|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:208 |
|
- loss:BatchSemiHardTripletLoss |
|
base_model: BAAI/bge-base-en |
|
widget: |
|
- source_sentence: ' |
|
|
|
Name : Gandalf |
|
|
|
Category: Financial Services, Consulting |
|
|
|
Department: Finance |
|
|
|
Location: Singapore |
|
|
|
Amount: 457.29 |
|
|
|
Card: Financial Advisory Services |
|
|
|
Trip Name: unknown |
|
|
|
' |
|
sentences: |
|
- ' |
|
|
|
Name : InterGlobal Tech |
|
|
|
Category: Business Software Solutions, Data Processing Services |
|
|
|
Department: Marketing |
|
|
|
Location: New York, NY |
|
|
|
Amount: 1249.95 |
|
|
|
Card: Marketing Automation Tools |
|
|
|
Trip Name: unknown |
|
|
|
' |
|
- ' |
|
|
|
Name : Nuvotek Solutions |
|
|
|
Category: Consulting Services, Managed IT Services |
|
|
|
Department: Information Security |
|
|
|
Location: Berlin, Germany |
|
|
|
Amount: 879.65 |
|
|
|
Card: Annual Cybersecurity Resilience Program |
|
|
|
Trip Name: unknown |
|
|
|
' |
|
- ' |
|
|
|
Name : Omega Systems Inc. |
|
|
|
Category: Integrated Business Solutions, Enterprise Software Sales |
|
|
|
Department: Research & Development |
|
|
|
Location: Oslo, Norway |
|
|
|
Amount: 1943.75 |
|
|
|
Card: AI Development Suite |
|
|
|
Trip Name: unknown |
|
|
|
' |
|
- source_sentence: ' |
|
|
|
Name : NexGen Fiscal Systems |
|
|
|
Category: Financial Software Solutions, Revenue Management Services |
|
|
|
Department: Finance |
|
|
|
Location: San Francisco, CA |
|
|
|
Amount: 2749.95 |
|
|
|
Card: Q4 Revenue Optimization Initiative |
|
|
|
Trip Name: unknown |
|
|
|
' |
|
sentences: |
|
- ' |
|
|
|
Name : GlobalRes Workforce Solutions |
|
|
|
Category: Remote Work Platforms, HR Technology Vendors |
|
|
|
Department: Engineering |
|
|
|
Location: Barcelona, Spain |
|
|
|
Amount: 1894.27 |
|
|
|
Card: Hybrid Work Enablement |
|
|
|
Trip Name: unknown |
|
|
|
' |
|
- ' |
|
|
|
Name : InterLang Solutions |
|
|
|
Category: Language Interpretation Services, Remote Collaboration Tools |
|
|
|
Department: HR |
|
|
|
Location: Tokyo, Japan |
|
|
|
Amount: 1642.59 |
|
|
|
Card: Diversity & Inclusion Initiatives |
|
|
|
Trip Name: unknown |
|
|
|
' |
|
- ' |
|
|
|
Name : CovaRisk Consulting |
|
|
|
Category: Risk Advisory, Financial Services |
|
|
|
Department: Legal |
|
|
|
Location: Toronto, Canada |
|
|
|
Amount: 1124.37 |
|
|
|
Card: Assurance Payment |
|
|
|
Trip Name: unknown |
|
|
|
' |
|
- source_sentence: ' |
|
|
|
Name : Optix Global |
|
|
|
Category: Digital Storage Solutions, Office Essentials Provider |
|
|
|
Department: All Departments |
|
|
|
Location: Tokyo, Japan |
|
|
|
Amount: 568.77 |
|
|
|
Card: Monthly Office Needs |
|
|
|
Trip Name: unknown |
|
|
|
' |
|
sentences: |
|
- ' |
|
|
|
Name : Digital Wave Solutions |
|
|
|
Category: IT Infrastructure Services, Data Analytic Platforms |
|
|
|
Department: Finance |
|
|
|
Location: San Francisco, CA |
|
|
|
Amount: 1748.92 |
|
|
|
Card: Annual Data Management & Reporting |
|
|
|
Trip Name: unknown |
|
|
|
' |
|
- ' |
|
|
|
Name : Analytix Global Solutions |
|
|
|
Category: Business Intelligence Services, Regulatory Compliance Tools |
|
|
|
Department: Finance |
|
|
|
Location: London, UK |
|
|
|
Amount: 1323.67 |
|
|
|
Card: Financial Compliance Enhancement |
|
|
|
Trip Name: unknown |
|
|
|
' |
|
- ' |
|
|
|
Name : Daesung Enterprises |
|
|
|
Category: Catering Services, Event Management |
|
|
|
Department: Sales |
|
|
|
Location: Lisbon, Portugal |
|
|
|
Amount: 375.45 |
|
|
|
Card: Q4 Client Engagement Events |
|
|
|
Trip Name: unknown |
|
|
|
' |
|
- source_sentence: ' |
|
|
|
Name : Kanzan Solutions |
|
|
|
Category: Consulting Services, Business Advisory |
|
|
|
Department: Legal |
|
|
|
Location: Tokyo, Japan |
|
|
|
Amount: 3900.75 |
|
|
|
Card: Quarterly Compliance Review |
|
|
|
Trip Name: unknown |
|
|
|
' |
|
sentences: |
|
- ' |
|
|
|
Name : Alta Via Mix |
|
|
|
Category: Airline Catering, Luxury Travel Services |
|
|
|
Department: Executive |
|
|
|
Location: Milan, Italy |
|
|
|
Amount: 1925.49 |
|
|
|
Card: Executive Incentive Program |
|
|
|
Trip Name: Annual Leadership Summit |
|
|
|
' |
|
- ' |
|
|
|
Name : RBS |
|
|
|
Category: Financial Services, Business Consultancy |
|
|
|
Department: Finance |
|
|
|
Location: Toronto, Canada |
|
|
|
Amount: 1134.28 |
|
|
|
Card: Cross-Border Transaction Facilitation |
|
|
|
Trip Name: unknown |
|
|
|
' |
|
- ' |
|
|
|
Name : InnovaThink Global |
|
|
|
Category: Management Consultancy, Technical Training Services |
|
|
|
Department: HR |
|
|
|
Location: Zurich, Switzerland |
|
|
|
Amount: 1675.32 |
|
|
|
Card: Innovation and Efficiency Program |
|
|
|
Trip Name: unknown |
|
|
|
' |
|
- source_sentence: ' |
|
|
|
Name : NetWise Solutions |
|
|
|
Category: Data Transfer Services, Digital Infrastructure |
|
|
|
Department: Product |
|
|
|
Location: Singapore |
|
|
|
Amount: 1579.42 |
|
|
|
Card: Global Network Enhancement |
|
|
|
Trip Name: unknown |
|
|
|
' |
|
sentences: |
|
- ' |
|
|
|
Name : Fernández & Co. Services |
|
|
|
Category: Property Management, Facility Services |
|
|
|
Department: Office Administration |
|
|
|
Location: Madrid, Spain |
|
|
|
Amount: 1245.67 |
|
|
|
Card: Monthly Facility Operations |
|
|
|
Trip Name: unknown |
|
|
|
' |
|
- ' |
|
|
|
Name : AeroDyn Research |
|
|
|
Category: Research Services, Data Analysis |
|
|
|
Department: Research & Development |
|
|
|
Location: Amsterdam, Netherlands |
|
|
|
Amount: 2457.42 |
|
|
|
Card: Annual Innovation Assessment |
|
|
|
Trip Name: unknown |
|
|
|
' |
|
- ' |
|
|
|
Name : Global Horizon Travel |
|
|
|
Category: Travel Services, Package Deals |
|
|
|
Department: Sales |
|
|
|
Location: Tokyo, Japan |
|
|
|
Amount: 1199.75 |
|
|
|
Card: Annual Sales Retreat |
|
|
|
Trip Name: Sales Strategy Summit |
|
|
|
' |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
- dot_accuracy |
|
- manhattan_accuracy |
|
- euclidean_accuracy |
|
- max_accuracy |
|
model-index: |
|
- name: SentenceTransformer based on BAAI/bge-base-en |
|
results: |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: bge base en train |
|
type: bge-base-en-train |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.8605769230769231 |
|
name: Cosine Accuracy |
|
- type: dot_accuracy |
|
value: 0.13942307692307693 |
|
name: Dot Accuracy |
|
- type: manhattan_accuracy |
|
value: 0.8413461538461539 |
|
name: Manhattan Accuracy |
|
- type: euclidean_accuracy |
|
value: 0.8605769230769231 |
|
name: Euclidean Accuracy |
|
- type: max_accuracy |
|
value: 0.8605769230769231 |
|
name: Max Accuracy |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: bge base en eval |
|
type: bge-base-en-eval |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.9242424242424242 |
|
name: Cosine Accuracy |
|
- type: dot_accuracy |
|
value: 0.07575757575757576 |
|
name: Dot Accuracy |
|
- type: manhattan_accuracy |
|
value: 0.9545454545454546 |
|
name: Manhattan Accuracy |
|
- type: euclidean_accuracy |
|
value: 0.9242424242424242 |
|
name: Euclidean Accuracy |
|
- type: max_accuracy |
|
value: 0.9545454545454546 |
|
name: Max Accuracy |
|
--- |
|
|
|
# SentenceTransformer based on BAAI/bge-base-en |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) <!-- at revision b737bf5dcc6ee8bdc530531266b4804a5d77b5d8 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("dshvadskiy/finetuned-bge-base-en") |
|
# Run inference |
|
sentences = [ |
|
'\nName : NetWise Solutions\nCategory: Data Transfer Services, Digital Infrastructure\nDepartment: Product\nLocation: Singapore\nAmount: 1579.42\nCard: Global Network Enhancement\nTrip Name: unknown\n', |
|
'\nName : Global Horizon Travel\nCategory: Travel Services, Package Deals\nDepartment: Sales\nLocation: Tokyo, Japan\nAmount: 1199.75\nCard: Annual Sales Retreat\nTrip Name: Sales Strategy Summit\n', |
|
'\nName : AeroDyn Research\nCategory: Research Services, Data Analysis\nDepartment: Research & Development\nLocation: Amsterdam, Netherlands\nAmount: 2457.42\nCard: Annual Innovation Assessment\nTrip Name: unknown\n', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Triplet |
|
* Dataset: `bge-base-en-train` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| cosine_accuracy | 0.8606 | |
|
| dot_accuracy | 0.1394 | |
|
| manhattan_accuracy | 0.8413 | |
|
| euclidean_accuracy | 0.8606 | |
|
| **max_accuracy** | **0.8606** | |
|
|
|
#### Triplet |
|
* Dataset: `bge-base-en-eval` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| cosine_accuracy | 0.9242 | |
|
| dot_accuracy | 0.0758 | |
|
| manhattan_accuracy | 0.9545 | |
|
| euclidean_accuracy | 0.9242 | |
|
| **max_accuracy** | **0.9545** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 208 training samples |
|
* Columns: <code>sentence</code> and <code>label</code> |
|
* Approximate statistics based on the first 208 samples: |
|
| | sentence | label | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| type | string | int | |
|
| details | <ul><li>min: 32 tokens</li><li>mean: 39.5 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>0: ~5.29%</li><li>1: ~4.81%</li><li>2: ~3.37%</li><li>3: ~3.85%</li><li>4: ~3.85%</li><li>5: ~5.77%</li><li>6: ~1.92%</li><li>7: ~2.88%</li><li>8: ~5.29%</li><li>9: ~5.29%</li><li>10: ~4.33%</li><li>11: ~2.40%</li><li>12: ~3.85%</li><li>13: ~2.88%</li><li>14: ~4.33%</li><li>15: ~3.37%</li><li>16: ~3.37%</li><li>17: ~1.44%</li><li>18: ~4.33%</li><li>19: ~4.81%</li><li>20: ~3.85%</li><li>21: ~2.88%</li><li>22: ~5.77%</li><li>23: ~3.37%</li><li>24: ~2.88%</li><li>25: ~0.96%</li><li>26: ~2.88%</li></ul> | |
|
* Samples: |
|
| sentence | label | |
|
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------| |
|
| <code><br>Name : Yijie Logistics<br>Category: Logistics Services<br>Department: Sales<br>Location: Berlin, Germany<br>Amount: 485.67<br>Card: Quarterly Client Visit and Logistics Coordination<br>Trip Name: unknown<br></code> | <code>0</code> | |
|
| <code><br>Name : Serenity Solutions<br>Category: Office Wellness Solutions<br>Department: Office Administration<br>Location: Munich, Germany<br>Amount: 772.58<br>Card: Ergonomic Office Enhancements<br>Trip Name: unknown<br></code> | <code>1</code> | |
|
| <code><br>Name : Cortec International<br>Category: Event Management Services, Business Solutions<br>Department: Sales<br>Location: London, UK<br>Amount: 1337.25<br>Card: Global Sales Summit Participation<br>Trip Name: unknown<br></code> | <code>2</code> | |
|
* Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss) |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 52 evaluation samples |
|
* Columns: <code>sentence</code> and <code>label</code> |
|
* Approximate statistics based on the first 52 samples: |
|
| | sentence | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| type | string | int | |
|
| details | <ul><li>min: 34 tokens</li><li>mean: 39.62 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>0: ~3.85%</li><li>3: ~1.92%</li><li>4: ~5.77%</li><li>5: ~5.77%</li><li>6: ~3.85%</li><li>7: ~1.92%</li><li>8: ~1.92%</li><li>9: ~1.92%</li><li>10: ~3.85%</li><li>11: ~9.62%</li><li>12: ~5.77%</li><li>13: ~3.85%</li><li>14: ~1.92%</li><li>15: ~9.62%</li><li>17: ~1.92%</li><li>18: ~3.85%</li><li>20: ~1.92%</li><li>21: ~9.62%</li><li>22: ~1.92%</li><li>23: ~3.85%</li><li>24: ~1.92%</li><li>25: ~5.77%</li><li>26: ~7.69%</li></ul> | |
|
* Samples: |
|
| sentence | label | |
|
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------| |
|
| <code><br>Name : Versatile Systems Ltd.<br>Category: Office Management Solutions, Software Solutions<br>Department: Office Administration<br>Location: Tokyo, Japan<br>Amount: 845.67<br>Card: Integrated Office Infrastructure<br>Trip Name: unknown<br></code> | <code>21</code> | |
|
| <code><br>Name : NexGen Comms<br>Category: Telecom Services, Communications Solutions<br>Department: Sales<br>Location: Berlin, Germany<br>Amount: 879.45<br>Card: Q2 Client Outreach Program<br>Trip Name: unknown<br></code> | <code>23</code> | |
|
| <code><br>Name : Digital Wave Solutions<br>Category: IT Infrastructure Services, Data Analytic Platforms<br>Department: Finance<br>Location: San Francisco, CA<br>Amount: 1748.92<br>Card: Annual Data Management & Reporting<br>Trip Name: unknown<br></code> | <code>18</code> | |
|
* Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss) |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 5 |
|
- `warmup_ratio`: 0.1 |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy | |
|
|:-----:|:----:|:-----------------------------:|:------------------------------:| |
|
| 0 | 0 | - | 0.8606 | |
|
| 5.0 | 65 | 0.9545 | - | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.9.16 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.45.2 |
|
- PyTorch: 2.6.0 |
|
- Accelerate: 1.3.0 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.20.3 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### BatchSemiHardTripletLoss |
|
```bibtex |
|
@misc{hermans2017defense, |
|
title={In Defense of the Triplet Loss for Person Re-Identification}, |
|
author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, |
|
year={2017}, |
|
eprint={1703.07737}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |