dshvadskiy commited on
Commit
d33a44a
·
verified ·
1 Parent(s): e109d42

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,773 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:208
8
+ - loss:BatchSemiHardTripletLoss
9
+ base_model: BAAI/bge-base-en
10
+ widget:
11
+ - source_sentence: '
12
+
13
+ Name : Gandalf
14
+
15
+ Category: Financial Services, Consulting
16
+
17
+ Department: Finance
18
+
19
+ Location: Singapore
20
+
21
+ Amount: 457.29
22
+
23
+ Card: Financial Advisory Services
24
+
25
+ Trip Name: unknown
26
+
27
+ '
28
+ sentences:
29
+ - '
30
+
31
+ Name : InterGlobal Tech
32
+
33
+ Category: Business Software Solutions, Data Processing Services
34
+
35
+ Department: Marketing
36
+
37
+ Location: New York, NY
38
+
39
+ Amount: 1249.95
40
+
41
+ Card: Marketing Automation Tools
42
+
43
+ Trip Name: unknown
44
+
45
+ '
46
+ - '
47
+
48
+ Name : Nuvotek Solutions
49
+
50
+ Category: Consulting Services, Managed IT Services
51
+
52
+ Department: Information Security
53
+
54
+ Location: Berlin, Germany
55
+
56
+ Amount: 879.65
57
+
58
+ Card: Annual Cybersecurity Resilience Program
59
+
60
+ Trip Name: unknown
61
+
62
+ '
63
+ - '
64
+
65
+ Name : Omega Systems Inc.
66
+
67
+ Category: Integrated Business Solutions, Enterprise Software Sales
68
+
69
+ Department: Research & Development
70
+
71
+ Location: Oslo, Norway
72
+
73
+ Amount: 1943.75
74
+
75
+ Card: AI Development Suite
76
+
77
+ Trip Name: unknown
78
+
79
+ '
80
+ - source_sentence: '
81
+
82
+ Name : NexGen Fiscal Systems
83
+
84
+ Category: Financial Software Solutions, Revenue Management Services
85
+
86
+ Department: Finance
87
+
88
+ Location: San Francisco, CA
89
+
90
+ Amount: 2749.95
91
+
92
+ Card: Q4 Revenue Optimization Initiative
93
+
94
+ Trip Name: unknown
95
+
96
+ '
97
+ sentences:
98
+ - '
99
+
100
+ Name : GlobalRes Workforce Solutions
101
+
102
+ Category: Remote Work Platforms, HR Technology Vendors
103
+
104
+ Department: Engineering
105
+
106
+ Location: Barcelona, Spain
107
+
108
+ Amount: 1894.27
109
+
110
+ Card: Hybrid Work Enablement
111
+
112
+ Trip Name: unknown
113
+
114
+ '
115
+ - '
116
+
117
+ Name : InterLang Solutions
118
+
119
+ Category: Language Interpretation Services, Remote Collaboration Tools
120
+
121
+ Department: HR
122
+
123
+ Location: Tokyo, Japan
124
+
125
+ Amount: 1642.59
126
+
127
+ Card: Diversity & Inclusion Initiatives
128
+
129
+ Trip Name: unknown
130
+
131
+ '
132
+ - '
133
+
134
+ Name : CovaRisk Consulting
135
+
136
+ Category: Risk Advisory, Financial Services
137
+
138
+ Department: Legal
139
+
140
+ Location: Toronto, Canada
141
+
142
+ Amount: 1124.37
143
+
144
+ Card: Assurance Payment
145
+
146
+ Trip Name: unknown
147
+
148
+ '
149
+ - source_sentence: '
150
+
151
+ Name : Optix Global
152
+
153
+ Category: Digital Storage Solutions, Office Essentials Provider
154
+
155
+ Department: All Departments
156
+
157
+ Location: Tokyo, Japan
158
+
159
+ Amount: 568.77
160
+
161
+ Card: Monthly Office Needs
162
+
163
+ Trip Name: unknown
164
+
165
+ '
166
+ sentences:
167
+ - '
168
+
169
+ Name : Digital Wave Solutions
170
+
171
+ Category: IT Infrastructure Services, Data Analytic Platforms
172
+
173
+ Department: Finance
174
+
175
+ Location: San Francisco, CA
176
+
177
+ Amount: 1748.92
178
+
179
+ Card: Annual Data Management & Reporting
180
+
181
+ Trip Name: unknown
182
+
183
+ '
184
+ - '
185
+
186
+ Name : Analytix Global Solutions
187
+
188
+ Category: Business Intelligence Services, Regulatory Compliance Tools
189
+
190
+ Department: Finance
191
+
192
+ Location: London, UK
193
+
194
+ Amount: 1323.67
195
+
196
+ Card: Financial Compliance Enhancement
197
+
198
+ Trip Name: unknown
199
+
200
+ '
201
+ - '
202
+
203
+ Name : Daesung Enterprises
204
+
205
+ Category: Catering Services, Event Management
206
+
207
+ Department: Sales
208
+
209
+ Location: Lisbon, Portugal
210
+
211
+ Amount: 375.45
212
+
213
+ Card: Q4 Client Engagement Events
214
+
215
+ Trip Name: unknown
216
+
217
+ '
218
+ - source_sentence: '
219
+
220
+ Name : Kanzan Solutions
221
+
222
+ Category: Consulting Services, Business Advisory
223
+
224
+ Department: Legal
225
+
226
+ Location: Tokyo, Japan
227
+
228
+ Amount: 3900.75
229
+
230
+ Card: Quarterly Compliance Review
231
+
232
+ Trip Name: unknown
233
+
234
+ '
235
+ sentences:
236
+ - '
237
+
238
+ Name : Alta Via Mix
239
+
240
+ Category: Airline Catering, Luxury Travel Services
241
+
242
+ Department: Executive
243
+
244
+ Location: Milan, Italy
245
+
246
+ Amount: 1925.49
247
+
248
+ Card: Executive Incentive Program
249
+
250
+ Trip Name: Annual Leadership Summit
251
+
252
+ '
253
+ - '
254
+
255
+ Name : RBS
256
+
257
+ Category: Financial Services, Business Consultancy
258
+
259
+ Department: Finance
260
+
261
+ Location: Toronto, Canada
262
+
263
+ Amount: 1134.28
264
+
265
+ Card: Cross-Border Transaction Facilitation
266
+
267
+ Trip Name: unknown
268
+
269
+ '
270
+ - '
271
+
272
+ Name : InnovaThink Global
273
+
274
+ Category: Management Consultancy, Technical Training Services
275
+
276
+ Department: HR
277
+
278
+ Location: Zurich, Switzerland
279
+
280
+ Amount: 1675.32
281
+
282
+ Card: Innovation and Efficiency Program
283
+
284
+ Trip Name: unknown
285
+
286
+ '
287
+ - source_sentence: '
288
+
289
+ Name : NetWise Solutions
290
+
291
+ Category: Data Transfer Services, Digital Infrastructure
292
+
293
+ Department: Product
294
+
295
+ Location: Singapore
296
+
297
+ Amount: 1579.42
298
+
299
+ Card: Global Network Enhancement
300
+
301
+ Trip Name: unknown
302
+
303
+ '
304
+ sentences:
305
+ - '
306
+
307
+ Name : Fernández & Co. Services
308
+
309
+ Category: Property Management, Facility Services
310
+
311
+ Department: Office Administration
312
+
313
+ Location: Madrid, Spain
314
+
315
+ Amount: 1245.67
316
+
317
+ Card: Monthly Facility Operations
318
+
319
+ Trip Name: unknown
320
+
321
+ '
322
+ - '
323
+
324
+ Name : AeroDyn Research
325
+
326
+ Category: Research Services, Data Analysis
327
+
328
+ Department: Research & Development
329
+
330
+ Location: Amsterdam, Netherlands
331
+
332
+ Amount: 2457.42
333
+
334
+ Card: Annual Innovation Assessment
335
+
336
+ Trip Name: unknown
337
+
338
+ '
339
+ - '
340
+
341
+ Name : Global Horizon Travel
342
+
343
+ Category: Travel Services, Package Deals
344
+
345
+ Department: Sales
346
+
347
+ Location: Tokyo, Japan
348
+
349
+ Amount: 1199.75
350
+
351
+ Card: Annual Sales Retreat
352
+
353
+ Trip Name: Sales Strategy Summit
354
+
355
+ '
356
+ pipeline_tag: sentence-similarity
357
+ library_name: sentence-transformers
358
+ metrics:
359
+ - cosine_accuracy
360
+ - dot_accuracy
361
+ - manhattan_accuracy
362
+ - euclidean_accuracy
363
+ - max_accuracy
364
+ model-index:
365
+ - name: SentenceTransformer based on BAAI/bge-base-en
366
+ results:
367
+ - task:
368
+ type: triplet
369
+ name: Triplet
370
+ dataset:
371
+ name: bge base en train
372
+ type: bge-base-en-train
373
+ metrics:
374
+ - type: cosine_accuracy
375
+ value: 0.8605769230769231
376
+ name: Cosine Accuracy
377
+ - type: dot_accuracy
378
+ value: 0.13942307692307693
379
+ name: Dot Accuracy
380
+ - type: manhattan_accuracy
381
+ value: 0.8413461538461539
382
+ name: Manhattan Accuracy
383
+ - type: euclidean_accuracy
384
+ value: 0.8605769230769231
385
+ name: Euclidean Accuracy
386
+ - type: max_accuracy
387
+ value: 0.8605769230769231
388
+ name: Max Accuracy
389
+ - task:
390
+ type: triplet
391
+ name: Triplet
392
+ dataset:
393
+ name: bge base en eval
394
+ type: bge-base-en-eval
395
+ metrics:
396
+ - type: cosine_accuracy
397
+ value: 0.9242424242424242
398
+ name: Cosine Accuracy
399
+ - type: dot_accuracy
400
+ value: 0.07575757575757576
401
+ name: Dot Accuracy
402
+ - type: manhattan_accuracy
403
+ value: 0.9545454545454546
404
+ name: Manhattan Accuracy
405
+ - type: euclidean_accuracy
406
+ value: 0.9242424242424242
407
+ name: Euclidean Accuracy
408
+ - type: max_accuracy
409
+ value: 0.9545454545454546
410
+ name: Max Accuracy
411
+ ---
412
+
413
+ # SentenceTransformer based on BAAI/bge-base-en
414
+
415
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
416
+
417
+ ## Model Details
418
+
419
+ ### Model Description
420
+ - **Model Type:** Sentence Transformer
421
+ - **Base model:** [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) <!-- at revision b737bf5dcc6ee8bdc530531266b4804a5d77b5d8 -->
422
+ - **Maximum Sequence Length:** 512 tokens
423
+ - **Output Dimensionality:** 768 tokens
424
+ - **Similarity Function:** Cosine Similarity
425
+ <!-- - **Training Dataset:** Unknown -->
426
+ <!-- - **Language:** Unknown -->
427
+ <!-- - **License:** Unknown -->
428
+
429
+ ### Model Sources
430
+
431
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
432
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
433
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
434
+
435
+ ### Full Model Architecture
436
+
437
+ ```
438
+ SentenceTransformer(
439
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
440
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
441
+ (2): Normalize()
442
+ )
443
+ ```
444
+
445
+ ## Usage
446
+
447
+ ### Direct Usage (Sentence Transformers)
448
+
449
+ First install the Sentence Transformers library:
450
+
451
+ ```bash
452
+ pip install -U sentence-transformers
453
+ ```
454
+
455
+ Then you can load this model and run inference.
456
+ ```python
457
+ from sentence_transformers import SentenceTransformer
458
+
459
+ # Download from the 🤗 Hub
460
+ model = SentenceTransformer("dshvadskiy/finetuned-bge-base-en")
461
+ # Run inference
462
+ sentences = [
463
+ '\nName : NetWise Solutions\nCategory: Data Transfer Services, Digital Infrastructure\nDepartment: Product\nLocation: Singapore\nAmount: 1579.42\nCard: Global Network Enhancement\nTrip Name: unknown\n',
464
+ '\nName : Global Horizon Travel\nCategory: Travel Services, Package Deals\nDepartment: Sales\nLocation: Tokyo, Japan\nAmount: 1199.75\nCard: Annual Sales Retreat\nTrip Name: Sales Strategy Summit\n',
465
+ '\nName : AeroDyn Research\nCategory: Research Services, Data Analysis\nDepartment: Research & Development\nLocation: Amsterdam, Netherlands\nAmount: 2457.42\nCard: Annual Innovation Assessment\nTrip Name: unknown\n',
466
+ ]
467
+ embeddings = model.encode(sentences)
468
+ print(embeddings.shape)
469
+ # [3, 768]
470
+
471
+ # Get the similarity scores for the embeddings
472
+ similarities = model.similarity(embeddings, embeddings)
473
+ print(similarities.shape)
474
+ # [3, 3]
475
+ ```
476
+
477
+ <!--
478
+ ### Direct Usage (Transformers)
479
+
480
+ <details><summary>Click to see the direct usage in Transformers</summary>
481
+
482
+ </details>
483
+ -->
484
+
485
+ <!--
486
+ ### Downstream Usage (Sentence Transformers)
487
+
488
+ You can finetune this model on your own dataset.
489
+
490
+ <details><summary>Click to expand</summary>
491
+
492
+ </details>
493
+ -->
494
+
495
+ <!--
496
+ ### Out-of-Scope Use
497
+
498
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
499
+ -->
500
+
501
+ ## Evaluation
502
+
503
+ ### Metrics
504
+
505
+ #### Triplet
506
+ * Dataset: `bge-base-en-train`
507
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
508
+
509
+ | Metric | Value |
510
+ |:-------------------|:-----------|
511
+ | cosine_accuracy | 0.8606 |
512
+ | dot_accuracy | 0.1394 |
513
+ | manhattan_accuracy | 0.8413 |
514
+ | euclidean_accuracy | 0.8606 |
515
+ | **max_accuracy** | **0.8606** |
516
+
517
+ #### Triplet
518
+ * Dataset: `bge-base-en-eval`
519
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
520
+
521
+ | Metric | Value |
522
+ |:-------------------|:-----------|
523
+ | cosine_accuracy | 0.9242 |
524
+ | dot_accuracy | 0.0758 |
525
+ | manhattan_accuracy | 0.9545 |
526
+ | euclidean_accuracy | 0.9242 |
527
+ | **max_accuracy** | **0.9545** |
528
+
529
+ <!--
530
+ ## Bias, Risks and Limitations
531
+
532
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
533
+ -->
534
+
535
+ <!--
536
+ ### Recommendations
537
+
538
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
539
+ -->
540
+
541
+ ## Training Details
542
+
543
+ ### Training Dataset
544
+
545
+ #### Unnamed Dataset
546
+
547
+
548
+ * Size: 208 training samples
549
+ * Columns: <code>sentence</code> and <code>label</code>
550
+ * Approximate statistics based on the first 208 samples:
551
+ | | sentence | label |
552
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
553
+ | type | string | int |
554
+ | details | <ul><li>min: 32 tokens</li><li>mean: 39.5 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>0: ~5.29%</li><li>1: ~4.81%</li><li>2: ~3.37%</li><li>3: ~3.85%</li><li>4: ~3.85%</li><li>5: ~5.77%</li><li>6: ~1.92%</li><li>7: ~2.88%</li><li>8: ~5.29%</li><li>9: ~5.29%</li><li>10: ~4.33%</li><li>11: ~2.40%</li><li>12: ~3.85%</li><li>13: ~2.88%</li><li>14: ~4.33%</li><li>15: ~3.37%</li><li>16: ~3.37%</li><li>17: ~1.44%</li><li>18: ~4.33%</li><li>19: ~4.81%</li><li>20: ~3.85%</li><li>21: ~2.88%</li><li>22: ~5.77%</li><li>23: ~3.37%</li><li>24: ~2.88%</li><li>25: ~0.96%</li><li>26: ~2.88%</li></ul> |
555
+ * Samples:
556
+ | sentence | label |
557
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
558
+ | <code><br>Name : Yijie Logistics<br>Category: Logistics Services<br>Department: Sales<br>Location: Berlin, Germany<br>Amount: 485.67<br>Card: Quarterly Client Visit and Logistics Coordination<br>Trip Name: unknown<br></code> | <code>0</code> |
559
+ | <code><br>Name : Serenity Solutions<br>Category: Office Wellness Solutions<br>Department: Office Administration<br>Location: Munich, Germany<br>Amount: 772.58<br>Card: Ergonomic Office Enhancements<br>Trip Name: unknown<br></code> | <code>1</code> |
560
+ | <code><br>Name : Cortec International<br>Category: Event Management Services, Business Solutions<br>Department: Sales<br>Location: London, UK<br>Amount: 1337.25<br>Card: Global Sales Summit Participation<br>Trip Name: unknown<br></code> | <code>2</code> |
561
+ * Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
562
+
563
+ ### Evaluation Dataset
564
+
565
+ #### Unnamed Dataset
566
+
567
+
568
+ * Size: 52 evaluation samples
569
+ * Columns: <code>sentence</code> and <code>label</code>
570
+ * Approximate statistics based on the first 52 samples:
571
+ | | sentence | label |
572
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
573
+ | type | string | int |
574
+ | details | <ul><li>min: 34 tokens</li><li>mean: 39.62 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>0: ~3.85%</li><li>3: ~1.92%</li><li>4: ~5.77%</li><li>5: ~5.77%</li><li>6: ~3.85%</li><li>7: ~1.92%</li><li>8: ~1.92%</li><li>9: ~1.92%</li><li>10: ~3.85%</li><li>11: ~9.62%</li><li>12: ~5.77%</li><li>13: ~3.85%</li><li>14: ~1.92%</li><li>15: ~9.62%</li><li>17: ~1.92%</li><li>18: ~3.85%</li><li>20: ~1.92%</li><li>21: ~9.62%</li><li>22: ~1.92%</li><li>23: ~3.85%</li><li>24: ~1.92%</li><li>25: ~5.77%</li><li>26: ~7.69%</li></ul> |
575
+ * Samples:
576
+ | sentence | label |
577
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------|
578
+ | <code><br>Name : Versatile Systems Ltd.<br>Category: Office Management Solutions, Software Solutions<br>Department: Office Administration<br>Location: Tokyo, Japan<br>Amount: 845.67<br>Card: Integrated Office Infrastructure<br>Trip Name: unknown<br></code> | <code>21</code> |
579
+ | <code><br>Name : NexGen Comms<br>Category: Telecom Services, Communications Solutions<br>Department: Sales<br>Location: Berlin, Germany<br>Amount: 879.45<br>Card: Q2 Client Outreach Program<br>Trip Name: unknown<br></code> | <code>23</code> |
580
+ | <code><br>Name : Digital Wave Solutions<br>Category: IT Infrastructure Services, Data Analytic Platforms<br>Department: Finance<br>Location: San Francisco, CA<br>Amount: 1748.92<br>Card: Annual Data Management & Reporting<br>Trip Name: unknown<br></code> | <code>18</code> |
581
+ * Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
582
+
583
+ ### Training Hyperparameters
584
+ #### Non-Default Hyperparameters
585
+
586
+ - `eval_strategy`: steps
587
+ - `per_device_train_batch_size`: 16
588
+ - `per_device_eval_batch_size`: 16
589
+ - `learning_rate`: 2e-05
590
+ - `num_train_epochs`: 5
591
+ - `warmup_ratio`: 0.1
592
+ - `batch_sampler`: no_duplicates
593
+
594
+ #### All Hyperparameters
595
+ <details><summary>Click to expand</summary>
596
+
597
+ - `overwrite_output_dir`: False
598
+ - `do_predict`: False
599
+ - `eval_strategy`: steps
600
+ - `prediction_loss_only`: True
601
+ - `per_device_train_batch_size`: 16
602
+ - `per_device_eval_batch_size`: 16
603
+ - `per_gpu_train_batch_size`: None
604
+ - `per_gpu_eval_batch_size`: None
605
+ - `gradient_accumulation_steps`: 1
606
+ - `eval_accumulation_steps`: None
607
+ - `torch_empty_cache_steps`: None
608
+ - `learning_rate`: 2e-05
609
+ - `weight_decay`: 0.0
610
+ - `adam_beta1`: 0.9
611
+ - `adam_beta2`: 0.999
612
+ - `adam_epsilon`: 1e-08
613
+ - `max_grad_norm`: 1.0
614
+ - `num_train_epochs`: 5
615
+ - `max_steps`: -1
616
+ - `lr_scheduler_type`: linear
617
+ - `lr_scheduler_kwargs`: {}
618
+ - `warmup_ratio`: 0.1
619
+ - `warmup_steps`: 0
620
+ - `log_level`: passive
621
+ - `log_level_replica`: warning
622
+ - `log_on_each_node`: True
623
+ - `logging_nan_inf_filter`: True
624
+ - `save_safetensors`: True
625
+ - `save_on_each_node`: False
626
+ - `save_only_model`: False
627
+ - `restore_callback_states_from_checkpoint`: False
628
+ - `no_cuda`: False
629
+ - `use_cpu`: False
630
+ - `use_mps_device`: False
631
+ - `seed`: 42
632
+ - `data_seed`: None
633
+ - `jit_mode_eval`: False
634
+ - `use_ipex`: False
635
+ - `bf16`: False
636
+ - `fp16`: False
637
+ - `fp16_opt_level`: O1
638
+ - `half_precision_backend`: auto
639
+ - `bf16_full_eval`: False
640
+ - `fp16_full_eval`: False
641
+ - `tf32`: None
642
+ - `local_rank`: 0
643
+ - `ddp_backend`: None
644
+ - `tpu_num_cores`: None
645
+ - `tpu_metrics_debug`: False
646
+ - `debug`: []
647
+ - `dataloader_drop_last`: False
648
+ - `dataloader_num_workers`: 0
649
+ - `dataloader_prefetch_factor`: None
650
+ - `past_index`: -1
651
+ - `disable_tqdm`: False
652
+ - `remove_unused_columns`: True
653
+ - `label_names`: None
654
+ - `load_best_model_at_end`: False
655
+ - `ignore_data_skip`: False
656
+ - `fsdp`: []
657
+ - `fsdp_min_num_params`: 0
658
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
659
+ - `fsdp_transformer_layer_cls_to_wrap`: None
660
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
661
+ - `deepspeed`: None
662
+ - `label_smoothing_factor`: 0.0
663
+ - `optim`: adamw_torch
664
+ - `optim_args`: None
665
+ - `adafactor`: False
666
+ - `group_by_length`: False
667
+ - `length_column_name`: length
668
+ - `ddp_find_unused_parameters`: None
669
+ - `ddp_bucket_cap_mb`: None
670
+ - `ddp_broadcast_buffers`: False
671
+ - `dataloader_pin_memory`: True
672
+ - `dataloader_persistent_workers`: False
673
+ - `skip_memory_metrics`: True
674
+ - `use_legacy_prediction_loop`: False
675
+ - `push_to_hub`: False
676
+ - `resume_from_checkpoint`: None
677
+ - `hub_model_id`: None
678
+ - `hub_strategy`: every_save
679
+ - `hub_private_repo`: False
680
+ - `hub_always_push`: False
681
+ - `gradient_checkpointing`: False
682
+ - `gradient_checkpointing_kwargs`: None
683
+ - `include_inputs_for_metrics`: False
684
+ - `eval_do_concat_batches`: True
685
+ - `fp16_backend`: auto
686
+ - `push_to_hub_model_id`: None
687
+ - `push_to_hub_organization`: None
688
+ - `mp_parameters`:
689
+ - `auto_find_batch_size`: False
690
+ - `full_determinism`: False
691
+ - `torchdynamo`: None
692
+ - `ray_scope`: last
693
+ - `ddp_timeout`: 1800
694
+ - `torch_compile`: False
695
+ - `torch_compile_backend`: None
696
+ - `torch_compile_mode`: None
697
+ - `dispatch_batches`: None
698
+ - `split_batches`: None
699
+ - `include_tokens_per_second`: False
700
+ - `include_num_input_tokens_seen`: False
701
+ - `neftune_noise_alpha`: None
702
+ - `optim_target_modules`: None
703
+ - `batch_eval_metrics`: False
704
+ - `eval_on_start`: False
705
+ - `use_liger_kernel`: False
706
+ - `eval_use_gather_object`: False
707
+ - `batch_sampler`: no_duplicates
708
+ - `multi_dataset_batch_sampler`: proportional
709
+
710
+ </details>
711
+
712
+ ### Training Logs
713
+ | Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy |
714
+ |:-----:|:----:|:-----------------------------:|:------------------------------:|
715
+ | 0 | 0 | - | 0.8606 |
716
+ | 5.0 | 65 | 0.9545 | - |
717
+
718
+
719
+ ### Framework Versions
720
+ - Python: 3.9.16
721
+ - Sentence Transformers: 3.1.1
722
+ - Transformers: 4.45.2
723
+ - PyTorch: 2.6.0
724
+ - Accelerate: 1.3.0
725
+ - Datasets: 3.2.0
726
+ - Tokenizers: 0.20.3
727
+
728
+ ## Citation
729
+
730
+ ### BibTeX
731
+
732
+ #### Sentence Transformers
733
+ ```bibtex
734
+ @inproceedings{reimers-2019-sentence-bert,
735
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
736
+ author = "Reimers, Nils and Gurevych, Iryna",
737
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
738
+ month = "11",
739
+ year = "2019",
740
+ publisher = "Association for Computational Linguistics",
741
+ url = "https://arxiv.org/abs/1908.10084",
742
+ }
743
+ ```
744
+
745
+ #### BatchSemiHardTripletLoss
746
+ ```bibtex
747
+ @misc{hermans2017defense,
748
+ title={In Defense of the Triplet Loss for Person Re-Identification},
749
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
750
+ year={2017},
751
+ eprint={1703.07737},
752
+ archivePrefix={arXiv},
753
+ primaryClass={cs.CV}
754
+ }
755
+ ```
756
+
757
+ <!--
758
+ ## Glossary
759
+
760
+ *Clearly define terms in order to be accessible across audiences.*
761
+ -->
762
+
763
+ <!--
764
+ ## Model Card Authors
765
+
766
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
767
+ -->
768
+
769
+ <!--
770
+ ## Model Card Contact
771
+
772
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
773
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.45.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.6.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cbb4f8f115df457aeb09f7e8ee26ee180eab10d0a0715e2a0d1ee1516264da0
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff