metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:416
- loss:BatchSemiHardTripletLoss
base_model: BAAI/bge-base-en
widget:
- source_sentence: |
Name : CloudMetric Solutions
Category: Data Analytics, Virtual Infrastructure Management
Department: Engineering
Location: Toronto, Canada
Amount: 1644.75
Card: Real-Time Resource Monitoring
Trip Name: unknown
sentences:
- |
Name : Nimbus Networks Inc.
Category: Cloud Services, Application Hosting
Department: Research & Development
Location: Austin, TX
Amount: 1134.67
Card: NextGen Application Deployment
Trip Name: unknown
- |
Name : Allianz
Category: Insurance Services, Financial Services
Department: Finance
Location: New York, NY
Amount: 2547.39
Card: Quarterly Coverage Evaluation
Trip Name: unknown
- |
Name : Connexis Group
Category: Venue Logistics Services, Corporate Membership Consultancy
Department: Sales
Location: Berlin, Germany
Amount: 1478.55
Card: International Trade Show Engagement
Trip Name: unknown
- source_sentence: |
Name : BuroPro Services
Category: Facilities Management, Maintenance Solutions
Department: Office Administration
Location: Berlin, Germany
Amount: 879.99
Card: Monthly Equipment Oversight
Trip Name: unknown
sentences:
- |
Name : SynthioSolutions Global
Category: Technology Consulting, Research Services
Department: Research & Development
Location: Singapore
Amount: 1342.67
Card: Advanced Data Integration Project
Trip Name: unknown
- |
Name : Papyrus Solutions Inc.
Category: Workspace Solutions, Office Technology Rentals
Department: Office Administration
Location: Dublin, Ireland
Amount: 1348.56
Card: Enhanced Work Efficiency Initiative
Trip Name: unknown
- |
Name : City Shuttle Services
Category: Transportation, Logistics
Department: Sales
Location: San Francisco, CA
Amount: 85.0
Card: Sales Team Travel Fund
Trip Name: Client Meeting in Bay Area
- source_sentence: |
Name : SkillAdvance Academy
Category: Online Learning Platform, Professional Development
Department: Engineering
Location: Austin, TX
Amount: 1875.67
Card: Continuous Improvement Initiative
Trip Name: unknown
sentences:
- |
Name : ComplyTech Solutions
Category: Regulatory Software, Consultancy Services
Department: Compliance
Location: Brussels, Belgium
Amount: 1095.45
Card: Regulatory Compliance Optimization Plan
Trip Name: unknown
- |
Name : AlphaTech Solutions
Category: Computer & Electronics Retail
Department: Research & Development
Location: Toronto, Canada
Amount: 1599.99
Card: Innovative Hardware Acquisition
Trip Name: unknown
- |
Name : Craft Gate Systems
Category: Payment Processing Gateway, Data Analytics Software
Department: Finance
Location: Austin, TX
Amount: 1132.58
Card: Quarterly Revenue Analysis
Trip Name: unknown
- source_sentence: |
Name : Rising Tide Solutions
Category: IT Resource Management
Department: Engineering
Location: Amsterdam, Netherlands
Amount: 1423.57
Card: Cloud Transition Project
Trip Name: unknown
sentences:
- |
Name : GigaTrend
Category: Data Services, Cloud Software Solutions
Department: Research & Development
Location: London, UK
Amount: 1345.67
Card: Data-Driven Innovation Project
Trip Name: unknown
- |
Name : Apex Innovations Group
Category: Business Consulting, Training Services
Department: Executive
Location: Sydney, Australia
Amount: 1575.34
Card: Leadership Development Program
Trip Name: unknown
- |
Name : Aegis Risk Consultants
Category: Executive Risk Management, Enterprise Solutions
Department: Legal
Location: London, UK
Amount: 1743.56
Card: Leadership Liability Initiative
Trip Name: unknown
- source_sentence: |
Name : Allegro Integrations
Category: Payment Processing Solutions, Financial Technology Services
Department: Finance
Location: Dublin, Ireland
Amount: 1298.75
Card: Bi-annual Financial Systems Audit
Trip Name: unknown
sentences:
- |
Name : Banyan Tree Pte Ltd
Category: General Contractors - Residential and Commercial
Department: Office Administration
Location: Houston, TX
Amount: 987.65
Card: Operational Infrastructure Management
Trip Name: unknown
- >
Name : InsightWave Research
Category: Business Intelligence Consultations, Market Expansion Strategy
Services
Department: Marketing
Location: Tokyo, Japan
Amount: 2034.67
Card: Global Market Insights Program
Trip Name: unknown
- |
Name : ComplyTech Solutions
Category: Regulatory Software, Consultancy Services
Department: Compliance
Location: Brussels, Belgium
Amount: 1095.45
Card: Regulatory Compliance Optimization Plan
Trip Name: unknown
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en
results:
- task:
type: triplet
name: Triplet
dataset:
name: bge base en train
type: bge-base-en-train
metrics:
- type: cosine_accuracy
value: 0.4759615361690521
name: Cosine Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: bge base en eval
type: bge-base-en-eval
metrics:
- type: cosine_accuracy
value: 0
name: Cosine Accuracy
SentenceTransformer based on BAAI/bge-base-en
This is a sentence-transformers model finetuned from BAAI/bge-base-en. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ppuva1/finetuned-bge-base-en")
# Run inference
sentences = [
'\nName : Allegro Integrations\nCategory: Payment Processing Solutions, Financial Technology Services\nDepartment: Finance\nLocation: Dublin, Ireland\nAmount: 1298.75\nCard: Bi-annual Financial Systems Audit\nTrip Name: unknown\n',
'\nName : Banyan Tree Pte Ltd\nCategory: General Contractors - Residential and Commercial\nDepartment: Office Administration\nLocation: Houston, TX\nAmount: 987.65\nCard: Operational Infrastructure Management\nTrip Name: unknown\n',
'\nName : ComplyTech Solutions\nCategory: Regulatory Software, Consultancy Services\nDepartment: Compliance\nLocation: Brussels, Belgium\nAmount: 1095.45\nCard: Regulatory Compliance Optimization Plan\nTrip Name: unknown\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Datasets:
bge-base-en-train
andbge-base-en-eval
- Evaluated with
TripletEvaluator
Metric | bge-base-en-train | bge-base-en-eval |
---|---|---|
cosine_accuracy | 0.476 | 0.0 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 416 training samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 416 samples:
sentence label type string int details - min: 32 tokens
- mean: 39.99 tokens
- max: 49 tokens
- 0: ~3.12%
- 1: ~3.12%
- 2: ~3.85%
- 3: ~4.81%
- 4: ~2.16%
- 5: ~4.33%
- 6: ~4.57%
- 7: ~3.85%
- 8: ~5.05%
- 9: ~4.09%
- 10: ~2.88%
- 11: ~4.33%
- 12: ~2.16%
- 13: ~4.09%
- 14: ~3.61%
- 15: ~5.77%
- 16: ~3.12%
- 17: ~6.01%
- 18: ~5.05%
- 19: ~2.64%
- 20: ~3.37%
- 21: ~2.88%
- 22: ~4.57%
- 23: ~2.64%
- 24: ~2.64%
- 25: ~3.85%
- 26: ~1.44%
- Samples:
sentence label
Name : InnovaThink Global
Category: Management Consultancy, Technical Training Services
Department: HR
Location: Zurich, Switzerland
Amount: 1675.32
Card: Innovation and Efficiency Program
Trip Name: unknown0
Name : Global Wellness Network
Category: Corporate Wellness Programs, Employee Engagement
Department: HR
Location: Berlin, Germany
Amount: 1285.75
Card: Wellness and Engagement Program
Trip Name: unknown1
Name : Wong & Lim
Category: Technical Equipment Services, Facility Services
Department: Office Administration
Location: Berlin, Germany
Amount: 458.29
Card: Monthly Equipment Care Program
Trip Name: unknown2
- Loss:
BatchSemiHardTripletLoss
Evaluation Dataset
Unnamed Dataset
- Size: 104 evaluation samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 104 samples:
sentence label type string int details - min: 32 tokens
- mean: 39.19 tokens
- max: 46 tokens
- 0: ~1.92%
- 1: ~0.96%
- 2: ~4.81%
- 3: ~1.92%
- 5: ~5.77%
- 6: ~7.69%
- 7: ~4.81%
- 8: ~3.85%
- 9: ~5.77%
- 10: ~2.88%
- 11: ~4.81%
- 12: ~2.88%
- 13: ~1.92%
- 14: ~2.88%
- 15: ~0.96%
- 16: ~1.92%
- 17: ~3.85%
- 18: ~4.81%
- 19: ~3.85%
- 20: ~1.92%
- 21: ~0.96%
- 22: ~5.77%
- 23: ~7.69%
- 24: ~7.69%
- 25: ~4.81%
- 26: ~2.88%
- Samples:
sentence label
Name : Aegis Risk Consultants
Category: Executive Risk Management, Enterprise Solutions
Department: Legal
Location: London, UK
Amount: 1743.56
Card: Leadership Liability Initiative
Trip Name: unknown11
Name : Vinobia Lounge
Category: Culinary Experiences, Networking Venues
Department: Marketing
Location: Dallas, TX
Amount: 651.58
Card: Innovative Marketing Strategies
Trip Name: Annual Marketing Event8
Name : Freenet AG
Category: Telecommunication Services
Department: IT Operations
Location: Zurich, Switzerland
Amount: 2794.37
Card: Infrastructure Support Services
Trip Name: unknown25
- Loss:
BatchSemiHardTripletLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 5warmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | bge-base-en-train_cosine_accuracy | bge-base-en-eval_cosine_accuracy |
---|---|---|---|---|---|
-1 | -1 | - | - | 0.8510 | - |
3.8462 | 100 | 4.9979 | 5.0174 | 0.4760 | - |
-1 | -1 | - | - | - | 0.0 |
Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.6.0
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
BatchSemiHardTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}