SentenceTransformer based on BAAI/bge-base-en

This is a sentence-transformers model finetuned from BAAI/bge-base-en. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ppuva1/finetuned-bge-base-en")
# Run inference
sentences = [
    '\nName : Allegro Integrations\nCategory: Payment Processing Solutions, Financial Technology Services\nDepartment: Finance\nLocation: Dublin, Ireland\nAmount: 1298.75\nCard: Bi-annual Financial Systems Audit\nTrip Name: unknown\n',
    '\nName : Banyan Tree Pte Ltd\nCategory: General Contractors - Residential and Commercial\nDepartment: Office Administration\nLocation: Houston, TX\nAmount: 987.65\nCard: Operational Infrastructure Management\nTrip Name: unknown\n',
    '\nName : ComplyTech Solutions\nCategory: Regulatory Software, Consultancy Services\nDepartment: Compliance\nLocation: Brussels, Belgium\nAmount: 1095.45\nCard: Regulatory Compliance Optimization Plan\nTrip Name: unknown\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

  • Datasets: bge-base-en-train and bge-base-en-eval
  • Evaluated with TripletEvaluator
Metric bge-base-en-train bge-base-en-eval
cosine_accuracy 0.476 0.0

Training Details

Training Dataset

Unnamed Dataset

  • Size: 416 training samples
  • Columns: sentence and label
  • Approximate statistics based on the first 416 samples:
    sentence label
    type string int
    details
    • min: 32 tokens
    • mean: 39.99 tokens
    • max: 49 tokens
    • 0: ~3.12%
    • 1: ~3.12%
    • 2: ~3.85%
    • 3: ~4.81%
    • 4: ~2.16%
    • 5: ~4.33%
    • 6: ~4.57%
    • 7: ~3.85%
    • 8: ~5.05%
    • 9: ~4.09%
    • 10: ~2.88%
    • 11: ~4.33%
    • 12: ~2.16%
    • 13: ~4.09%
    • 14: ~3.61%
    • 15: ~5.77%
    • 16: ~3.12%
    • 17: ~6.01%
    • 18: ~5.05%
    • 19: ~2.64%
    • 20: ~3.37%
    • 21: ~2.88%
    • 22: ~4.57%
    • 23: ~2.64%
    • 24: ~2.64%
    • 25: ~3.85%
    • 26: ~1.44%
  • Samples:
    sentence label

    Name : InnovaThink Global
    Category: Management Consultancy, Technical Training Services
    Department: HR
    Location: Zurich, Switzerland
    Amount: 1675.32
    Card: Innovation and Efficiency Program
    Trip Name: unknown
    0

    Name : Global Wellness Network
    Category: Corporate Wellness Programs, Employee Engagement
    Department: HR
    Location: Berlin, Germany
    Amount: 1285.75
    Card: Wellness and Engagement Program
    Trip Name: unknown
    1

    Name : Wong & Lim
    Category: Technical Equipment Services, Facility Services
    Department: Office Administration
    Location: Berlin, Germany
    Amount: 458.29
    Card: Monthly Equipment Care Program
    Trip Name: unknown
    2
  • Loss: BatchSemiHardTripletLoss

Evaluation Dataset

Unnamed Dataset

  • Size: 104 evaluation samples
  • Columns: sentence and label
  • Approximate statistics based on the first 104 samples:
    sentence label
    type string int
    details
    • min: 32 tokens
    • mean: 39.19 tokens
    • max: 46 tokens
    • 0: ~1.92%
    • 1: ~0.96%
    • 2: ~4.81%
    • 3: ~1.92%
    • 5: ~5.77%
    • 6: ~7.69%
    • 7: ~4.81%
    • 8: ~3.85%
    • 9: ~5.77%
    • 10: ~2.88%
    • 11: ~4.81%
    • 12: ~2.88%
    • 13: ~1.92%
    • 14: ~2.88%
    • 15: ~0.96%
    • 16: ~1.92%
    • 17: ~3.85%
    • 18: ~4.81%
    • 19: ~3.85%
    • 20: ~1.92%
    • 21: ~0.96%
    • 22: ~5.77%
    • 23: ~7.69%
    • 24: ~7.69%
    • 25: ~4.81%
    • 26: ~2.88%
  • Samples:
    sentence label

    Name : Aegis Risk Consultants
    Category: Executive Risk Management, Enterprise Solutions
    Department: Legal
    Location: London, UK
    Amount: 1743.56
    Card: Leadership Liability Initiative
    Trip Name: unknown
    11

    Name : Vinobia Lounge
    Category: Culinary Experiences, Networking Venues
    Department: Marketing
    Location: Dallas, TX
    Amount: 651.58
    Card: Innovative Marketing Strategies
    Trip Name: Annual Marketing Event
    8

    Name : Freenet AG
    Category: Telecommunication Services
    Department: IT Operations
    Location: Zurich, Switzerland
    Amount: 2794.37
    Card: Infrastructure Support Services
    Trip Name: unknown
    25
  • Loss: BatchSemiHardTripletLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss bge-base-en-train_cosine_accuracy bge-base-en-eval_cosine_accuracy
-1 -1 - - 0.8510 -
3.8462 100 4.9979 5.0174 0.4760 -
-1 -1 - - - 0.0

Framework Versions

  • Python: 3.11.8
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.2
  • PyTorch: 2.6.0
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

BatchSemiHardTripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Downloads last month
0
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for ppuva1/finetuned-bge-base-en

Base model

BAAI/bge-base-en
Finetuned
(11)
this model

Evaluation results