sauravsingla08 commited on
Commit
73212c5
Β·
verified Β·
1 Parent(s): 1996a66

Upload model_card.md

Browse files
Files changed (1) hide show
  1. model_card.md +68 -0
model_card.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - pytorch
4
+ - anomaly-detection
5
+ - time-series
6
+ - gru
7
+ - sequence-model
8
+ - binary-classification
9
+ model-index:
10
+ - name: GRU Sequence Anomaly Detector
11
+ results: []
12
+ ---
13
+
14
+ # GRU Sequence Anomaly Detector
15
+
16
+ This model uses a bidirectional GRU (Gated Recurrent Unit) architecture to detect anomalies in sequential tabular data β€” such as transaction records, log events, or sensor readings. It's designed for general-purpose anomaly detection and can be fine-tuned on domain-specific datasets.
17
+
18
+ ## 🧠 Model Architecture
19
+
20
+ - **Type:** Bidirectional GRU
21
+ - **Input:** Sequence of numerical feature vectors `(batch_size, time_steps, input_dim)`
22
+ - **Output:** Binary classification (0 = normal, 1 = anomaly)
23
+ - **Layers:** 2-layer GRU β†’ BatchNorm β†’ Dense β†’ Sigmoid
24
+
25
+ ## πŸ› οΈ Intended Use
26
+
27
+ This model is ideal for:
28
+ - Transaction anomaly detection
29
+ - Time-series pattern disruption
30
+ - Sequential event log monitoring
31
+
32
+ It is open for fine-tuning using your labeled anomaly dataset via `fine_tune_template.py`.
33
+
34
+ ## πŸš€ How to Use
35
+
36
+ ```python
37
+ import torch
38
+ from models.model import TxnAnomalyGRU
39
+
40
+ model = TxnAnomalyGRU(input_dim=32)
41
+ model.load_state_dict(torch.load("models/txn_anomaly_model.pt"))
42
+ model.eval()
43
+ ```
44
+
45
+ Or use the ONNX version with ONNX Runtime:
46
+
47
+ ```python
48
+ import onnxruntime
49
+ session = onnxruntime.InferenceSession("models/txn_anomaly_model.onnx")
50
+ outputs = session.run(None, {"input": your_input_array})
51
+ ```
52
+
53
+ ## πŸ”„ Fine-Tuning
54
+
55
+ To fine-tune on your own dataset:
56
+
57
+ ```bash
58
+ python fine_tune_template.py --data your_dataset.csv
59
+ ```
60
+
61
+ Ensure your data is preprocessed into sequences of the same input dimension (`input_dim=32` by default).
62
+
63
+ ## πŸ“¦ Files Included
64
+
65
+ - `models/txn_anomaly_model.pt` – Pretrained PyTorch model
66
+ - `models/txn_anomaly_model.onnx` – ONNX export
67
+ - `fine_tune_template.py` – Script to fine-tune on your dataset
68
+ - `pipeline/main.py` – End-to-end pipeline