Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -173,21 +173,22 @@ def z_testes(n1, n2, p1, p2):
|
|
173 |
return np.nan
|
174 |
|
175 |
def z_test_data(df):
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
186 |
p_value = z_testes(n1, n2, p1, p2)
|
187 |
-
if p_value <= 0.05:
|
188 |
-
styles.iloc[i, j] = 'background-color: lightgreen
|
189 |
-
|
190 |
-
return df.style.apply(lambda
|
191 |
|
192 |
def Z_test_dataframes(sheets_data):
|
193 |
"""Processes each sheet's DataFrame and computes new DataFrames with Z-test results."""
|
@@ -339,7 +340,8 @@ if main_option == "Tabulation":
|
|
339 |
percentile_df, frequency_df = two_variable_ss(df[[var1, var2]], var1, var2)
|
340 |
st.subheader("Percentage Table")
|
341 |
#st.dataframe(z_test_data(percentile_df), unsafe_allow_html=True)
|
342 |
-
st.dataframe(z_test_data(percentile_df), use_container_width=True)
|
|
|
343 |
|
344 |
st.subheader("Frequency Table")
|
345 |
st.dataframe(frequency_df)
|
@@ -353,7 +355,8 @@ if main_option == "Tabulation":
|
|
353 |
percentile_df, frequency_df = two_variable_sm(df[[var1] + matching_cols], var1, matching_cols)
|
354 |
st.subheader("Percentage Table")
|
355 |
#st.dataframe(z_test_data(percentile_df), unsafe_allow_html=True)
|
356 |
-
st.dataframe(z_test_data(percentile_df), use_container_width=True)
|
|
|
357 |
|
358 |
st.subheader("Frequency Table")
|
359 |
st.dataframe(frequency_df)
|
@@ -371,7 +374,8 @@ if main_option == "Tabulation":
|
|
371 |
percentile_df, frequency_df = two_variable_mm(df[matching_cols1 + matching_cols2], matching_cols1, matching_cols2)
|
372 |
st.subheader("Percentage Table")
|
373 |
#st.dataframe(z_test_data(percentile_df), unsafe_allow_html=True)
|
374 |
-
st.dataframe(z_test_data(percentile_df), use_container_width=True)
|
|
|
375 |
|
376 |
st.subheader("Frequency Table")
|
377 |
st.dataframe(frequency_df)
|
|
|
173 |
return np.nan
|
174 |
|
175 |
def z_test_data(df):
|
176 |
+
styles = pd.DataFrame('', index=df.index, columns=df.columns)
|
177 |
+
|
178 |
+
num_rows, num_cols = df.shape
|
179 |
+
sample_size = df.iloc[-1, -1] # Total sample size
|
180 |
+
|
181 |
+
for i in range(num_rows -1):
|
182 |
+
for j in range(1, num_cols -1):
|
183 |
+
n1 = df.iloc[-1, -1]
|
184 |
+
n2 = df.iloc[-1, j]
|
185 |
+
p1 = df.iloc[i, -1]
|
186 |
+
p2 = df.iloc[i, j]
|
187 |
p_value = z_testes(n1, n2, p1, p2)
|
188 |
+
if pd.notnull(p_value) and p_value <= 0.05:
|
189 |
+
styles.iloc[i, j] = 'background-color: lightgreen'
|
190 |
+
|
191 |
+
return df.style.apply(lambda _: styles, axis=None)
|
192 |
|
193 |
def Z_test_dataframes(sheets_data):
|
194 |
"""Processes each sheet's DataFrame and computes new DataFrames with Z-test results."""
|
|
|
340 |
percentile_df, frequency_df = two_variable_ss(df[[var1, var2]], var1, var2)
|
341 |
st.subheader("Percentage Table")
|
342 |
#st.dataframe(z_test_data(percentile_df), unsafe_allow_html=True)
|
343 |
+
#st.dataframe(z_test_data(percentile_df), use_container_width=True)
|
344 |
+
st.write(z_test_data(percentile_df))
|
345 |
|
346 |
st.subheader("Frequency Table")
|
347 |
st.dataframe(frequency_df)
|
|
|
355 |
percentile_df, frequency_df = two_variable_sm(df[[var1] + matching_cols], var1, matching_cols)
|
356 |
st.subheader("Percentage Table")
|
357 |
#st.dataframe(z_test_data(percentile_df), unsafe_allow_html=True)
|
358 |
+
#st.dataframe(z_test_data(percentile_df), use_container_width=True)
|
359 |
+
st.write(z_test_data(percentile_df))
|
360 |
|
361 |
st.subheader("Frequency Table")
|
362 |
st.dataframe(frequency_df)
|
|
|
374 |
percentile_df, frequency_df = two_variable_mm(df[matching_cols1 + matching_cols2], matching_cols1, matching_cols2)
|
375 |
st.subheader("Percentage Table")
|
376 |
#st.dataframe(z_test_data(percentile_df), unsafe_allow_html=True)
|
377 |
+
#st.dataframe(z_test_data(percentile_df), use_container_width=True)
|
378 |
+
st.write(z_test_data(percentile_df))
|
379 |
|
380 |
st.subheader("Frequency Table")
|
381 |
st.dataframe(frequency_df)
|