74cbf4e 8f47913 beba094 8f47913 74cbf4e 8fb73ac 74cbf4e 8fb73ac fd071ce 255e202 8fb73ac beba094 8fb73ac 2a884d0 8fc1135 8fb73ac 74cbf4e 8fb73ac 40db560 74cbf4e d6409d1 74cbf4e 8fb73ac d6409d1 255e202 2a884d0 8fb73ac 1ea4974 40db560 1ea4974 fd071ce 255e202 1ea4974 8fb73ac 74cbf4e afab141 400c7f6 afab141 c573e09 400c7f6 afab141 c573e09 afab141 40db560 afab141 40db560 afab141 c573e09 afab141 7f5a293 8c0b505 7f5a293 8c0b505 7f5a293 8c0b505 7f5a293 ef4ffc5 281ec10 ef4ffc5 74cbf4e 6820ae0 3ebdc9e 74cbf4e 8f47913 59fd7c2 5268010 59fd7c2 beba094 8f47913 796fcb3 59fd7c2 8f47913 281ec10 44a9bac 281ec10 74cbf4e dc243ed e0c86d4 dc243ed e0c86d4 dc243ed e0c86d4 15caa8a 80cf196 4020ae3 80cf196 1f6e328 80cf196 c656414 80cf196 089632b 80cf196 233ffbe 84a785c 5e088e3 84a785c 9e4c0ea fc8e87b fb605c3 5d90338 fc8e87b dd4ba9a be1f406 dd4ba9a 03b27a2 fc8e87b e4ec47c e3bfdea f7bb298 f56630e ea8e2fe f56630e ea8e2fe 04c4d28 acf67b7 04c4d28 ea8e2fe 83d3b56 ea8e2fe 3960861 ea8e2fe fc8e87b ea8e2fe fc8e87b 1ff1c62 ea8e2fe fc8e87b ea8e2fe fc8e87b ea8e2fe fc8e87b ea8e2fe fc8e87b ea8e2fe fc8e87b ea8e2fe fc8e87b ea8e2fe 335d6f5 ea8e2fe 8ee5251 ea8e2fe 179b59b ea8e2fe 335d6f5 ea8e2fe 179b59b ea8e2fe 179b59b ea8e2fe 179b59b ea8e2fe fc8e87b 8ee5251 ea8e2fe 335d6f5 fc8e87b ea8e2fe 1cbab06 9e4c0ea a977207 9e4c0ea a977207 9e4c0ea a977207 9e4c0ea a977207 9e4c0ea 233ffbe 919c72a 233ffbe a977207 1d1f203 a977207 233ffbe 1d1f203 a977207 233ffbe 9e4c0ea fc8e87b ea8e2fe 9a77817 bc50a22 9a77817 0ef8f45 5d90338 0ef8f45 9a77817 fc8e87b ea8e2fe 2d9caaf fe3e7db b8736b9 2d9caaf 9d0f3dc ea24af7 233ffbe 9d0f3dc ea8e2fe cebd2dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from scipy.stats import norm, t
from scipy.cluster.hierarchy import linkage, dendrogram, fcluster
import plotly.figure_factory as ff
from huggingface_hub import InferenceClient
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import json
import math
from transformers import pipeline
classifier = pipeline('zero-shot-classification', model='MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33')
def sorting(df):
df.index = list(map(float, df.index))
df = df.sort_index
return df
def edit_strings(string_list):
edited_list = []
for string in string_list:
if "_" in string:
last_underscore_index = string.rfind("_")
edited_string = string[:last_underscore_index]
edited_list.append(edited_string)
else:
edited_list.append(string)
return edited_list
def equalize_list_lengths(input_dict):
max_len = 0
for key in input_dict:
max_len = max(max_len, len(input_dict[key]))
for key in input_dict:
while len(input_dict[key]) < max_len:
input_dict[key].append(None)
return pd.DataFrame(input_dict)
def figo(plot_type, df, title, xlabel=None, ylabel=None, legend_title=None, colorscale='Plotly3', width=800, height=600):
if plot_type == "Scatter":
fig = go.Figure()
for column in df.columns[0:]:
df.index = list(map(float, list(df.index)))
sorted_data = df.sort_index()
fig.add_trace(go.Scatter(
x=sorted_data[column],
y=sorted_data.index,
mode='lines+markers+text',
name=column,
text=sorted_data[column].round(2),
textposition="middle right"
))
fig.update_layout(
title=title,
xaxis_title="Percentage",
yaxis_title="Category",
yaxis={'categoryorder': 'array', 'categoryarray': sorted_data.index},
width=width,
height=height
)
elif plot_type == "Heatmap":
df = df.apply(pd.to_numeric, errors='coerce')
fig = go.Figure(data=go.Heatmap(
z=df.values,
x=df.columns,
y=df.index,
hoverongaps=False,
colorscale=colorscale
))
fig.update_layout(
title={
'text': title,
'y':0.95,
'x':0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis_title=xlabel,
yaxis_title=ylabel,
legend_title=legend_title,
template="plotly_white",
width=width,
height=height
)
elif plot_type == "Bar":
fig = go.Figure()
col = df.name
fig.add_trace(go.Bar(
x=df.index,
y=df,
name=col
))
fig.update_layout(
title={
'text': title,
'y':0.95,
'x':0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis_title=xlabel,
yaxis_title=ylabel,
legend_title=legend_title,
template="plotly_white",
barmode='group',
width=width,
height=height
)
else:
raise ValueError("Invalid plot_type. Supported types are 'Scatter', 'Heatmap', and 'Bar'.")
return fig
def is_matching_pattern(column, prefix):
if not column.startswith(prefix + '_'):
return False
suffix = column[len(prefix) + 1:]
if 1 <= len(suffix) <= 3 and suffix.isdigit():
return True
return False
def multi_answer(df):
friquency = {}
for i in df.columns:
try:
unique_values = list(set(df[i].dropna()))[0]
friquency[str(unique_values)] = df[i].value_counts().get(unique_values, 0)
except Exception as e:
#st.error(f"Warning: One of the data columns has no value.: {e}")
friquency[i] = 0
friquency_dataframe = pd.DataFrame({"Value": friquency.keys(), 'Frequency': friquency.values(), "Percentage": np.array(list(friquency.values()))/len(df.dropna(how='all'))}).sort_values(by='Value')
friquency_dataframe.loc[len(friquency_dataframe)] = ['Sample_size', len(df.dropna(how='all')), 1]
return friquency_dataframe
def single_answer(df):
counter = df.value_counts()
friquency_dataframe = pd.DataFrame({
'Value': counter.index,
'Frequency': counter.values,
'Percentage': (counter.values / counter.sum())}).sort_values(by='Value')
friquency_dataframe.loc[len(friquency_dataframe)] = ['Sample_size', len(df.dropna()), 1]
return friquency_dataframe
def score_answer(df):
counter = df.value_counts().sort_index()
friquency_dataframe = pd.DataFrame({
'Value': list(counter.index)+["Meen", "Variance"],
'Frequency': list(counter.values)+[df.mean(), df.var()],
'Percentage': list((counter.values / counter.sum()))+["", ""]})
return friquency_dataframe
def two_variable_ss(df, var1, var2):
counter = df.groupby(var1)[var2].value_counts()
friquency_dataframe = counter.unstack(fill_value=0)
#friquency_dataframe = sorting(friquency_dataframe)
column_sums = friquency_dataframe.sum(axis=0)
percentage_dataframe = friquency_dataframe.div(column_sums, axis=1)
friquency_dataframe['Total'] = list(single_answer(df[var1]).iloc[:,1])[:-1]
friquency_dataframe.loc['Sample_size'] = list(single_answer(df[var2]).iloc[:,1])
percentage_dataframe['Total'] = list(single_answer(df[var1]).iloc[:,2])[:-1]
percentage_dataframe.loc['Sample_size'] = list(single_answer(df[var2]).iloc[:,1])
return percentage_dataframe, friquency_dataframe
def two_variable_sm(df, var1, var2):
unique_values = list(set(df[var1].dropna()))
value = multi_answer(df[var2]).iloc[:-1,0]
friquency_dataframe, percentage_dataframe = {}, {}
for i in unique_values:
dataframe = multi_answer(df[df[var1] == i][var2]).iloc[:-1,:]
friquency_dataframe[i], percentage_dataframe[i] = dataframe['Frequency'], dataframe['Percentage']
friquency_dataframe = pd.DataFrame(friquency_dataframe)
percentage_dataframe = pd.DataFrame(percentage_dataframe)
friquency_dataframe.index, percentage_dataframe.index = value, value
#friquency_dataframe = sorting(friquency_dataframe)
#percentage_dataframe = sorting(percentage_dataframe)
friquency_dataframe['Total'] = list(multi_answer(df[var2]).iloc[:,1])[:-1]
friquency_dataframe.loc['Sample_size'] = list(single_answer(df[var1]).iloc[:,1])
percentage_dataframe['Total'] = list(multi_answer(df[var2]).iloc[:,2])[:-1]
percentage_dataframe.loc['Sample_size'] = list(single_answer(df[var1]).iloc[:,1])
return percentage_dataframe, friquency_dataframe
def two_variable_mm(df, var1, var2):
friquency_dataframe, percentage_dataframe = {}, {}
value = multi_answer(df[var2]).iloc[:-1,0]
for i in var1:
unique_values = list(set(df[i].dropna()))[0]
dataframe = multi_answer(df[df[i] == unique_values][var2]).iloc[:-1,:]
friquency_dataframe[i], percentage_dataframe[i] = dataframe['Frequency'], dataframe['Percentage']
friquency_dataframe = pd.DataFrame(friquency_dataframe)
percentage_dataframe = pd.DataFrame(percentage_dataframe)
friquency_dataframe.index, percentage_dataframe.index = value, value
#friquency_dataframe = sorting(friquency_dataframe)
#percentage_dataframe = sorting(percentage_dataframe)
friquency_dataframe['Total'] = list(multi_answer(df[var2]).iloc[:,1])[:-1]
friquency_dataframe.loc['Sample_size'] = list(multi_answer(df[var1]).iloc[:,1])
percentage_dataframe['Total'] = list(multi_answer(df[var2]).iloc[:,2])[:-1]
percentage_dataframe.loc['Sample_size'] = list(multi_answer(df[var1]).iloc[:,1])
return percentage_dataframe, friquency_dataframe
def two_variable_ssc(df, var1, var2):
unique_values = list(set(df[var1].dropna()))
mean_dataframe = {'Mean': [], 'Variation': [], 'Frequency': []}
for i in unique_values:
d = df[df[var1] == i][var2]
mean_dataframe['Mean'] += [d.mean()]
mean_dataframe['Variation'] += [d.var()]
mean_dataframe['Frequency'] += [len(d)]
mean_dataframe = pd.DataFrame(mean_dataframe)
mean_dataframe.index = unique_values
mean_dataframe.loc['Total'] = [df[var2].mean(), df[var2].var(), len(df[var2])]
return mean_dataframe
def two_variable_msc(df, var1, var2):
mean_dataframe, unique_values = {'Mean': [], 'Variation': [], 'Frequency': []}, []
for i in var1:
d = df[i].dropna()
j = list(set(df[i].dropna()))[0]
d = df[df[i]==j][var2]
unique_values += [j]
mean_dataframe['Mean'] += [d.mean()]
mean_dataframe['Variation'] += [d.var()]
mean_dataframe['Frequency'] += [len(d)]
mean_dataframe = pd.DataFrame(mean_dataframe)
mean_dataframe.index = unique_values
mean_dataframe.loc['Total'] = [df[var2].mean(), df[var2].var(), len(df[var2])]
return mean_dataframe
def funnel(df, dictionary):
friquency = {}
for i in dictionary.keys():
if dictionary[i] == "Single":
friquency[i] = list(single_answer(df[i])['Frequency'])[:-1]
elif dictionary[i] == "Multi":
matching_cols = [col for col in df.columns if is_matching_pattern(col, i)]
friquency[i] = list(multi_answer(df[matching_cols])['Frequency'])[:-1]
elif dictionary[i] == "Score":
friquency[i] = list(score_answer(df[i])['Frequency'])[:-1]
try:
friquency = pd.DataFrame(friquency)
except:
friquency = equalize_list_lengths(friquency)
first = None
for key, value in dictionary.items():
if value == "Single":
first = key
break
percentage = friquency/len(df[first])
return friquency, percentage
def t_test(m1, m2, n1, n2, v1, v2):
te = (m1 - m2) / ((v1/n1 + v2/n2)**0.5)
p_value = 2 * (1 - t.cdf(abs(te), n1+n2-2))
return p_value
def z_testes(n1, n2, p1, p2):
p_hat = ((n1*p1) + (n2*p2)) / (n1 + n2)
z = (p1 - p2) / ((p_hat * (1 - p_hat) * (1 / n1 + 1 / n2)) ** 0.5)
p_value = 2 * (1 - norm.cdf(abs(z)))
return p_value
def z_test_data(df):
styles = pd.DataFrame('', index=df.index, columns=df.columns)
num_rows, num_cols = df.shape
for i in range(num_rows -1):
for j in range(num_cols -1):
n1 = df.iloc[-1, -1]
n2 = df.iloc[-1, j]
p1 = df.iloc[i, -1]
p2 = df.iloc[i, j]
p_value = z_testes(n1, n2, p1, p2)
if pd.notnull(p_value) and p_value <= 0.05:
styles.iloc[i, j] = 'background-color: lightgreen'
return df.style.apply(lambda _: styles, axis=None)
def t_test_data(df):
rows, cols = df.shape
styles = pd.DataFrame('', index=df.index, columns=df.columns)
for i in range(rows-1):
p_value = t_test(df['Mean'].iloc[-1,], df['Mean'].iloc[i], df['Frequency'].iloc[-1], df['Frequency'].iloc[i], df['Variation'].iloc[-1], df['Variation'].iloc[i])
if p_value <= 0.05:
styles.iloc[i, :] = 'background-color: lightgreen'
return df.style.apply(lambda _: styles, axis=None)
def Z_test_dataframes(sheets_data):
"""Processes each sheet's DataFrame and computes new DataFrames with Z-test results."""
result_dataframes = {}
for sheet_name, df in sheets_data.items():
if df.empty:
st.warning(f"⚠️ Sheet '{sheet_name}' is empty and has been skipped.")
continue
df = df.set_index(df.columns[0]) # Use the first column as index
rows, cols = df.shape
if cols < 2:
st.warning(f"⚠️ Sheet '{sheet_name}' does not have enough columns for analysis and has been skipped.")
continue
new_df = pd.DataFrame(index=df.index[:-1], columns=df.columns[1:])
for i, row_name in enumerate(df.index[:-1]):
for j, col_name in enumerate(df.columns[1:]):
try:
n1 = df.iloc[-1, 0] # x_I1
n2 = df.iloc[-1, j+1] # x_Ij
p1 = df.iloc[i, 0] # x_1J
p2 = df.iloc[i, j+1] # x_ij
p_value = z_testes(n1, n2, p1, p2)
new_df.iloc[i, j] = p_value
except Exception as e:
st.error(f"❌ Error processing sheet '{sheet_name}', row '{row_name}', column '{col_name}': {e}")
new_df.iloc[i, j] = np.nan
result_dataframes[sheet_name] = new_df
return result_dataframes
def analyze_z_test(file):
"""
Performs Z-Test analysis on the uploaded Excel file.
Parameters:
- file: Uploaded Excel file
Returns:
- result_dataframes: Dictionary of DataFrames with p-values
"""
sheets_data = read_excel_sheets(file)
if sheets_data is None:
return None
result_dataframes = Z_test_dataframes(sheets_data)
if not result_dataframes:
st.error("❌ No valid sheets found for Z-Test analysis.")
return None
st.write("### 📈 Processed Tables with Z-Test Results")
for sheet_name, df in result_dataframes.items():
st.write(f"#### Sheet: {sheet_name}")
# Apply color coding based on p-value
def color_p_value(val):
try:
if pd.isna(val):
return 'background-color: lightgray'
elif val < 0.05:
return 'background-color: lightgreen'
else:
return 'background-color: lightcoral'
except:
return 'background-color: lightgray'
styled_df = df.style.applymap(color_p_value)
# Display the styled DataFrame
st.dataframe(styled_df, use_container_width=True)
return result_dataframes
def join_dataframes(mlist, dataframes):
max_rows = max(df.shape[0] for df in dataframes)
result = pd.DataFrame()
col_counts = {} # Dictionary to track column name occurrences
for i, df in enumerate(dataframes):
rows_to_add = max_rows - df.shape[0]
if rows_to_add > 0:
empty_rows = pd.DataFrame(index=range(rows_to_add), columns=df.columns)
empty_rows = empty_rows.fillna(np.nan)
df = pd.concat([df, empty_rows], ignore_index=True)
for col in df.columns:
original_col = col
count = 1
while col in result.columns:
col = f"{original_col}_{count}"
count += 1
col_counts[original_col] = col_counts.get(original_col, 0) + 1
df = df.rename(columns={original_col: col})
result = pd.concat([result, df.reset_index(drop=True)], axis=1)
return result
def all_tabulation(df, main_dict, follow_dict):
for j in main_dict["single"]:
dataframe_list, name_list = (single_answer(df[j]),), [j]
for i in follow_dict["single"]:
dataframe_list = dataframe_list + (two_variable_ss(df[[j, i]], j, i)[0], )
name_list.append(i)
for i in follow_dict["multi"]:
matching_cols1 = [col for col in df.columns if is_matching_pattern(col, i)]
dataframe_list = dataframe_list + (two_variable_sm(df[[j] + matching_cols1], j, matching_cols1)[0].T, )
name_list.append(i)
for i in follow_dict["score"]:
dataframe_list = dataframe_list + (two_variable_ssc(df[[j, i]], j, i), )
name_list.append(i)
st.subheader(j)
st.markdown(j + ": " + ", ".join(follow_dict['single'] + follow_dict['multi'] + follow_dict['score']))
st.dataframe(join_dataframes(name_list, dataframe_list))
for j in main_dict["multi"]:
matching_cols0 = [col for col in df.columns if is_matching_pattern(col, j)]
dataframe_list, name_list = (multi_answer(df[matching_cols0]), ), [j]
#for i in follow_dict["single"]:
#dataframe_list.append(two_variable_ms(df[matching_cols0, i], matching_cols0, i).drop(columns=['Value'])[0])
for i in follow_dict["multi"]:
matching_cols1 = [col for col in df.columns if is_matching_pattern(col, i)]
dataframe_list = dataframe_list + (two_variable_mm(df[matching_cols0 + matching_cols1], matching_cols0, matching_cols1)[0], )
name_list.append(i)
for i in follow_dict["score"]:
dataframe_list = dataframe_list + (two_variable_msc(df[matching_cols0 + [i]], matching_cols0, i), )
name_list.append(i)
st.subheader(j)
st.markdown(j + ": " + ", ".join(follow_dict['multi'] + follow_dict['score']))
st.dataframe(join_dataframes(name_list, dataframe_list))
for j in main_dict["score"]:
dataframe_list, name_list = [single_answer(df[j])], [j]
st.subheader(j)
st.dataframe(join_dataframes(name_list, dataframe_list))
def process_dataframe(df):
df = df.fillna(0)
for col in df.columns:
df[col] = pd.Categorical(df[col])
return df
import numpy as np
from sklearn.decomposition import PCA
def pca_with_variance_threshold(data, threshold=0.80):
pca = PCA()
pca.fit(data)
cumulative_variance = np.cumsum(pca.explained_variance_ratio_)
n_components = np.argmax(cumulative_variance >= threshold) + 1
pca = PCA(n_components=n_components)
transformed_data = pca.fit_transform(data)
return transformed_data
def hierarchical_clustering_with_plotly(df, linkage_method):
df_encoded = df.apply(lambda x: pd.factorize(x)[0])
Z = linkage(df_encoded, method=linkage_method)
fig = ff.create_dendrogram(df_encoded, linkagefun=lambda x: Z, orientation='bottom')
fig.update_layout(width=800, height=500)
st.plotly_chart(fig)
num_clusters = int(st.text_input("Enter the desired number of clusters"))
clusters = fcluster(Z, num_clusters, criterion='maxclust')
df['Cluster'] = clusters
return df
def kmeans_clustering(df, k):
numeric_df = df.select_dtypes(include=['number'])
if numeric_df.empty:
raise ValueError("DataFrame does not contain any numeric columns for clustering.")
kmeans = KMeans(n_clusters=k, random_state=0) # You can modify random_state
df['cluster'] = kmeans.fit_predict(numeric_df)
return df
def sample_size_calculator(confidence_level, p, E):
Z = norm.ppf(1 - (1 - confidence_level) / 2)
n = (Z**2 * p * (1 - p)) / (E**2)
n = math.ceil(n)
return n
import pandas as pd
def categorize_sentences(prompt, df, Text_name):
texts = df[Text_name].tolist()
labels = []
for text in texts:
result = classifier(text, candidate_labels=[prompt])
labels.append(result['labels'][0])
df['labels'] = labels
return df
def upload_and_select_dataframe():
st.sidebar.title("File Upload")
uploaded_files = st.sidebar.file_uploader("Choose CSV or Excel files", type=["csv", "xlsx", "xls", "xlsb"], accept_multiple_files=True)
dataframes = {}
dataframes["Sample Dataset"] = pd.read_excel("Sample dataset.xlsx")
try:
for uploaded_file in uploaded_files:
try:
if uploaded_file.name.endswith(('.csv')):
df = pd.read_csv(uploaded_file)
elif uploaded_file.name.endswith(('.xls', '.xlsx', '.xlsb')):
df = pd.read_excel(uploaded_file)
else:
st.sidebar.error(f"Unsupported file type: {uploaded_file.name}")
continue
dataframes[uploaded_file.name] = df
except Exception as e:
st.sidebar.error(f"Error reading {uploaded_file.name}: {e}")
if len(uploaded_files) > 7:
st.sidebar.error('Maximum 7 files can be uploaded.')
return None
if dataframes:
selected_file = st.sidebar.selectbox("Select a DataFrame", ["Select a dataset"] + list(dataframes.keys()))
return dataframes[selected_file]
else:
st.sidebar.info("Please upload some files.")
return None
except:
pass
#st.markdown('[Click to register a suggestion or comment](https://docs.google.com/forms/d/e/1FAIpQLScLyP7bBbqMfGdspjL7Ij64UZ6v2KjqjKNbm8gwEsgWsFs_Qg/viewform?usp=header)')
st.image("Insightzen.png", width=600)
df = upload_and_select_dataframe()
try:
try:
d = df.head()
st.subheader("Data preview")
st.dataframe(df.head())
cols = edit_strings(df.columns)
cols = sorted(list(set(cols)))
except:
pass
main_option = st.selectbox("Please select an option:", ["Select a Task","Tabulation", "Funnel Analysis", "Segmentation Analysis", "Hypothesis test", "Machine Learning", "Sample Size Calculator" ,"Coding", "AI Chat"])
if main_option == "Tabulation":
st.header("Tabulation Analysis")
tabulation_option = st.selectbox("Please select the type of analysis:", ["Univariate", "Multivariate", "All"])
if tabulation_option == "All":
st.sidebar.header("Settings")
main_dict = {"single": [], "multi": [], "score": []}
st.sidebar.subheader("Main")
main_dict["single"] = st.sidebar.multiselect(
'Main: Single answer questions',
cols,
default=[]
)
main_dict["multi"] = st.sidebar.multiselect(
'Main: Multi answer questions',
cols,
default=[]
)
main_dict["score"] = st.sidebar.multiselect(
'Main: Score answer questions',
cols,
default=[]
)
follow_dict = {"single": [], "multi": [], "score": []}
st.sidebar.subheader("Follow")
follow_dict["single"] = st.sidebar.multiselect(
'Follow: Single answer questions',
cols,
default=[]
)
follow_dict["multi"] = st.sidebar.multiselect(
'Follow: Multi answer questions',
cols,
default=[]
)
follow_dict["score"] = st.sidebar.multiselect(
'Follow: Score answer questions',
cols,
default=[]
)
all_tabulation(df, main_dict, follow_dict)
elif tabulation_option == "Univariate":
uni_option = st.selectbox("Select the type of univariate analysis:", ["Multiple answer", "Single answer", "Score answer"])
if uni_option == "Single answer":
var = st.text_input("Please enter the name of the desired column:")
if var:
if var in df.columns:
result_df = single_answer(df[var])
st.subheader("Univariate Analysis Results")
st.dataframe(result_df)
fig = figo('Bar', result_df["Percentage"][:-1, ], title='Percentage Histogram', xlabel=var, ylabel='Percentage', colorscale='Plotly3')
st.plotly_chart(fig, use_container_width=True)
else:
st.error("The entered column was not found.")
elif uni_option == "Multiple answer":
var = st.text_input("Please enter the name of the desired column:")
if var:
matching_cols = [col for col in df.columns if is_matching_pattern(col, var)]
if matching_cols:
subset_df = df[matching_cols]
result_df = multi_answer(subset_df)
st.subheader("Multiple Answer Analysis Results")
st.dataframe(result_df)
fig = figo('Bar', result_df["Percentage"][:-1], title='Percentage Histogram', xlabel=var, ylabel='Percentage', colorscale='Plotly3')
st.plotly_chart(fig, use_container_width=True)
else:
st.error("No columns matching the entered pattern were found.")
elif uni_option == "Score answer":
var = st.text_input("Please enter the name of the desired column:")
if var:
subset_df = df[var]
result_df = score_answer(subset_df)
st.subheader("Score Answer Analysis Results")
st.dataframe(result_df)
fig = figo('Bar', result_df["Percentage"][:-2], title='Percentage Histogram', xlabel=var, ylabel='Percentage', colorscale='Plotly3')
st.plotly_chart(fig, use_container_width=True)
else:
st.error("No columns matching the entered pattern were found.")
elif tabulation_option == "Multivariate":
st.subheader("Multivariate Analysis")
var1 = st.text_input("Please enter the name of the first column:")
var2 = st.text_input("Please enter the name of the second column:")
if var1 and var2:
type1 = st.selectbox("Select the type of analysis for the first column:", ["Multiple answer", "Single answer"], key='type1')
type2 = st.selectbox("Select the type of analysis for the second column:", ["Multiple answer", "Single answer", "Score answer"], key='type2')
if type1 == "Single answer" and type2 == "Single answer":
percentile_df, frequency_df = two_variable_ss(df[[var1, var2]], var1, var2)
st.subheader("Percentage Table")
st.write(z_test_data(percentile_df))
st.subheader("Frequency Table")
st.dataframe(frequency_df)
row, col = df.shape
fig = figo('Scatter', percentile_df.iloc[:-1,:], title='Percentage Scatter plot', width=(col*5)+5, height=(row*25) + 10)
st.plotly_chart(fig, use_container_width=True)
elif type1 == "Single answer" and type2 == "Multiple answer":
matching_cols = [col for col in df.columns if is_matching_pattern(col, var2)]
if matching_cols:
percentile_df, frequency_df = two_variable_sm(df[[var1] + matching_cols], var1, matching_cols)
st.subheader("Percentage Table")
st.write(z_test_data(percentile_df))
st.subheader("Frequency Table")
st.dataframe(frequency_df)
row, col = df.shape
fig = figo('Scatter', percentile_df.iloc[:-1,:], title='Percentage Scatter plot', width=(col*5)+5, height=(row*25) + 10)
st.plotly_chart(fig, use_container_width=True)
else:
st.error("No columns matching the entered pattern were found.")
elif type1 == "Multiple answer" and type2 == "Multiple answer":
matching_cols1 = [col for col in df.columns if is_matching_pattern(col, var1)]
matching_cols2 = [col for col in df.columns if is_matching_pattern(col, var2)]
if matching_cols1 and matching_cols2:
percentile_df, frequency_df = two_variable_mm(df[matching_cols1 + matching_cols2], matching_cols1, matching_cols2)
st.subheader("Percentage Table")
st.write(z_test_data(percentile_df))
st.subheader("Frequency Table")
st.dataframe(frequency_df)
row, col = df.shape
fig = figo('Scatter', percentile_df.iloc[:-1,:], title='Percentage Scatter plot', width=(col*5)+5, height=(row*25) + 10)
st.plotly_chart(fig, use_container_width=True)
elif type1 == "Single answer" and type2 == "Score answer":
mean_df = two_variable_ssc(df[[var1, var2]], var1, var2)
st.subheader("Mean Table")
st.write(t_test_data(mean_df))
row, col = df.shape
fig = figo('Bar', mean_df["Mean"][:-1], title='Mean Histogram', xlabel=var1, ylabel='Mean', colorscale='Plotly3')
st.plotly_chart(fig, use_container_width=True)
elif type1 == "Multiple answer" and type2 == "Score answer":
matching_cols1 = [col for col in df.columns if is_matching_pattern(col, var1)]
if matching_cols1:
mean_df = two_variable_msc(df[matching_cols1 + [var2]], matching_cols1, var2)
st.subheader("Mean Table")
st.write(t_test_data(mean_df))
row, col = df.shape
fig = figo('Bar', mean_df["Mean"][:-1], title='Mean Histogram', xlabel=var1, ylabel='Mean', colorscale='Plotly3')
st.plotly_chart(fig, use_container_width=True)
else:
st.info("This section of the program is under development.")
elif main_option == "Funnel Analysis":
st.header("Funnel")
st.sidebar.header("Funnel Settings")
single_list = st.sidebar.multiselect(
'Single answer questions',
cols,
default=[]
)
multi_list = st.sidebar.multiselect(
'Multi answer questions',
cols,
default=[]
)
selected_dict = {}
for option in single_list:
selected_dict[option] = "Single"
for option in multi_list:
selected_dict[option] = "Multi"
funnel_frequency, funnel_percentage = funnel(df, selected_dict)
st.subheader("Percentage Table")
st.dataframe(funnel_percentage)
st.subheader("Frequency Table")
st.dataframe(funnel_frequency)
st.sidebar.header("Chart Settings")
bar_columns = st.sidebar.multiselect('Which columns should be displayed as bar charts?', sorted(funnel_percentage.columns))
line_columns = st.sidebar.multiselect('Which columns should be displayed as line charts?', sorted(funnel_percentage.columns))
funnel_percentage_cleaned = funnel_percentage.dropna(axis=0, how='all')
columns = st.sidebar.multiselect('Sort by which questions?', sorted(funnel_percentage_cleaned.columns))
sort_order = st.sidebar.radio('Sort Order', ['Ascending', 'Descending'])
ascending = True if sort_order == 'Ascending' else False
funnel_percentage_cleaned = funnel_percentage_cleaned.sort_values(by=columns, ascending=ascending)
# Update index to string to ensure proper sorting in Plotly
funnel_percentage_cleaned.index = funnel_percentage_cleaned.index.astype(str)
fig = go.Figure()
# Define modern and diverse color palette
modern_colors = [
"#FF6F61", "#6B5B95", "#88B04B", "#F7CAC9", "#92A8D1",
"#955251", "#B565A7", "#009B77", "#DD4124", "#45B8AC"
]
# Add Bar traces with transparency and custom colors
for idx, col in enumerate(bar_columns):
funnel_percentage_col = funnel_percentage_cleaned[col]
fig.add_trace(
go.Bar(
x=funnel_percentage_cleaned.index,
y=funnel_percentage_col,
name=col,
marker_color=modern_colors[idx % len(modern_colors)], # Cycle through colors
opacity=0.8 # Set transparency
)
)
# Add Line traces with transparency and custom colors
for idx, col in enumerate(line_columns):
funnel_percentage_col = funnel_percentage_cleaned[col]
fig.add_trace(
go.Scatter(
x=funnel_percentage_cleaned.index,
y=funnel_percentage_col,
mode='lines',
name=col,
line=dict(color=modern_colors[(idx + len(bar_columns)) % len(modern_colors)]), # Cycle through colors
opacity=0.8 # Set transparency
)
)
fig.update_layout(
title="Combined Bar and Line Chart",
xaxis_title="Brands",
yaxis_title="Percentage",
template="plotly_dark",
barmode="group",
xaxis=dict(
tickmode='array',
categoryorder='array',
categoryarray=funnel_percentage_cleaned.index.tolist() # Ensure sorting of x-axis matches the DataFrame index
)
)
st.plotly_chart(fig)
elif main_option == "Segmentation Analysis":
st.header("Segmentation Analysis")
st.sidebar.header("Selection of questions")
single_list = st.sidebar.multiselect(
'Single answer questions',
cols,
default=[]
)
multi_list = st.sidebar.multiselect(
'Multi answer questions',
cols,
default=[]
)
score_list = st.sidebar.multiselect(
'Score answer questions',
cols,
default=[]
)
matching_cols1 = []
for i in multi_list:
matching_cols1 += [col for col in df.columns if is_matching_pattern(col, i)]
df_clean = process_dataframe(df[single_list + matching_cols1])
st.subheader("Selected Table")
st.dataframe(df_clean)
PCA_radio = st.sidebar.radio('PCA', ['Yes', 'No'])
if PCA_radio == 'Yes':
dfc = pd.DataFrame(pca_with_variance_threshold(df_clean, threshold=0.80))
else:
dfc = df_clean
selected_method = st.sidebar.selectbox("Select the Linkage Method of Segmentation Analysis:", ['Hierarchical Clustering', 'K-means Clustering'])
if selected_method == 'Hierarchical Clustering':
linkage_method = st.sidebar.selectbox("Select the Linkage Method of Segmentation Analysis:", ['average', 'single', 'complete', 'weighted', 'centroid', 'median', 'ward'])
df_cluster = hierarchical_clustering_with_plotly(dfc, linkage_method)
if selected_method == 'K-means Clustering':
k = int(st.text_input("Enter the desired number of clusters"))
df_clean = kmeans_clustering(dfc, k)
st.subheader("Cluster Table")
st.dataframe(df_clean)
elif main_option == "Hypothesis test":
st.header("Hypothesis Testing")
hypothesis_option = st.selectbox("Please select the type of hypothesis test:", ["Z test", "T test", "Chi-Square test", "ANOVA test"])
if hypothesis_option != "Z test":
st.info("This section of the program is under development.")
else:
uploaded_file = st.file_uploader("Please upload your Excel file for Z-Test", type=["xlsx", "xls"])
if uploaded_file:
result = analyze_z_test(uploaded_file)
if result:
st.success("Z-Test analysis completed successfully.")
elif main_option == "Coding":
selected_list = st.sidebar.multiselect(
'Select the desired "Open Question" column.',
cols,
default=[]
)
df["id"] = df.index
prompt_user = st.text_input("Write a brief description of the selected column question.")
if st.button("Submit"):
df2 = categorize_sentences(prompt_user, df, selected_list)
st.subheader("Categorized data")
st.dataframe(df2)
elif main_option == "Machine Learning":
st.info("This section of the program is under development.")
elif main_option == "AI Chat":
client = InferenceClient(
provider="together",
api_key="hf_xxxxxxxxxxxxxxxxxxxxxxxx"
)
messages = [
{
"role": "user",
"content": "What is the capital of France?"
}
]
stream = client.chat.completions.create(
model="deepseek-ai/DeepSeek-R1",
messages=messages,
max_tokens=500,
stream=True
)
for chunk in stream:
st.warning(chunk.choices[0].delta.content, end="")
elif main_option == "Sample Size Calculator":
st.header("Sample Size Calculator")
confidence_level = st.text_input("Confidence levels: (In percentage terms)")
p = st.text_input("Estimated probability of success: (In percentage terms)")
E = st.text_input("Margin of error: (In percentage terms)")
try:
confidence_level, p, E = float(confidence_level)/100, float(p)/100, float(E)/100
n = sample_size_calculator(confidence_level, p, E)
except:
pass
st.write(f"Sample size: {n}")
except Exception as e:
st.error(f"❌ Error: {e}") |