|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:32351 |
|
- loss:TripletLoss |
|
base_model: sentence-transformers/all-mpnet-base-v2 |
|
widget: |
|
- source_sentence: Genetic conditions that cause nutritional deficiencies can prevent |
|
a person from removing meat from their diet. |
|
sentences: |
|
- Ante un estado que no quiere hablar del tema, para Cataluña, solo es posible seguir |
|
su propio camino por otras vías. |
|
- Retinol deficiency is a genetically pre-disposed condition that prevents conversion |
|
beta-carotene to Vitamin A \(retinol\) in humans. Since plants have no retinol |
|
\(only beta-carotene\), humans with this condition cannot have a vegan diet, only |
|
one with animal products. |
|
- People with hemochromatosis \(a genetic condition\) can benefit greatly from a |
|
vegan diet, due to the lower absorbing non-heme iron in plants \(compared to heme |
|
iron in meat\). |
|
- source_sentence: 'The definition of veganism is: "A way of living which seeks to |
|
exclude, as far as is possible and practicable, all forms of exploitation of, |
|
and cruelty to, animals for food, clothing or any other purpose." In the \(unlikely\) |
|
case of survival or health concerns, the "as far as possible and practicable" |
|
clause makes it possible for such persons to be considered vegan as they would |
|
have no alternative options.' |
|
sentences: |
|
- Veganism is not solely about diet. A person can still choose to live in accordance |
|
with vegan values, such as by avoiding animal circuses and leather/fur products. |
|
- It's easier to regulate established companies in a legal market than it is in |
|
the black market. Any issue would be with bad regulations not legalization. |
|
- That definition is too vague. There are different definitions of veganism, many |
|
of which are not compatible with using animals in any circumstances. In a way |
|
we are all vegan depending on how easy you believe it is to reach all the necessary |
|
nutrition in your city harming as few animals as possible. |
|
- source_sentence: Adding coding to the school curriculum means that something else |
|
must be left out. |
|
sentences: |
|
- Coding skills are much needed in today's job market. |
|
- Cataluña saldría de la UE con efectos económicos desastrosos. |
|
- Teaching coding effectively is impossible unless teachers are trained appropriately |
|
first. |
|
- source_sentence: Animals have innate, individual rights, which are taken away when |
|
they are killed or made to suffer. |
|
sentences: |
|
- Animals have a desire to live. |
|
- Uno de los ejemplos más claros es la falta de inversión reiterada al Corredor |
|
Mediterráneo \(Algeciras-Valencia-Barcelona-Francia\), prioritario para la UE |
|
y Catalunya, pero relegado a algo residual por el estado Español. |
|
- A vegan society would equate humans rights with animal rights, which would make |
|
society worse off overall. |
|
- source_sentence: The sorts of people likely to lash out against affirmative action |
|
policies probably already hold negative views towards racial minorities. |
|
sentences: |
|
- The Far Right movement sees the inequality affirmative action addresses not as |
|
a problem to be solved, but as an outcome to be desired. |
|
- There are plenty of people who hold a positive view towards racial minorities |
|
and still oppose affirmative action. |
|
- Research has shown that college degrees have less economic utility for people |
|
from low socio-economic backgrounds. |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 |
|
results: |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.9264069199562073 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy |
|
value: 0.9161931872367859 |
|
name: Cosine Accuracy |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 --> |
|
- **Maximum Sequence Length:** 384 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'The sorts of people likely to lash out against affirmative action policies probably already hold negative views towards racial minorities.', |
|
'The Far Right movement sees the inequality affirmative action addresses not as a problem to be solved, but as an outcome to be desired.', |
|
'There are plenty of people who hold a positive view towards racial minorities and still oppose affirmative action.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Triplet |
|
|
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| **cosine_accuracy** | **0.9264** | |
|
|
|
#### Triplet |
|
|
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| **cosine_accuracy** | **0.9162** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 32,351 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 30.94 tokens</li><li>max: 160 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 40.8 tokens</li><li>max: 180 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 44.95 tokens</li><li>max: 162 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:----------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>La soberanía y la decisión sobre la unidad de España residen en el conjunto de España.</code> | <code>Apostar por un proceso de secesión es ir en contra de la globalización, la corriente histórica que vivimos.</code> | <code>Los tratados internacionales \(incluido el Tratado de La Unión Europea\) no serían aplicables a Cataluña como estado independiente, por lo que su permanencia en Europa podría verse interrumpida.</code> | |
|
| <code>La soberanía y la decisión sobre la unidad de España residen en el conjunto de España.</code> | <code>Para sentar un precedente en conflictos de autodeterminación en el mundo.</code> | <code>La independencia de Cataluña afectaría negativamente a la economía de España.</code> | |
|
| <code>La soberanía y la decisión sobre la unidad de España residen en el conjunto de España.</code> | <code>Para terminar con el trato injusto que recibe Cataluña al ser parte de España.</code> | <code>Por definición, cualquier nacionalismo es malo ya que crea divisiones artificiales y es fuente de conflictos.</code> | |
|
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: |
|
```json |
|
{ |
|
"distance_metric": "TripletDistanceMetric.COSINE", |
|
"triplet_margin": 0.3 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 8 |
|
- `per_device_eval_batch_size`: 8 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 3.0 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | cosine_accuracy | |
|
|:------:|:-----:|:-------------:|:---------------:| |
|
| 0.1236 | 500 | 0.1872 | - | |
|
| 0.2473 | 1000 | 0.1954 | - | |
|
| 0.3709 | 1500 | 0.1854 | - | |
|
| 0.4946 | 2000 | 0.1891 | - | |
|
| 0.6182 | 2500 | 0.181 | - | |
|
| 0.7418 | 3000 | 0.1794 | - | |
|
| 0.8655 | 3500 | 0.1815 | - | |
|
| 0.9891 | 4000 | 0.1736 | - | |
|
| 1.1128 | 4500 | 0.1342 | - | |
|
| 1.2364 | 5000 | 0.1297 | - | |
|
| 1.3600 | 5500 | 0.1318 | - | |
|
| 1.4837 | 6000 | 0.1255 | - | |
|
| 1.6073 | 6500 | 0.128 | - | |
|
| 1.7310 | 7000 | 0.1233 | - | |
|
| 1.8546 | 7500 | 0.1221 | - | |
|
| 1.9782 | 8000 | 0.1232 | - | |
|
| 2.1019 | 8500 | 0.0841 | - | |
|
| 2.2255 | 9000 | 0.0757 | - | |
|
| 2.3492 | 9500 | 0.0764 | - | |
|
| 2.4728 | 10000 | 0.0761 | - | |
|
| 2.5964 | 10500 | 0.0726 | - | |
|
| 2.7201 | 11000 | 0.0644 | - | |
|
| 2.8437 | 11500 | 0.073 | - | |
|
| 2.9674 | 12000 | 0.0725 | - | |
|
| -1 | -1 | - | 0.9162 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.11 |
|
- Sentence Transformers: 3.4.1 |
|
- Transformers: 4.48.3 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.3.0 |
|
- Datasets: 3.3.2 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### TripletLoss |
|
```bibtex |
|
@misc{hermans2017defense, |
|
title={In Defense of the Triplet Loss for Person Re-Identification}, |
|
author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, |
|
year={2017}, |
|
eprint={1703.07737}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |