iqbalasrif's picture
Upload 17 files
dfe28eb verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-tiny.en
tags:
  - generated_from_trainer
datasets:
  - lalipa/jv_id_asr_split
metrics:
  - wer
model-index:
  - name: hyperparameter
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: lalipa/jv_id_asr_split jv_id_asr_source
          type: lalipa/jv_id_asr_split
          config: jv_id_asr_source
          split: validation
          args: jv_id_asr_source
        metrics:
          - name: Wer
            type: wer
            value: 0.6883827458964245

hyperparameter

This model is a fine-tuned version of openai/whisper-tiny.en on the lalipa/jv_id_asr_split jv_id_asr_source dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4506
  • Wer: 0.6884
  • Cer: 0.2050

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 300

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.9694 0.1020 30 3.7782 1.8748 1.0887
3.3735 0.2041 60 2.9598 1.0019 0.4254
2.5449 0.3061 90 2.1989 0.8820 0.3221
1.9987 0.4082 120 1.8648 0.8004 0.2606
1.7671 0.5102 150 1.6909 0.7619 0.2312
1.6285 0.6122 180 1.5863 0.7336 0.2245
1.5475 0.7143 210 1.5251 0.7216 0.2213
1.4793 0.8163 240 1.4807 0.6942 0.2035
1.5013 0.9184 270 1.4582 0.6904 0.2057
1.4438 1.0204 300 1.4506 0.6884 0.2050

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1
  • Datasets 3.0.1
  • Tokenizers 0.20.0