metadata
tags:
- pytorch
- anomaly-detection
- time-series
- gru
- sequence-model
- binary-classification
model-index:
- name: GRU Sequence Anomaly Detector
results: []
GRU Sequence Anomaly Detector
This model uses a bidirectional GRU (Gated Recurrent Unit) architecture to detect anomalies in sequential tabular data β such as transaction records, log events, or sensor readings. It's designed for general-purpose anomaly detection and can be fine-tuned on domain-specific datasets.
π§ Model Architecture
- Type: Bidirectional GRU
- Input: Sequence of numerical feature vectors
(batch_size, time_steps, input_dim)
- Output: Binary classification (0 = normal, 1 = anomaly)
- Layers: 2-layer GRU β BatchNorm β Dense β Sigmoid
π οΈ Intended Use
This model is ideal for:
- Transaction anomaly detection
- Time-series pattern disruption
- Sequential event log monitoring
It is open for fine-tuning using your labeled anomaly dataset via fine_tune_template.py
.
π How to Use
import torch
from models.model import TxnAnomalyGRU
model = TxnAnomalyGRU(input_dim=32)
model.load_state_dict(torch.load("models/txn_anomaly_model.pt"))
model.eval()
Or use the ONNX version with ONNX Runtime:
import onnxruntime
session = onnxruntime.InferenceSession("models/txn_anomaly_model.onnx")
outputs = session.run(None, {"input": your_input_array})
π Fine-Tuning
To fine-tune on your own dataset:
python fine_tune_template.py --data your_dataset.csv
Ensure your data is preprocessed into sequences of the same input dimension (input_dim=32
by default).
π¦ Files Included
models/txn_anomaly_model.pt
β Pretrained PyTorch modelmodels/txn_anomaly_model.onnx
β ONNX exportfine_tune_template.py
β Script to fine-tune on your datasetpipeline/main.py
β End-to-end pipeline