File size: 24,210 Bytes
fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f ce496eb fbdc86f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:416
- loss:BatchSemiHardTripletLoss
base_model: BAAI/bge-base-en
widget:
- source_sentence: '
Name : CloudMetric Solutions
Category: Data Analytics, Virtual Infrastructure Management
Department: Engineering
Location: Toronto, Canada
Amount: 1644.75
Card: Real-Time Resource Monitoring
Trip Name: unknown
'
sentences:
- '
Name : Nimbus Networks Inc.
Category: Cloud Services, Application Hosting
Department: Research & Development
Location: Austin, TX
Amount: 1134.67
Card: NextGen Application Deployment
Trip Name: unknown
'
- '
Name : Allianz
Category: Insurance Services, Financial Services
Department: Finance
Location: New York, NY
Amount: 2547.39
Card: Quarterly Coverage Evaluation
Trip Name: unknown
'
- '
Name : Connexis Group
Category: Venue Logistics Services, Corporate Membership Consultancy
Department: Sales
Location: Berlin, Germany
Amount: 1478.55
Card: International Trade Show Engagement
Trip Name: unknown
'
- source_sentence: '
Name : BuroPro Services
Category: Facilities Management, Maintenance Solutions
Department: Office Administration
Location: Berlin, Germany
Amount: 879.99
Card: Monthly Equipment Oversight
Trip Name: unknown
'
sentences:
- '
Name : SynthioSolutions Global
Category: Technology Consulting, Research Services
Department: Research & Development
Location: Singapore
Amount: 1342.67
Card: Advanced Data Integration Project
Trip Name: unknown
'
- '
Name : Papyrus Solutions Inc.
Category: Workspace Solutions, Office Technology Rentals
Department: Office Administration
Location: Dublin, Ireland
Amount: 1348.56
Card: Enhanced Work Efficiency Initiative
Trip Name: unknown
'
- '
Name : City Shuttle Services
Category: Transportation, Logistics
Department: Sales
Location: San Francisco, CA
Amount: 85.0
Card: Sales Team Travel Fund
Trip Name: Client Meeting in Bay Area
'
- source_sentence: '
Name : SkillAdvance Academy
Category: Online Learning Platform, Professional Development
Department: Engineering
Location: Austin, TX
Amount: 1875.67
Card: Continuous Improvement Initiative
Trip Name: unknown
'
sentences:
- '
Name : ComplyTech Solutions
Category: Regulatory Software, Consultancy Services
Department: Compliance
Location: Brussels, Belgium
Amount: 1095.45
Card: Regulatory Compliance Optimization Plan
Trip Name: unknown
'
- '
Name : AlphaTech Solutions
Category: Computer & Electronics Retail
Department: Research & Development
Location: Toronto, Canada
Amount: 1599.99
Card: Innovative Hardware Acquisition
Trip Name: unknown
'
- '
Name : Craft Gate Systems
Category: Payment Processing Gateway, Data Analytics Software
Department: Finance
Location: Austin, TX
Amount: 1132.58
Card: Quarterly Revenue Analysis
Trip Name: unknown
'
- source_sentence: '
Name : Rising Tide Solutions
Category: IT Resource Management
Department: Engineering
Location: Amsterdam, Netherlands
Amount: 1423.57
Card: Cloud Transition Project
Trip Name: unknown
'
sentences:
- '
Name : GigaTrend
Category: Data Services, Cloud Software Solutions
Department: Research & Development
Location: London, UK
Amount: 1345.67
Card: Data-Driven Innovation Project
Trip Name: unknown
'
- '
Name : Apex Innovations Group
Category: Business Consulting, Training Services
Department: Executive
Location: Sydney, Australia
Amount: 1575.34
Card: Leadership Development Program
Trip Name: unknown
'
- '
Name : Aegis Risk Consultants
Category: Executive Risk Management, Enterprise Solutions
Department: Legal
Location: London, UK
Amount: 1743.56
Card: Leadership Liability Initiative
Trip Name: unknown
'
- source_sentence: '
Name : Allegro Integrations
Category: Payment Processing Solutions, Financial Technology Services
Department: Finance
Location: Dublin, Ireland
Amount: 1298.75
Card: Bi-annual Financial Systems Audit
Trip Name: unknown
'
sentences:
- '
Name : Banyan Tree Pte Ltd
Category: General Contractors - Residential and Commercial
Department: Office Administration
Location: Houston, TX
Amount: 987.65
Card: Operational Infrastructure Management
Trip Name: unknown
'
- '
Name : InsightWave Research
Category: Business Intelligence Consultations, Market Expansion Strategy Services
Department: Marketing
Location: Tokyo, Japan
Amount: 2034.67
Card: Global Market Insights Program
Trip Name: unknown
'
- '
Name : ComplyTech Solutions
Category: Regulatory Software, Consultancy Services
Department: Compliance
Location: Brussels, Belgium
Amount: 1095.45
Card: Regulatory Compliance Optimization Plan
Trip Name: unknown
'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en
results:
- task:
type: triplet
name: Triplet
dataset:
name: bge base en train
type: bge-base-en-train
metrics:
- type: cosine_accuracy
value: 0.4759615361690521
name: Cosine Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: bge base en eval
type: bge-base-en-eval
metrics:
- type: cosine_accuracy
value: 0.0
name: Cosine Accuracy
---
# SentenceTransformer based on BAAI/bge-base-en
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) <!-- at revision b737bf5dcc6ee8bdc530531266b4804a5d77b5d8 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ppuva1/finetuned-bge-base-en")
# Run inference
sentences = [
'\nName : Allegro Integrations\nCategory: Payment Processing Solutions, Financial Technology Services\nDepartment: Finance\nLocation: Dublin, Ireland\nAmount: 1298.75\nCard: Bi-annual Financial Systems Audit\nTrip Name: unknown\n',
'\nName : Banyan Tree Pte Ltd\nCategory: General Contractors - Residential and Commercial\nDepartment: Office Administration\nLocation: Houston, TX\nAmount: 987.65\nCard: Operational Infrastructure Management\nTrip Name: unknown\n',
'\nName : ComplyTech Solutions\nCategory: Regulatory Software, Consultancy Services\nDepartment: Compliance\nLocation: Brussels, Belgium\nAmount: 1095.45\nCard: Regulatory Compliance Optimization Plan\nTrip Name: unknown\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Datasets: `bge-base-en-train` and `bge-base-en-eval`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | bge-base-en-train | bge-base-en-eval |
|:--------------------|:------------------|:-----------------|
| **cosine_accuracy** | **0.476** | **0.0** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 416 training samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 416 samples:
| | sentence | label |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type | string | int |
| details | <ul><li>min: 32 tokens</li><li>mean: 39.99 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>0: ~3.12%</li><li>1: ~3.12%</li><li>2: ~3.85%</li><li>3: ~4.81%</li><li>4: ~2.16%</li><li>5: ~4.33%</li><li>6: ~4.57%</li><li>7: ~3.85%</li><li>8: ~5.05%</li><li>9: ~4.09%</li><li>10: ~2.88%</li><li>11: ~4.33%</li><li>12: ~2.16%</li><li>13: ~4.09%</li><li>14: ~3.61%</li><li>15: ~5.77%</li><li>16: ~3.12%</li><li>17: ~6.01%</li><li>18: ~5.05%</li><li>19: ~2.64%</li><li>20: ~3.37%</li><li>21: ~2.88%</li><li>22: ~4.57%</li><li>23: ~2.64%</li><li>24: ~2.64%</li><li>25: ~3.85%</li><li>26: ~1.44%</li></ul> |
* Samples:
| sentence | label |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code><br>Name : InnovaThink Global<br>Category: Management Consultancy, Technical Training Services<br>Department: HR<br>Location: Zurich, Switzerland<br>Amount: 1675.32<br>Card: Innovation and Efficiency Program<br>Trip Name: unknown<br></code> | <code>0</code> |
| <code><br>Name : Global Wellness Network<br>Category: Corporate Wellness Programs, Employee Engagement<br>Department: HR<br>Location: Berlin, Germany<br>Amount: 1285.75<br>Card: Wellness and Engagement Program<br>Trip Name: unknown<br></code> | <code>1</code> |
| <code><br>Name : Wong & Lim<br>Category: Technical Equipment Services, Facility Services<br>Department: Office Administration<br>Location: Berlin, Germany<br>Amount: 458.29<br>Card: Monthly Equipment Care Program<br>Trip Name: unknown<br></code> | <code>2</code> |
* Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 104 evaluation samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 104 samples:
| | sentence | label |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type | string | int |
| details | <ul><li>min: 32 tokens</li><li>mean: 39.19 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>0: ~1.92%</li><li>1: ~0.96%</li><li>2: ~4.81%</li><li>3: ~1.92%</li><li>5: ~5.77%</li><li>6: ~7.69%</li><li>7: ~4.81%</li><li>8: ~3.85%</li><li>9: ~5.77%</li><li>10: ~2.88%</li><li>11: ~4.81%</li><li>12: ~2.88%</li><li>13: ~1.92%</li><li>14: ~2.88%</li><li>15: ~0.96%</li><li>16: ~1.92%</li><li>17: ~3.85%</li><li>18: ~4.81%</li><li>19: ~3.85%</li><li>20: ~1.92%</li><li>21: ~0.96%</li><li>22: ~5.77%</li><li>23: ~7.69%</li><li>24: ~7.69%</li><li>25: ~4.81%</li><li>26: ~2.88%</li></ul> |
* Samples:
| sentence | label |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------|
| <code><br>Name : Aegis Risk Consultants<br>Category: Executive Risk Management, Enterprise Solutions<br>Department: Legal<br>Location: London, UK<br>Amount: 1743.56<br>Card: Leadership Liability Initiative<br>Trip Name: unknown<br></code> | <code>11</code> |
| <code><br>Name : Vinobia Lounge<br>Category: Culinary Experiences, Networking Venues<br>Department: Marketing<br>Location: Dallas, TX<br>Amount: 651.58<br>Card: Innovative Marketing Strategies<br>Trip Name: Annual Marketing Event<br></code> | <code>8</code> |
| <code><br>Name : Freenet AG<br>Category: Telecommunication Services<br>Department: IT Operations<br>Location: Zurich, Switzerland<br>Amount: 2794.37<br>Card: Infrastructure Support Services<br>Trip Name: unknown<br></code> | <code>25</code> |
* Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | bge-base-en-train_cosine_accuracy | bge-base-en-eval_cosine_accuracy |
|:------:|:----:|:-------------:|:---------------:|:---------------------------------:|:--------------------------------:|
| -1 | -1 | - | - | 0.8510 | - |
| 3.8462 | 100 | 4.9979 | 5.0174 | 0.4760 | - |
| -1 | -1 | - | - | - | 0.0 |
### Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.6.0
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### BatchSemiHardTripletLoss
```bibtex
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |