tmp_trainer / README.md
hmm404's picture
full_data
fbc4468 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:32351
  - loss:TripletLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
  - source_sentence: >-
      Genetic conditions that cause nutritional deficiencies can prevent a
      person from removing meat from their diet.
    sentences:
      - >-
        Ante un estado que no quiere hablar del tema, para Cataluña, solo es
        posible seguir su propio camino por otras vías.
      - >-
        Retinol deficiency is a genetically pre-disposed condition that prevents
        conversion beta-carotene to Vitamin A \(retinol\) in humans. Since
        plants have no retinol \(only beta-carotene\), humans with this
        condition cannot have a vegan diet, only one with animal products.
      - >-
        People with hemochromatosis \(a genetic condition\) can benefit greatly
        from a vegan diet, due to the lower absorbing non-heme iron in plants
        \(compared to heme iron in meat\).
  - source_sentence: >-
      The definition of veganism is: "A way of living which seeks to exclude, as
      far as is possible and practicable, all forms of exploitation of, and
      cruelty to, animals for food, clothing or any other purpose." In the
      \(unlikely\) case of survival or health concerns, the "as far as possible
      and practicable" clause makes it possible for such persons to be
      considered vegan as they would have no alternative options.
    sentences:
      - >-
        Veganism is not solely about diet. A person can still choose to live in
        accordance with vegan values, such as by avoiding animal circuses and
        leather/fur products.
      - >-
        It's easier to regulate established companies in a legal market than it
        is in the black market. Any issue would be with bad regulations not
        legalization.
      - >-
        That definition is too vague. There are different definitions of
        veganism, many of which are not compatible with using animals in any
        circumstances. In a way we are all vegan depending on how easy you
        believe it is to reach all the necessary nutrition in your city harming
        as few animals as possible.
  - source_sentence: >-
      Adding coding to the school curriculum means that something else must be
      left out.
    sentences:
      - Coding skills are much needed in today's job market.
      - Cataluña saldría de la UE con efectos económicos desastrosos.
      - >-
        Teaching coding effectively is impossible unless teachers are trained
        appropriately first.
  - source_sentence: >-
      Animals have innate, individual rights, which are taken away when they are
      killed or made to suffer.
    sentences:
      - Animals have a desire to live.
      - >-
        Uno de los ejemplos más claros es la falta de inversión reiterada al
        Corredor Mediterráneo  \(Algeciras-Valencia-Barcelona-Francia\),
        prioritario para la UE y Catalunya, pero relegado a algo residual por el
        estado Español.
      - >-
        A vegan society would equate humans rights with animal rights, which
        would make society worse off overall.
  - source_sentence: >-
      The sorts of people likely to lash out against affirmative action policies
      probably already hold negative views towards racial minorities.
    sentences:
      - >-
        The Far Right movement sees the inequality affirmative action addresses
        not as a problem to be solved, but as an outcome to be desired.
      - >-
        There are plenty of people who hold a positive view towards racial
        minorities and still oppose affirmative action.
      - >-
        Research has shown that college degrees have less economic utility for
        people from low socio-economic backgrounds.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
model-index:
  - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy
            value: 0.9264069199562073
            name: Cosine Accuracy
          - type: cosine_accuracy
            value: 0.9161931872367859
            name: Cosine Accuracy

SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-mpnet-base-v2
  • Maximum Sequence Length: 384 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'The sorts of people likely to lash out against affirmative action policies probably already hold negative views towards racial minorities.',
    'The Far Right movement sees the inequality affirmative action addresses not as a problem to be solved, but as an outcome to be desired.',
    'There are plenty of people who hold a positive view towards racial minorities and still oppose affirmative action.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.9264

Triplet

Metric Value
cosine_accuracy 0.9162

Training Details

Training Dataset

Unnamed Dataset

  • Size: 32,351 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 30.94 tokens
    • max: 160 tokens
    • min: 6 tokens
    • mean: 40.8 tokens
    • max: 180 tokens
    • min: 6 tokens
    • mean: 44.95 tokens
    • max: 162 tokens
  • Samples:
    anchor positive negative
    La soberanía y la decisión sobre la unidad de España residen en el conjunto de España. Apostar por un proceso de secesión es ir en contra de la globalización, la corriente histórica que vivimos. Los tratados internacionales (incluido el Tratado de La Unión Europea) no serían aplicables a Cataluña como estado independiente, por lo que su permanencia en Europa podría verse interrumpida.
    La soberanía y la decisión sobre la unidad de España residen en el conjunto de España. Para sentar un precedente en conflictos de autodeterminación en el mundo. La independencia de Cataluña afectaría negativamente a la economía de España.
    La soberanía y la decisión sobre la unidad de España residen en el conjunto de España. Para terminar con el trato injusto que recibe Cataluña al ser parte de España. Por definición, cualquier nacionalismo es malo ya que crea divisiones artificiales y es fuente de conflictos.
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.COSINE",
        "triplet_margin": 0.3
    }
    

Training Hyperparameters

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3.0
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss cosine_accuracy
0.1236 500 0.1872 -
0.2473 1000 0.1954 -
0.3709 1500 0.1854 -
0.4946 2000 0.1891 -
0.6182 2500 0.181 -
0.7418 3000 0.1794 -
0.8655 3500 0.1815 -
0.9891 4000 0.1736 -
1.1128 4500 0.1342 -
1.2364 5000 0.1297 -
1.3600 5500 0.1318 -
1.4837 6000 0.1255 -
1.6073 6500 0.128 -
1.7310 7000 0.1233 -
1.8546 7500 0.1221 -
1.9782 8000 0.1232 -
2.1019 8500 0.0841 -
2.2255 9000 0.0757 -
2.3492 9500 0.0764 -
2.4728 10000 0.0761 -
2.5964 10500 0.0726 -
2.7201 11000 0.0644 -
2.8437 11500 0.073 -
2.9674 12000 0.0725 -
-1 -1 - 0.9162

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.3.2
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

TripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}