sauravsingla08 commited on
Commit
1996a66
Β·
verified Β·
1 Parent(s): 57778ef

Delete model_card.md

Browse files
Files changed (1) hide show
  1. model_card.md +0 -92
model_card.md DELETED
@@ -1,92 +0,0 @@
1
- ---
2
- license: mit
3
- tags:
4
- - pytorch
5
- - anomaly-detection
6
- - time-series
7
- - gru
8
- - sequence-model
9
- - binary-classification
10
- model-index:
11
- - name: GRU Sequence Anomaly Detector
12
- results: []
13
- ---
14
-
15
- # GRU Sequence Anomaly Detector
16
-
17
- This model uses a bidirectional GRU (Gated Recurrent Unit) architecture to detect anomalies in sequential tabular data β€” such as transaction records, log events, or sensor readings. It's designed for general-purpose anomaly detection and can be fine-tuned on domain-specific datasets.
18
-
19
- ---
20
-
21
- ## 🧠 Model Architecture
22
-
23
- - **Type:** Bidirectional GRU
24
- - **Input:** Sequence of numerical feature vectors `(batch_size, time_steps, input_dim)`
25
- - **Output:** Binary classification (0 = normal, 1 = anomaly)
26
- - **Layers:** 2-layer GRU β†’ BatchNorm β†’ Dense β†’ Sigmoid
27
-
28
- ---
29
-
30
- ## πŸ› οΈ Intended Use
31
-
32
- This model is ideal for:
33
- - Transaction anomaly detection
34
- - Time-series pattern disruption
35
- - Sequential event log monitoring
36
-
37
- It is **open for fine-tuning** using your labeled anomaly dataset via `fine_tune_template.py`.
38
-
39
- ---
40
-
41
- ## πŸš€ How to Use
42
-
43
- ```python
44
- import torch
45
- from models.model import TxnAnomalyGRU
46
-
47
- model = TxnAnomalyGRU(input_dim=32)
48
- model.load_state_dict(torch.load("models/txn_anomaly_model.pt"))
49
- model.eval()
50
- ```
51
-
52
- Or use the ONNX version with ONNX Runtime:
53
-
54
- ```python
55
- import onnxruntime
56
- session = onnxruntime.InferenceSession("models/txn_anomaly_model.onnx")
57
- outputs = session.run(None, {"input": your_input_array})
58
- ```
59
-
60
- ---
61
-
62
- ## πŸ”„ Fine-Tuning
63
-
64
- To fine-tune on your own dataset:
65
-
66
- ```bash
67
- python fine_tune_template.py --data your_dataset.csv
68
- ```
69
-
70
- Ensure your data is preprocessed into sequences of the same input dimension (`input_dim=32` by default).
71
-
72
- ---
73
-
74
- ## πŸ“¦ Files Included
75
-
76
- - `models/txn_anomaly_model.pt` – Pretrained PyTorch model
77
- - `models/txn_anomaly_model.onnx` – ONNX export
78
- - `fine_tune_template.py` – Script to fine-tune on your dataset
79
- - `pipeline/main.py` – End-to-end pipeline
80
-
81
- ---
82
-
83
- ## πŸ“ License
84
-
85
- This model is released under the **MIT License**. You are free to use, modify, and distribute it for research or commercial purposes.
86
-
87
- ---
88
-
89
- ## πŸ‘€ Author
90
-
91
- Developed by [Your Name]
92
- For contributions, bug reports, or questions, please use GitHub Issues.