dshvadskiy's picture
Add new SentenceTransformer model.
d33a44a verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:208
  - loss:BatchSemiHardTripletLoss
base_model: BAAI/bge-base-en
widget:
  - source_sentence: |

      Name : Gandalf
      Category: Financial Services, Consulting
      Department: Finance
      Location: Singapore
      Amount: 457.29
      Card: Financial Advisory Services
      Trip Name: unknown
    sentences:
      - |

        Name : InterGlobal Tech
        Category: Business Software Solutions, Data Processing Services
        Department: Marketing
        Location: New York, NY
        Amount: 1249.95
        Card: Marketing Automation Tools
        Trip Name: unknown
      - |

        Name : Nuvotek Solutions
        Category: Consulting Services, Managed IT Services
        Department: Information Security
        Location: Berlin, Germany
        Amount: 879.65
        Card: Annual Cybersecurity Resilience Program
        Trip Name: unknown
      - |

        Name : Omega Systems Inc.
        Category: Integrated Business Solutions, Enterprise Software Sales
        Department: Research & Development
        Location: Oslo, Norway
        Amount: 1943.75
        Card: AI Development Suite
        Trip Name: unknown
  - source_sentence: |

      Name : NexGen Fiscal Systems
      Category: Financial Software Solutions, Revenue Management Services
      Department: Finance
      Location: San Francisco, CA
      Amount: 2749.95
      Card: Q4 Revenue Optimization Initiative
      Trip Name: unknown
    sentences:
      - |

        Name : GlobalRes Workforce Solutions
        Category: Remote Work Platforms, HR Technology Vendors
        Department: Engineering
        Location: Barcelona, Spain
        Amount: 1894.27
        Card: Hybrid Work Enablement
        Trip Name: unknown
      - |

        Name : InterLang Solutions
        Category: Language Interpretation Services, Remote Collaboration Tools
        Department: HR
        Location: Tokyo, Japan
        Amount: 1642.59
        Card: Diversity & Inclusion Initiatives
        Trip Name: unknown
      - |

        Name : CovaRisk Consulting
        Category: Risk Advisory, Financial Services
        Department: Legal
        Location: Toronto, Canada
        Amount: 1124.37
        Card: Assurance Payment
        Trip Name: unknown
  - source_sentence: |

      Name : Optix Global
      Category: Digital Storage Solutions, Office Essentials Provider
      Department: All Departments
      Location: Tokyo, Japan
      Amount: 568.77
      Card: Monthly Office Needs
      Trip Name: unknown
    sentences:
      - |

        Name : Digital Wave Solutions
        Category: IT Infrastructure Services, Data Analytic Platforms
        Department: Finance
        Location: San Francisco, CA
        Amount: 1748.92
        Card: Annual Data Management & Reporting
        Trip Name: unknown
      - |

        Name : Analytix Global Solutions
        Category: Business Intelligence Services, Regulatory Compliance Tools
        Department: Finance
        Location: London, UK
        Amount: 1323.67
        Card: Financial Compliance Enhancement
        Trip Name: unknown
      - |

        Name : Daesung Enterprises
        Category: Catering Services, Event Management
        Department: Sales
        Location: Lisbon, Portugal
        Amount: 375.45
        Card: Q4 Client Engagement Events
        Trip Name: unknown
  - source_sentence: |

      Name : Kanzan Solutions
      Category: Consulting Services, Business Advisory
      Department: Legal
      Location: Tokyo, Japan
      Amount: 3900.75
      Card: Quarterly Compliance Review
      Trip Name: unknown
    sentences:
      - |

        Name : Alta Via Mix
        Category: Airline Catering, Luxury Travel Services
        Department: Executive
        Location: Milan, Italy
        Amount: 1925.49
        Card: Executive Incentive Program
        Trip Name: Annual Leadership Summit
      - |

        Name : RBS
        Category: Financial Services, Business Consultancy
        Department: Finance
        Location: Toronto, Canada
        Amount: 1134.28
        Card: Cross-Border Transaction Facilitation
        Trip Name: unknown
      - |

        Name : InnovaThink Global
        Category: Management Consultancy, Technical Training Services
        Department: HR
        Location: Zurich, Switzerland
        Amount: 1675.32
        Card: Innovation and Efficiency Program
        Trip Name: unknown
  - source_sentence: |

      Name : NetWise Solutions
      Category: Data Transfer Services, Digital Infrastructure
      Department: Product
      Location: Singapore
      Amount: 1579.42
      Card: Global Network Enhancement
      Trip Name: unknown
    sentences:
      - |

        Name : Fernández & Co. Services
        Category: Property Management, Facility Services
        Department: Office Administration
        Location: Madrid, Spain
        Amount: 1245.67
        Card: Monthly Facility Operations
        Trip Name: unknown
      - |

        Name : AeroDyn Research
        Category: Research Services, Data Analysis
        Department: Research & Development
        Location: Amsterdam, Netherlands
        Amount: 2457.42
        Card: Annual Innovation Assessment
        Trip Name: unknown
      - |

        Name : Global Horizon Travel
        Category: Travel Services, Package Deals
        Department: Sales
        Location: Tokyo, Japan
        Amount: 1199.75
        Card: Annual Sales Retreat
        Trip Name: Sales Strategy Summit
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - dot_accuracy
  - manhattan_accuracy
  - euclidean_accuracy
  - max_accuracy
model-index:
  - name: SentenceTransformer based on BAAI/bge-base-en
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: bge base en train
          type: bge-base-en-train
        metrics:
          - type: cosine_accuracy
            value: 0.8605769230769231
            name: Cosine Accuracy
          - type: dot_accuracy
            value: 0.13942307692307693
            name: Dot Accuracy
          - type: manhattan_accuracy
            value: 0.8413461538461539
            name: Manhattan Accuracy
          - type: euclidean_accuracy
            value: 0.8605769230769231
            name: Euclidean Accuracy
          - type: max_accuracy
            value: 0.8605769230769231
            name: Max Accuracy
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: bge base en eval
          type: bge-base-en-eval
        metrics:
          - type: cosine_accuracy
            value: 0.9242424242424242
            name: Cosine Accuracy
          - type: dot_accuracy
            value: 0.07575757575757576
            name: Dot Accuracy
          - type: manhattan_accuracy
            value: 0.9545454545454546
            name: Manhattan Accuracy
          - type: euclidean_accuracy
            value: 0.9242424242424242
            name: Euclidean Accuracy
          - type: max_accuracy
            value: 0.9545454545454546
            name: Max Accuracy

SentenceTransformer based on BAAI/bge-base-en

This is a sentence-transformers model finetuned from BAAI/bge-base-en. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("dshvadskiy/finetuned-bge-base-en")
# Run inference
sentences = [
    '\nName : NetWise Solutions\nCategory: Data Transfer Services, Digital Infrastructure\nDepartment: Product\nLocation: Singapore\nAmount: 1579.42\nCard: Global Network Enhancement\nTrip Name: unknown\n',
    '\nName : Global Horizon Travel\nCategory: Travel Services, Package Deals\nDepartment: Sales\nLocation: Tokyo, Japan\nAmount: 1199.75\nCard: Annual Sales Retreat\nTrip Name: Sales Strategy Summit\n',
    '\nName : AeroDyn Research\nCategory: Research Services, Data Analysis\nDepartment: Research & Development\nLocation: Amsterdam, Netherlands\nAmount: 2457.42\nCard: Annual Innovation Assessment\nTrip Name: unknown\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.8606
dot_accuracy 0.1394
manhattan_accuracy 0.8413
euclidean_accuracy 0.8606
max_accuracy 0.8606

Triplet

Metric Value
cosine_accuracy 0.9242
dot_accuracy 0.0758
manhattan_accuracy 0.9545
euclidean_accuracy 0.9242
max_accuracy 0.9545

Training Details

Training Dataset

Unnamed Dataset

  • Size: 208 training samples
  • Columns: sentence and label
  • Approximate statistics based on the first 208 samples:
    sentence label
    type string int
    details
    • min: 32 tokens
    • mean: 39.5 tokens
    • max: 49 tokens
    • 0: ~5.29%
    • 1: ~4.81%
    • 2: ~3.37%
    • 3: ~3.85%
    • 4: ~3.85%
    • 5: ~5.77%
    • 6: ~1.92%
    • 7: ~2.88%
    • 8: ~5.29%
    • 9: ~5.29%
    • 10: ~4.33%
    • 11: ~2.40%
    • 12: ~3.85%
    • 13: ~2.88%
    • 14: ~4.33%
    • 15: ~3.37%
    • 16: ~3.37%
    • 17: ~1.44%
    • 18: ~4.33%
    • 19: ~4.81%
    • 20: ~3.85%
    • 21: ~2.88%
    • 22: ~5.77%
    • 23: ~3.37%
    • 24: ~2.88%
    • 25: ~0.96%
    • 26: ~2.88%
  • Samples:
    sentence label

    Name : Yijie Logistics
    Category: Logistics Services
    Department: Sales
    Location: Berlin, Germany
    Amount: 485.67
    Card: Quarterly Client Visit and Logistics Coordination
    Trip Name: unknown
    0

    Name : Serenity Solutions
    Category: Office Wellness Solutions
    Department: Office Administration
    Location: Munich, Germany
    Amount: 772.58
    Card: Ergonomic Office Enhancements
    Trip Name: unknown
    1

    Name : Cortec International
    Category: Event Management Services, Business Solutions
    Department: Sales
    Location: London, UK
    Amount: 1337.25
    Card: Global Sales Summit Participation
    Trip Name: unknown
    2
  • Loss: BatchSemiHardTripletLoss

Evaluation Dataset

Unnamed Dataset

  • Size: 52 evaluation samples
  • Columns: sentence and label
  • Approximate statistics based on the first 52 samples:
    sentence label
    type string int
    details
    • min: 34 tokens
    • mean: 39.62 tokens
    • max: 46 tokens
    • 0: ~3.85%
    • 3: ~1.92%
    • 4: ~5.77%
    • 5: ~5.77%
    • 6: ~3.85%
    • 7: ~1.92%
    • 8: ~1.92%
    • 9: ~1.92%
    • 10: ~3.85%
    • 11: ~9.62%
    • 12: ~5.77%
    • 13: ~3.85%
    • 14: ~1.92%
    • 15: ~9.62%
    • 17: ~1.92%
    • 18: ~3.85%
    • 20: ~1.92%
    • 21: ~9.62%
    • 22: ~1.92%
    • 23: ~3.85%
    • 24: ~1.92%
    • 25: ~5.77%
    • 26: ~7.69%
  • Samples:
    sentence label

    Name : Versatile Systems Ltd.
    Category: Office Management Solutions, Software Solutions
    Department: Office Administration
    Location: Tokyo, Japan
    Amount: 845.67
    Card: Integrated Office Infrastructure
    Trip Name: unknown
    21

    Name : NexGen Comms
    Category: Telecom Services, Communications Solutions
    Department: Sales
    Location: Berlin, Germany
    Amount: 879.45
    Card: Q2 Client Outreach Program
    Trip Name: unknown
    23

    Name : Digital Wave Solutions
    Category: IT Infrastructure Services, Data Analytic Platforms
    Department: Finance
    Location: San Francisco, CA
    Amount: 1748.92
    Card: Annual Data Management & Reporting
    Trip Name: unknown
    18
  • Loss: BatchSemiHardTripletLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step bge-base-en-eval_max_accuracy bge-base-en-train_max_accuracy
0 0 - 0.8606
5.0 65 0.9545 -

Framework Versions

  • Python: 3.9.16
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.6.0
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

BatchSemiHardTripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}