AMKhakbaz commited on
Commit
beba094
·
verified ·
1 Parent(s): 4020ae3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -135,7 +135,7 @@ def multi_answer(df):
135
  friquency[i] = 0
136
 
137
 
138
- friquency_dataframe = pd.DataFrame({"Value": friquency.keys(), 'Frequency': friquency.values(), "Percentage": np.array(list(friquency.values()))/len(df.dropna(how='all'))*100}).sort_values(by='Value')
139
  friquency_dataframe.loc[len(friquency_dataframe)] = ['Sample_size', len(df.dropna(how='all')), 1]
140
  return friquency_dataframe
141
 
@@ -144,7 +144,7 @@ def single_answer(df):
144
  friquency_dataframe = pd.DataFrame({
145
  'Value': counter.index,
146
  'Frequency': counter.values,
147
- 'Percentage': (counter.values / counter.sum()) * 100}).sort_values(by='Value')
148
  friquency_dataframe.loc[len(friquency_dataframe)] = ['Sample_size', len(df.dropna()), 1]
149
  return friquency_dataframe
150
 
@@ -154,7 +154,7 @@ def score_answer(df):
154
  friquency_dataframe = pd.DataFrame({
155
  'Value': list(counter.index)+["Meen", "Variance"],
156
  'Frequency': list(counter.values)+[df.mean(), df.var()],
157
- 'Percentage': list((counter.values / counter.sum()) * 100)+["", ""]})
158
 
159
  return friquency_dataframe
160
 
@@ -166,7 +166,7 @@ def two_variable_ss(df, var1, var2):
166
  #friquency_dataframe = sorting(friquency_dataframe)
167
 
168
  column_sums = friquency_dataframe.sum(axis=0)
169
- percentage_dataframe = friquency_dataframe.div(column_sums, axis=1) * 100
170
 
171
  friquency_dataframe['Total'] = list(single_answer(df[var1]).iloc[:,1])[:-1]
172
  friquency_dataframe.loc['Sample_size'] = list(single_answer(df[var2]).iloc[:,1])
@@ -307,8 +307,8 @@ def z_test_data(df):
307
  for j in range(1, num_cols -1):
308
  n1 = df.iloc[-1, -1]
309
  n2 = df.iloc[-1, j]
310
- p1 = df.iloc[i, -1]/100
311
- p2 = df.iloc[i, j]/100
312
  p_value = z_testes(n1, n2, p1, p2)
313
  if pd.notnull(p_value) and p_value <= 0.05:
314
  styles.iloc[i, j] = 'background-color: lightgreen'
 
135
  friquency[i] = 0
136
 
137
 
138
+ friquency_dataframe = pd.DataFrame({"Value": friquency.keys(), 'Frequency': friquency.values(), "Percentage": np.array(list(friquency.values()))/len(df.dropna(how='all'))}).sort_values(by='Value')
139
  friquency_dataframe.loc[len(friquency_dataframe)] = ['Sample_size', len(df.dropna(how='all')), 1]
140
  return friquency_dataframe
141
 
 
144
  friquency_dataframe = pd.DataFrame({
145
  'Value': counter.index,
146
  'Frequency': counter.values,
147
+ 'Percentage': (counter.values / counter.sum())}).sort_values(by='Value')
148
  friquency_dataframe.loc[len(friquency_dataframe)] = ['Sample_size', len(df.dropna()), 1]
149
  return friquency_dataframe
150
 
 
154
  friquency_dataframe = pd.DataFrame({
155
  'Value': list(counter.index)+["Meen", "Variance"],
156
  'Frequency': list(counter.values)+[df.mean(), df.var()],
157
+ 'Percentage': list((counter.values / counter.sum()))+["", ""]})
158
 
159
  return friquency_dataframe
160
 
 
166
  #friquency_dataframe = sorting(friquency_dataframe)
167
 
168
  column_sums = friquency_dataframe.sum(axis=0)
169
+ percentage_dataframe = friquency_dataframe.div(column_sums, axis=1)
170
 
171
  friquency_dataframe['Total'] = list(single_answer(df[var1]).iloc[:,1])[:-1]
172
  friquency_dataframe.loc['Sample_size'] = list(single_answer(df[var2]).iloc[:,1])
 
307
  for j in range(1, num_cols -1):
308
  n1 = df.iloc[-1, -1]
309
  n2 = df.iloc[-1, j]
310
+ p1 = df.iloc[i, -1]
311
+ p2 = df.iloc[i, j]
312
  p_value = z_testes(n1, n2, p1, p2)
313
  if pd.notnull(p_value) and p_value <= 0.05:
314
  styles.iloc[i, j] = 'background-color: lightgreen'