sauravsingla08's picture
Upload model_card.md
73212c5 verified
---
tags:
- pytorch
- anomaly-detection
- time-series
- gru
- sequence-model
- binary-classification
model-index:
- name: GRU Sequence Anomaly Detector
results: []
---
# GRU Sequence Anomaly Detector
This model uses a bidirectional GRU (Gated Recurrent Unit) architecture to detect anomalies in sequential tabular data β€” such as transaction records, log events, or sensor readings. It's designed for general-purpose anomaly detection and can be fine-tuned on domain-specific datasets.
## 🧠 Model Architecture
- **Type:** Bidirectional GRU
- **Input:** Sequence of numerical feature vectors `(batch_size, time_steps, input_dim)`
- **Output:** Binary classification (0 = normal, 1 = anomaly)
- **Layers:** 2-layer GRU β†’ BatchNorm β†’ Dense β†’ Sigmoid
## πŸ› οΈ Intended Use
This model is ideal for:
- Transaction anomaly detection
- Time-series pattern disruption
- Sequential event log monitoring
It is open for fine-tuning using your labeled anomaly dataset via `fine_tune_template.py`.
## πŸš€ How to Use
```python
import torch
from models.model import TxnAnomalyGRU
model = TxnAnomalyGRU(input_dim=32)
model.load_state_dict(torch.load("models/txn_anomaly_model.pt"))
model.eval()
```
Or use the ONNX version with ONNX Runtime:
```python
import onnxruntime
session = onnxruntime.InferenceSession("models/txn_anomaly_model.onnx")
outputs = session.run(None, {"input": your_input_array})
```
## πŸ”„ Fine-Tuning
To fine-tune on your own dataset:
```bash
python fine_tune_template.py --data your_dataset.csv
```
Ensure your data is preprocessed into sequences of the same input dimension (`input_dim=32` by default).
## πŸ“¦ Files Included
- `models/txn_anomaly_model.pt` – Pretrained PyTorch model
- `models/txn_anomaly_model.onnx` – ONNX export
- `fine_tune_template.py` – Script to fine-tune on your dataset
- `pipeline/main.py` – End-to-end pipeline