File size: 18,333 Bytes
13fcbe8
 
 
 
 
 
77862bf
13fcbe8
 
 
77862bf
 
13fcbe8
77862bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fcbe8
77862bf
 
 
 
 
 
 
 
 
 
13fcbe8
77862bf
 
 
 
 
 
13fcbe8
77862bf
 
 
 
 
 
 
 
13fcbe8
77862bf
 
 
 
 
 
13fcbe8
 
fbc4468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fcbe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77862bf
 
 
13fcbe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbc4468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fcbe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77862bf
13fcbe8
 
77862bf
 
 
 
13fcbe8
77862bf
 
 
 
 
13fcbe8
 
 
 
77862bf
13fcbe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbc4468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fcbe8
 
 
 
 
 
 
 
77862bf
13fcbe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:32351
- loss:TripletLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: Genetic conditions that cause nutritional deficiencies can prevent
    a person from removing meat from their diet.
  sentences:
  - Ante un estado que no quiere hablar del tema, para Cataluña, solo es posible seguir
    su propio camino por otras vías.
  - Retinol deficiency is a genetically pre-disposed condition that prevents conversion
    beta-carotene to Vitamin A \(retinol\) in humans. Since plants have no retinol
    \(only beta-carotene\), humans with this condition cannot have a vegan diet, only
    one with animal products.
  - People with hemochromatosis \(a genetic condition\) can benefit greatly from a
    vegan diet, due to the lower absorbing non-heme iron in plants \(compared to heme
    iron in meat\).
- source_sentence: 'The definition of veganism is: "A way of living which seeks to
    exclude, as far as is possible and practicable, all forms of exploitation of,
    and cruelty to, animals for food, clothing or any other purpose." In the \(unlikely\)
    case of survival or health concerns, the "as far as possible and practicable"
    clause makes it possible for such persons to be considered vegan as they would
    have no alternative options.'
  sentences:
  - Veganism is not solely about diet. A person can still choose to live in accordance
    with vegan values, such as by avoiding animal circuses and leather/fur products.
  - It's easier to regulate established companies in a legal market than it is in
    the black market. Any issue would be with bad regulations not legalization.
  - That definition is too vague. There are different definitions of veganism, many
    of which are not compatible with using animals in any circumstances. In a way
    we are all vegan depending on how easy you believe it is to reach all the necessary
    nutrition in your city harming as few animals as possible.
- source_sentence: Adding coding to the school curriculum means that something else
    must be left out.
  sentences:
  - Coding skills are much needed in today's job market.
  - Cataluña saldría de la UE con efectos económicos desastrosos.
  - Teaching coding effectively is impossible unless teachers are trained appropriately
    first.
- source_sentence: Animals have innate, individual rights, which are taken away when
    they are killed or made to suffer.
  sentences:
  - Animals have a desire to live.
  - Uno de los ejemplos más claros es la falta de inversión reiterada al Corredor
    Mediterráneo  \(Algeciras-Valencia-Barcelona-Francia\), prioritario para la UE
    y Catalunya, pero relegado a algo residual por el estado Español.
  - A vegan society would equate humans rights with animal rights, which would make
    society worse off overall.
- source_sentence: The sorts of people likely to lash out against affirmative action
    policies probably already hold negative views towards racial minorities.
  sentences:
  - The Far Right movement sees the inequality affirmative action addresses not as
    a problem to be solved, but as an outcome to be desired.
  - There are plenty of people who hold a positive view towards racial minorities
    and still oppose affirmative action.
  - Research has shown that college degrees have less economic utility for people
    from low socio-economic backgrounds.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy
      value: 0.9264069199562073
      name: Cosine Accuracy
    - type: cosine_accuracy
      value: 0.9161931872367859
      name: Cosine Accuracy
---

# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'The sorts of people likely to lash out against affirmative action policies probably already hold negative views towards racial minorities.',
    'The Far Right movement sees the inequality affirmative action addresses not as a problem to be solved, but as an outcome to be desired.',
    'There are plenty of people who hold a positive view towards racial minorities and still oppose affirmative action.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet

* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9264** |

#### Triplet

* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9162** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 32,351 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                          | negative                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | string                                                                             |
  | details | <ul><li>min: 6 tokens</li><li>mean: 30.94 tokens</li><li>max: 160 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 40.8 tokens</li><li>max: 180 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 44.95 tokens</li><li>max: 162 tokens</li></ul> |
* Samples:
  | anchor                                                                                              | positive                                                                                                                 | negative                                                                                                                                                                                                        |
  |:----------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>La soberanía y la decisión sobre la unidad de España residen en el conjunto de España.</code> | <code>Apostar por un proceso de secesión es ir en contra de la globalización, la corriente histórica que vivimos.</code> | <code>Los tratados internacionales \(incluido el Tratado de La Unión Europea\) no serían aplicables a Cataluña como estado independiente, por lo que su permanencia en Europa podría verse interrumpida.</code> |
  | <code>La soberanía y la decisión sobre la unidad de España residen en el conjunto de España.</code> | <code>Para sentar un precedente en conflictos de autodeterminación en el mundo.</code>                                   | <code>La independencia de Cataluña afectaría negativamente a la economía de España.</code>                                                                                                                      |
  | <code>La soberanía y la decisión sobre la unidad de España residen en el conjunto de España.</code> | <code>Para terminar con el trato injusto que recibe Cataluña al ser parte de España.</code>                              | <code>Por definición, cualquier nacionalismo es malo ya que crea divisiones artificiales y es fuente de conflictos.</code>                                                                                      |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
  ```json
  {
      "distance_metric": "TripletDistanceMetric.COSINE",
      "triplet_margin": 0.3
  }
  ```

### Training Hyperparameters

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3.0
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step  | Training Loss | cosine_accuracy |
|:------:|:-----:|:-------------:|:---------------:|
| 0.1236 | 500   | 0.1872        | -               |
| 0.2473 | 1000  | 0.1954        | -               |
| 0.3709 | 1500  | 0.1854        | -               |
| 0.4946 | 2000  | 0.1891        | -               |
| 0.6182 | 2500  | 0.181         | -               |
| 0.7418 | 3000  | 0.1794        | -               |
| 0.8655 | 3500  | 0.1815        | -               |
| 0.9891 | 4000  | 0.1736        | -               |
| 1.1128 | 4500  | 0.1342        | -               |
| 1.2364 | 5000  | 0.1297        | -               |
| 1.3600 | 5500  | 0.1318        | -               |
| 1.4837 | 6000  | 0.1255        | -               |
| 1.6073 | 6500  | 0.128         | -               |
| 1.7310 | 7000  | 0.1233        | -               |
| 1.8546 | 7500  | 0.1221        | -               |
| 1.9782 | 8000  | 0.1232        | -               |
| 2.1019 | 8500  | 0.0841        | -               |
| 2.2255 | 9000  | 0.0757        | -               |
| 2.3492 | 9500  | 0.0764        | -               |
| 2.4728 | 10000 | 0.0761        | -               |
| 2.5964 | 10500 | 0.0726        | -               |
| 2.7201 | 11000 | 0.0644        | -               |
| 2.8437 | 11500 | 0.073         | -               |
| 2.9674 | 12000 | 0.0725        | -               |
| -1     | -1    | -             | 0.9162          |


### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### TripletLoss
```bibtex
@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->