|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: openai/whisper-tiny.en |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- lalipa/jv_id_asr_split |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: hyperparameter |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: lalipa/jv_id_asr_split jv_id_asr_source |
|
type: lalipa/jv_id_asr_split |
|
config: jv_id_asr_source |
|
split: validation |
|
args: jv_id_asr_source |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.6883827458964245 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hyperparameter |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the lalipa/jv_id_asr_split jv_id_asr_source dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4506 |
|
- Wer: 0.6884 |
|
- Cer: 0.2050 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 300 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:|:------:| |
|
| 3.9694 | 0.1020 | 30 | 3.7782 | 1.8748 | 1.0887 | |
|
| 3.3735 | 0.2041 | 60 | 2.9598 | 1.0019 | 0.4254 | |
|
| 2.5449 | 0.3061 | 90 | 2.1989 | 0.8820 | 0.3221 | |
|
| 1.9987 | 0.4082 | 120 | 1.8648 | 0.8004 | 0.2606 | |
|
| 1.7671 | 0.5102 | 150 | 1.6909 | 0.7619 | 0.2312 | |
|
| 1.6285 | 0.6122 | 180 | 1.5863 | 0.7336 | 0.2245 | |
|
| 1.5475 | 0.7143 | 210 | 1.5251 | 0.7216 | 0.2213 | |
|
| 1.4793 | 0.8163 | 240 | 1.4807 | 0.6942 | 0.2035 | |
|
| 1.5013 | 0.9184 | 270 | 1.4582 | 0.6904 | 0.2057 | |
|
| 1.4438 | 1.0204 | 300 | 1.4506 | 0.6884 | 0.2050 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.0.dev0 |
|
- Pytorch 2.4.1 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|