hyperparameter

This model is a fine-tuned version of openai/whisper-tiny.en on the lalipa/jv_id_asr_split jv_id_asr_source dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4506
  • Wer: 0.6884
  • Cer: 0.2050

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 300

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.9694 0.1020 30 3.7782 1.8748 1.0887
3.3735 0.2041 60 2.9598 1.0019 0.4254
2.5449 0.3061 90 2.1989 0.8820 0.3221
1.9987 0.4082 120 1.8648 0.8004 0.2606
1.7671 0.5102 150 1.6909 0.7619 0.2312
1.6285 0.6122 180 1.5863 0.7336 0.2245
1.5475 0.7143 210 1.5251 0.7216 0.2213
1.4793 0.8163 240 1.4807 0.6942 0.2035
1.5013 0.9184 270 1.4582 0.6904 0.2057
1.4438 1.0204 300 1.4506 0.6884 0.2050

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
0
Safetensors
Model size
37.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for iqbalasrif/whisper-tiny-hyperparameter

Finetuned
(67)
this model

Dataset used to train iqbalasrif/whisper-tiny-hyperparameter

Evaluation results