File size: 24,210 Bytes
fbdc86f
 
 
 
 
 
ce496eb
fbdc86f
 
 
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
 
ce496eb
fbdc86f
 
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce496eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbdc86f
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
 
 
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
 
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
 
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
 
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
 
 
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
 
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
 
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
 
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
 
 
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
 
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
 
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce496eb
fbdc86f
 
 
 
 
 
 
 
 
ce496eb
fbdc86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce496eb
 
 
fbdc86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce496eb
fbdc86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce496eb
fbdc86f
ce496eb
fbdc86f
 
 
ce496eb
fbdc86f
ce496eb
 
 
 
 
fbdc86f
 
 
 
 
 
ce496eb
fbdc86f
ce496eb
 
 
 
 
fbdc86f
ce496eb
 
 
 
 
fbdc86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce496eb
 
 
 
 
fbdc86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:416
- loss:BatchSemiHardTripletLoss
base_model: BAAI/bge-base-en
widget:
- source_sentence: '

    Name : CloudMetric Solutions

    Category: Data Analytics, Virtual Infrastructure Management

    Department: Engineering

    Location: Toronto, Canada

    Amount: 1644.75

    Card: Real-Time Resource Monitoring

    Trip Name: unknown

    '
  sentences:
  - '

    Name : Nimbus Networks Inc.

    Category: Cloud Services, Application Hosting

    Department: Research & Development

    Location: Austin, TX

    Amount: 1134.67

    Card: NextGen Application Deployment

    Trip Name: unknown

    '
  - '

    Name : Allianz

    Category: Insurance Services, Financial Services

    Department: Finance

    Location: New York, NY

    Amount: 2547.39

    Card: Quarterly Coverage Evaluation

    Trip Name: unknown

    '
  - '

    Name : Connexis Group

    Category: Venue Logistics Services, Corporate Membership Consultancy

    Department: Sales

    Location: Berlin, Germany

    Amount: 1478.55

    Card: International Trade Show Engagement

    Trip Name: unknown

    '
- source_sentence: '

    Name : BuroPro Services

    Category: Facilities Management, Maintenance Solutions

    Department: Office Administration

    Location: Berlin, Germany

    Amount: 879.99

    Card: Monthly Equipment Oversight

    Trip Name: unknown

    '
  sentences:
  - '

    Name : SynthioSolutions Global

    Category: Technology Consulting, Research Services

    Department: Research & Development

    Location: Singapore

    Amount: 1342.67

    Card: Advanced Data Integration Project

    Trip Name: unknown

    '
  - '

    Name : Papyrus Solutions Inc.

    Category: Workspace Solutions, Office Technology Rentals

    Department: Office Administration

    Location: Dublin, Ireland

    Amount: 1348.56

    Card: Enhanced Work Efficiency Initiative

    Trip Name: unknown

    '
  - '

    Name : City Shuttle Services

    Category: Transportation, Logistics

    Department: Sales

    Location: San Francisco, CA

    Amount: 85.0

    Card: Sales Team Travel Fund

    Trip Name: Client Meeting in Bay Area

    '
- source_sentence: '

    Name : SkillAdvance Academy

    Category: Online Learning Platform, Professional Development

    Department: Engineering

    Location: Austin, TX

    Amount: 1875.67

    Card: Continuous Improvement Initiative

    Trip Name: unknown

    '
  sentences:
  - '

    Name : ComplyTech Solutions

    Category: Regulatory Software, Consultancy Services

    Department: Compliance

    Location: Brussels, Belgium

    Amount: 1095.45

    Card: Regulatory Compliance Optimization Plan

    Trip Name: unknown

    '
  - '

    Name : AlphaTech Solutions

    Category: Computer & Electronics Retail

    Department: Research & Development

    Location: Toronto, Canada

    Amount: 1599.99

    Card: Innovative Hardware Acquisition

    Trip Name: unknown

    '
  - '

    Name : Craft Gate Systems

    Category: Payment Processing Gateway, Data Analytics Software

    Department: Finance

    Location: Austin, TX

    Amount: 1132.58

    Card: Quarterly Revenue Analysis

    Trip Name: unknown

    '
- source_sentence: '

    Name : Rising Tide Solutions

    Category: IT Resource Management

    Department: Engineering

    Location: Amsterdam, Netherlands

    Amount: 1423.57

    Card: Cloud Transition Project

    Trip Name: unknown

    '
  sentences:
  - '

    Name : GigaTrend

    Category: Data Services, Cloud Software Solutions

    Department: Research & Development

    Location: London, UK

    Amount: 1345.67

    Card: Data-Driven Innovation Project

    Trip Name: unknown

    '
  - '

    Name : Apex Innovations Group

    Category: Business Consulting, Training Services

    Department: Executive

    Location: Sydney, Australia

    Amount: 1575.34

    Card: Leadership Development Program

    Trip Name: unknown

    '
  - '

    Name : Aegis Risk Consultants

    Category: Executive Risk Management, Enterprise Solutions

    Department: Legal

    Location: London, UK

    Amount: 1743.56

    Card: Leadership Liability Initiative

    Trip Name: unknown

    '
- source_sentence: '

    Name : Allegro Integrations

    Category: Payment Processing Solutions, Financial Technology Services

    Department: Finance

    Location: Dublin, Ireland

    Amount: 1298.75

    Card: Bi-annual Financial Systems Audit

    Trip Name: unknown

    '
  sentences:
  - '

    Name : Banyan Tree Pte Ltd

    Category: General Contractors - Residential and Commercial

    Department: Office Administration

    Location: Houston, TX

    Amount: 987.65

    Card: Operational Infrastructure Management

    Trip Name: unknown

    '
  - '

    Name : InsightWave Research

    Category: Business Intelligence Consultations, Market Expansion Strategy Services

    Department: Marketing

    Location: Tokyo, Japan

    Amount: 2034.67

    Card: Global Market Insights Program

    Trip Name: unknown

    '
  - '

    Name : ComplyTech Solutions

    Category: Regulatory Software, Consultancy Services

    Department: Compliance

    Location: Brussels, Belgium

    Amount: 1095.45

    Card: Regulatory Compliance Optimization Plan

    Trip Name: unknown

    '
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: bge base en train
      type: bge-base-en-train
    metrics:
    - type: cosine_accuracy
      value: 0.4759615361690521
      name: Cosine Accuracy
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: bge base en eval
      type: bge-base-en-eval
    metrics:
    - type: cosine_accuracy
      value: 0.0
      name: Cosine Accuracy
---

# SentenceTransformer based on BAAI/bge-base-en

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) <!-- at revision b737bf5dcc6ee8bdc530531266b4804a5d77b5d8 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ppuva1/finetuned-bge-base-en")
# Run inference
sentences = [
    '\nName : Allegro Integrations\nCategory: Payment Processing Solutions, Financial Technology Services\nDepartment: Finance\nLocation: Dublin, Ireland\nAmount: 1298.75\nCard: Bi-annual Financial Systems Audit\nTrip Name: unknown\n',
    '\nName : Banyan Tree Pte Ltd\nCategory: General Contractors - Residential and Commercial\nDepartment: Office Administration\nLocation: Houston, TX\nAmount: 987.65\nCard: Operational Infrastructure Management\nTrip Name: unknown\n',
    '\nName : ComplyTech Solutions\nCategory: Regulatory Software, Consultancy Services\nDepartment: Compliance\nLocation: Brussels, Belgium\nAmount: 1095.45\nCard: Regulatory Compliance Optimization Plan\nTrip Name: unknown\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet

* Datasets: `bge-base-en-train` and `bge-base-en-eval`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric              | bge-base-en-train | bge-base-en-eval |
|:--------------------|:------------------|:-----------------|
| **cosine_accuracy** | **0.476**         | **0.0**          |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 416 training samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 416 samples:
  |         | sentence                                                                           | label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | type    | string                                                                             | int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
  | details | <ul><li>min: 32 tokens</li><li>mean: 39.99 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>0: ~3.12%</li><li>1: ~3.12%</li><li>2: ~3.85%</li><li>3: ~4.81%</li><li>4: ~2.16%</li><li>5: ~4.33%</li><li>6: ~4.57%</li><li>7: ~3.85%</li><li>8: ~5.05%</li><li>9: ~4.09%</li><li>10: ~2.88%</li><li>11: ~4.33%</li><li>12: ~2.16%</li><li>13: ~4.09%</li><li>14: ~3.61%</li><li>15: ~5.77%</li><li>16: ~3.12%</li><li>17: ~6.01%</li><li>18: ~5.05%</li><li>19: ~2.64%</li><li>20: ~3.37%</li><li>21: ~2.88%</li><li>22: ~4.57%</li><li>23: ~2.64%</li><li>24: ~2.64%</li><li>25: ~3.85%</li><li>26: ~1.44%</li></ul> |
* Samples:
  | sentence                                                                                                                                                                                                                                               | label          |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code><br>Name : InnovaThink Global<br>Category: Management Consultancy, Technical Training Services<br>Department: HR<br>Location: Zurich, Switzerland<br>Amount: 1675.32<br>Card: Innovation and Efficiency Program<br>Trip Name: unknown<br></code> | <code>0</code> |
  | <code><br>Name : Global Wellness Network<br>Category: Corporate Wellness Programs, Employee Engagement<br>Department: HR<br>Location: Berlin, Germany<br>Amount: 1285.75<br>Card: Wellness and Engagement Program<br>Trip Name: unknown<br></code>     | <code>1</code> |
  | <code><br>Name : Wong & Lim<br>Category: Technical Equipment Services, Facility Services<br>Department: Office Administration<br>Location: Berlin, Germany<br>Amount: 458.29<br>Card: Monthly Equipment Care Program<br>Trip Name: unknown<br></code>  | <code>2</code> |
* Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)

### Evaluation Dataset

#### Unnamed Dataset

* Size: 104 evaluation samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 104 samples:
  |         | sentence                                                                           | label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | type    | string                                                                             | int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
  | details | <ul><li>min: 32 tokens</li><li>mean: 39.19 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>0: ~1.92%</li><li>1: ~0.96%</li><li>2: ~4.81%</li><li>3: ~1.92%</li><li>5: ~5.77%</li><li>6: ~7.69%</li><li>7: ~4.81%</li><li>8: ~3.85%</li><li>9: ~5.77%</li><li>10: ~2.88%</li><li>11: ~4.81%</li><li>12: ~2.88%</li><li>13: ~1.92%</li><li>14: ~2.88%</li><li>15: ~0.96%</li><li>16: ~1.92%</li><li>17: ~3.85%</li><li>18: ~4.81%</li><li>19: ~3.85%</li><li>20: ~1.92%</li><li>21: ~0.96%</li><li>22: ~5.77%</li><li>23: ~7.69%</li><li>24: ~7.69%</li><li>25: ~4.81%</li><li>26: ~2.88%</li></ul> |
* Samples:
  | sentence                                                                                                                                                                                                                                         | label           |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------|
  | <code><br>Name : Aegis Risk Consultants<br>Category: Executive Risk Management, Enterprise Solutions<br>Department: Legal<br>Location: London, UK<br>Amount: 1743.56<br>Card: Leadership Liability Initiative<br>Trip Name: unknown<br></code>   | <code>11</code> |
  | <code><br>Name : Vinobia Lounge<br>Category: Culinary Experiences, Networking Venues<br>Department: Marketing<br>Location: Dallas, TX<br>Amount: 651.58<br>Card: Innovative Marketing Strategies<br>Trip Name: Annual Marketing Event<br></code> | <code>8</code>  |
  | <code><br>Name : Freenet AG<br>Category: Telecommunication Services<br>Department: IT Operations<br>Location: Zurich, Switzerland<br>Amount: 2794.37<br>Card: Infrastructure Support Services<br>Trip Name: unknown<br></code>                   | <code>25</code> |
* Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | bge-base-en-train_cosine_accuracy | bge-base-en-eval_cosine_accuracy |
|:------:|:----:|:-------------:|:---------------:|:---------------------------------:|:--------------------------------:|
| -1     | -1   | -             | -               | 0.8510                            | -                                |
| 3.8462 | 100  | 4.9979        | 5.0174          | 0.4760                            | -                                |
| -1     | -1   | -             | -               | -                                 | 0.0                              |


### Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.6.0
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### BatchSemiHardTripletLoss
```bibtex
@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->