Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -135,7 +135,7 @@ def multi_answer(df):
|
|
135 |
friquency[i] = 0
|
136 |
|
137 |
|
138 |
-
friquency_dataframe = pd.DataFrame({"Value": friquency.keys(), 'Frequency': friquency.values(), "Percentage": np.array(list(friquency.values()))/len(df.dropna(how='all'))
|
139 |
friquency_dataframe.loc[len(friquency_dataframe)] = ['Sample_size', len(df.dropna(how='all')), 1]
|
140 |
return friquency_dataframe
|
141 |
|
@@ -144,7 +144,7 @@ def single_answer(df):
|
|
144 |
friquency_dataframe = pd.DataFrame({
|
145 |
'Value': counter.index,
|
146 |
'Frequency': counter.values,
|
147 |
-
'Percentage': (counter.values / counter.sum())
|
148 |
friquency_dataframe.loc[len(friquency_dataframe)] = ['Sample_size', len(df.dropna()), 1]
|
149 |
return friquency_dataframe
|
150 |
|
@@ -154,7 +154,7 @@ def score_answer(df):
|
|
154 |
friquency_dataframe = pd.DataFrame({
|
155 |
'Value': list(counter.index)+["Meen", "Variance"],
|
156 |
'Frequency': list(counter.values)+[df.mean(), df.var()],
|
157 |
-
'Percentage': list((counter.values / counter.sum())
|
158 |
|
159 |
return friquency_dataframe
|
160 |
|
@@ -166,7 +166,7 @@ def two_variable_ss(df, var1, var2):
|
|
166 |
#friquency_dataframe = sorting(friquency_dataframe)
|
167 |
|
168 |
column_sums = friquency_dataframe.sum(axis=0)
|
169 |
-
percentage_dataframe = friquency_dataframe.div(column_sums, axis=1)
|
170 |
|
171 |
friquency_dataframe['Total'] = list(single_answer(df[var1]).iloc[:,1])[:-1]
|
172 |
friquency_dataframe.loc['Sample_size'] = list(single_answer(df[var2]).iloc[:,1])
|
@@ -307,8 +307,8 @@ def z_test_data(df):
|
|
307 |
for j in range(1, num_cols -1):
|
308 |
n1 = df.iloc[-1, -1]
|
309 |
n2 = df.iloc[-1, j]
|
310 |
-
p1 = df.iloc[i, -1]
|
311 |
-
p2 = df.iloc[i, j]
|
312 |
p_value = z_testes(n1, n2, p1, p2)
|
313 |
if pd.notnull(p_value) and p_value <= 0.05:
|
314 |
styles.iloc[i, j] = 'background-color: lightgreen'
|
|
|
135 |
friquency[i] = 0
|
136 |
|
137 |
|
138 |
+
friquency_dataframe = pd.DataFrame({"Value": friquency.keys(), 'Frequency': friquency.values(), "Percentage": np.array(list(friquency.values()))/len(df.dropna(how='all'))}).sort_values(by='Value')
|
139 |
friquency_dataframe.loc[len(friquency_dataframe)] = ['Sample_size', len(df.dropna(how='all')), 1]
|
140 |
return friquency_dataframe
|
141 |
|
|
|
144 |
friquency_dataframe = pd.DataFrame({
|
145 |
'Value': counter.index,
|
146 |
'Frequency': counter.values,
|
147 |
+
'Percentage': (counter.values / counter.sum())}).sort_values(by='Value')
|
148 |
friquency_dataframe.loc[len(friquency_dataframe)] = ['Sample_size', len(df.dropna()), 1]
|
149 |
return friquency_dataframe
|
150 |
|
|
|
154 |
friquency_dataframe = pd.DataFrame({
|
155 |
'Value': list(counter.index)+["Meen", "Variance"],
|
156 |
'Frequency': list(counter.values)+[df.mean(), df.var()],
|
157 |
+
'Percentage': list((counter.values / counter.sum()))+["", ""]})
|
158 |
|
159 |
return friquency_dataframe
|
160 |
|
|
|
166 |
#friquency_dataframe = sorting(friquency_dataframe)
|
167 |
|
168 |
column_sums = friquency_dataframe.sum(axis=0)
|
169 |
+
percentage_dataframe = friquency_dataframe.div(column_sums, axis=1)
|
170 |
|
171 |
friquency_dataframe['Total'] = list(single_answer(df[var1]).iloc[:,1])[:-1]
|
172 |
friquency_dataframe.loc['Sample_size'] = list(single_answer(df[var2]).iloc[:,1])
|
|
|
307 |
for j in range(1, num_cols -1):
|
308 |
n1 = df.iloc[-1, -1]
|
309 |
n2 = df.iloc[-1, j]
|
310 |
+
p1 = df.iloc[i, -1]
|
311 |
+
p2 = df.iloc[i, j]
|
312 |
p_value = z_testes(n1, n2, p1, p2)
|
313 |
if pd.notnull(p_value) and p_value <= 0.05:
|
314 |
styles.iloc[i, j] = 'background-color: lightgreen'
|