arxiv_id
stringlengths
10
10
published
stringlengths
20
20
titles
stringlengths
9
243
authors
listlengths
1
389
abstract
stringlengths
96
3.09k
categories
listlengths
1
10
selected
bool
2 classes
2306.00427
2023-06-01T08:07:58Z
Out-of-distribution forgetting: vulnerability of continual learning to intra-class distribution shift
[ "Liangxuan Guo", "Yang Chen", "Shan Yu" ]
Continual learning (CL) is an important technique to allow artificial neural networks to work in open environments. CL enables a system to learn new tasks without severe interference to its performance on old tasks, i.e., overcome the problems of catastrophic forgetting. In joint learning, it is well known that the out-of-distribution (OOD) problem caused by intentional attacks or environmental perturbations will severely impair the ability of networks to generalize. In this work, we reported a special form of catastrophic forgetting raised by the OOD problem in continual learning settings, and we named it out-of-distribution forgetting (OODF). In continual image classification tasks, we found that for a given category, introducing an intra-class distribution shift significantly impaired the recognition accuracy of CL methods for that category during subsequent learning. Interestingly, this phenomenon is special for CL as the same level of distribution shift had only negligible effects in the joint learning scenario. We verified that CL methods without dedicating subnetworks for individual tasks are all vulnerable to OODF. Moreover, OODF does not depend on any specific way of shifting the distribution, suggesting it is a risk for CL in a wide range of circumstances. Taken together, our work identified an under-attended risk during CL, highlighting the importance of developing approaches that can overcome OODF.
[ "cs.LG", "cs.AI", "cs.CV" ]
false
2306.00455
2023-06-01T08:58:35Z
MindBigData 2023 MNIST-8B The 8 billion datapoints Multimodal Dataset of Brain Signals
[ "David Vivancos" ]
MindBigData 2023 MNIST-8B is the largest, to date (June 1st 2023), brain signals open dataset created for Machine Learning, based on EEG signals from a single subject captured using a custom 128 channels device, replicating the full 70,000 digits from Yaan LeCun et all MNIST dataset. The brain signals were captured while the subject was watching the pixels of the original digits one by one on a screen and listening at the same time to the spoken number 0 to 9 from the real label. The data, collection procedures, hardware and software created are described in detail, background extra information and other related datasets can be found at our previous paper MindBigData 2022: A Large Dataset of Brain Signals.
[ "cs.LG", "cs.CV", "q-bio.NC", "68T01, 68T45", "H.2.8; I.2.0; I.2.1; J.3; J.7" ]
false
2306.00501
2023-06-01T09:53:35Z
Image generation with shortest path diffusion
[ "Ayan Das", "Stathi Fotiadis", "Anil Batra", "Farhang Nabiei", "FengTing Liao", "Sattar Vakili", "Da-shan Shiu", "Alberto Bernacchia" ]
The field of image generation has made significant progress thanks to the introduction of Diffusion Models, which learn to progressively reverse a given image corruption. Recently, a few studies introduced alternative ways of corrupting images in Diffusion Models, with an emphasis on blurring. However, these studies are purely empirical and it remains unclear what is the optimal procedure for corrupting an image. In this work, we hypothesize that the optimal procedure minimizes the length of the path taken when corrupting an image towards a given final state. We propose the Fisher metric for the path length, measured in the space of probability distributions. We compute the shortest path according to this metric, and we show that it corresponds to a combination of image sharpening, rather than blurring, and noise deblurring. While the corruption was chosen arbitrarily in previous work, our Shortest Path Diffusion (SPD) determines uniquely the entire spatiotemporal structure of the corruption. We show that SPD improves on strong baselines without any hyperparameter tuning, and outperforms all previous Diffusion Models based on image blurring. Furthermore, any small deviation from the shortest path leads to worse performance, suggesting that SPD provides the optimal procedure to corrupt images. Our work sheds new light on observations made in recent works and provides a new approach to improve diffusion models on images and other types of data.
[ "cs.CV", "cs.AI", "cs.LG" ]
false
2306.00503
2023-06-01T09:54:31Z
MEWL: Few-shot multimodal word learning with referential uncertainty
[ "Guangyuan Jiang", "Manjie Xu", "Shiji Xin", "Wei Liang", "Yujia Peng", "Chi Zhang", "Yixin Zhu" ]
Without explicit feedback, humans can rapidly learn the meaning of words. Children can acquire a new word after just a few passive exposures, a process known as fast mapping. This word learning capability is believed to be the most fundamental building block of multimodal understanding and reasoning. Despite recent advancements in multimodal learning, a systematic and rigorous evaluation is still missing for human-like word learning in machines. To fill in this gap, we introduce the MachinE Word Learning (MEWL) benchmark to assess how machines learn word meaning in grounded visual scenes. MEWL covers human's core cognitive toolkits in word learning: cross-situational reasoning, bootstrapping, and pragmatic learning. Specifically, MEWL is a few-shot benchmark suite consisting of nine tasks for probing various word learning capabilities. These tasks are carefully designed to be aligned with the children's core abilities in word learning and echo the theories in the developmental literature. By evaluating multimodal and unimodal agents' performance with a comparative analysis of human performance, we notice a sharp divergence in human and machine word learning. We further discuss these differences between humans and machines and call for human-like few-shot word learning in machines.
[ "cs.CL", "cs.AI", "cs.CV", "cs.LG" ]
false
2306.00530
2023-06-01T10:29:58Z
Contrastive Learning MRI Reconstruction
[ "Mevan Ekanayake", "Zhifeng Chen", "Gary Egan", "Mehrtash Harandi", "Zhaolin Chen" ]
Purpose: We propose a novel contrastive learning latent space representation for MRI datasets with partially acquired scans. We show that this latent space can be utilized for accelerated MR image reconstruction. Theory and Methods: Our novel framework, referred to as COLADA (stands for Contrastive Learning for highly accelerated MR image reconstruction), maximizes the mutual information between differently accelerated images of an MRI scan by using self-supervised contrastive learning. In other words, it attempts to "pull" the latent representations of the same scan together and "push" the latent representations of other scans away. The generated MRI latent space is subsequently utilized for MR image reconstruction and the performance was assessed in comparison to several baseline deep learning reconstruction methods. Furthermore, the quality of the proposed latent space representation was analyzed using Alignment and Uniformity. Results: COLADA comprehensively outperformed other reconstruction methods with robustness to variations in undersampling patterns, pathological abnormalities, and noise in k-space during inference. COLADA proved the high quality of reconstruction on unseen data with minimal fine-tuning. The analysis of representation quality suggests that the contrastive features produced by COLADA are optimally distributed in latent space. Conclusion: To the best of our knowledge, this is the first attempt to utilize contrastive learning on differently accelerated images for MR image reconstruction. The proposed latent space representation has practical usage due to a large number of existing partially sampled datasets. This implies the possibility of exploring self-supervised contrastive learning further to enhance the latent space of MRI for image reconstruction.
[ "eess.IV", "cs.AI", "cs.CV" ]
false
2306.00559
2023-06-01T11:18:57Z
We never go out of Style: Motion Disentanglement by Subspace Decomposition of Latent Space
[ "Rishubh Parihar", "Raghav Magazine", "Piyush Tiwari", "R. Venkatesh Babu" ]
Real-world objects perform complex motions that involve multiple independent motion components. For example, while talking, a person continuously changes their expressions, head, and body pose. In this work, we propose a novel method to decompose motion in videos by using a pretrained image GAN model. We discover disentangled motion subspaces in the latent space of widely used style-based GAN models that are semantically meaningful and control a single explainable motion component. The proposed method uses only a few $(\approx10)$ ground truth video sequences to obtain such subspaces. We extensively evaluate the disentanglement properties of motion subspaces on face and car datasets, quantitatively and qualitatively. Further, we present results for multiple downstream tasks such as motion editing, and selective motion transfer, e.g. transferring only facial expressions without training for it.
[ "cs.CV", "cs.AI", "cs.LG" ]
false
2306.00714
2023-06-01T14:20:06Z
Dissecting Arbitrary-scale Super-resolution Capability from Pre-trained Diffusion Generative Models
[ "Ruibin Li", "Qihua Zhou", "Song Guo", "Jie Zhang", "Jingcai Guo", "Xinyang Jiang", "Yifei Shen", "Zhenhua Han" ]
Diffusion-based Generative Models (DGMs) have achieved unparalleled performance in synthesizing high-quality visual content, opening up the opportunity to improve image super-resolution (SR) tasks. Recent solutions for these tasks often train architecture-specific DGMs from scratch, or require iterative fine-tuning and distillation on pre-trained DGMs, both of which take considerable time and hardware investments. More seriously, since the DGMs are established with a discrete pre-defined upsampling scale, they cannot well match the emerging requirements of arbitrary-scale super-resolution (ASSR), where a unified model adapts to arbitrary upsampling scales, instead of preparing a series of distinct models for each case. These limitations beg an intriguing question: can we identify the ASSR capability of existing pre-trained DGMs without the need for distillation or fine-tuning? In this paper, we take a step towards resolving this matter by proposing Diff-SR, a first ASSR attempt based solely on pre-trained DGMs, without additional training efforts. It is motivated by an exciting finding that a simple methodology, which first injects a specific amount of noise into the low-resolution images before invoking a DGM's backward diffusion process, outperforms current leading solutions. The key insight is determining a suitable amount of noise to inject, i.e., small amounts lead to poor low-level fidelity, while over-large amounts degrade the high-level signature. Through a finely-grained theoretical analysis, we propose the Perceptual Recoverable Field (PRF), a metric that achieves the optimal trade-off between these two factors. Extensive experiments verify the effectiveness, flexibility, and adaptability of Diff-SR, demonstrating superior performance to state-of-the-art solutions under diverse ASSR environments.
[ "cs.CV", "cs.LG", "eess.IV" ]
false
2306.00834
2023-06-01T15:57:12Z
Deformable Convolutions and LSTM-based Flexible Event Frame Fusion Network for Motion Deblurring
[ "Dan Yang", "Mehmet Yamac" ]
Event cameras differ from conventional RGB cameras in that they produce asynchronous data sequences. While RGB cameras capture every frame at a fixed rate, event cameras only capture changes in the scene, resulting in sparse and asynchronous data output. Despite the fact that event data carries useful information that can be utilized in motion deblurring of RGB cameras, integrating event and image information remains a challenge. Recent state-of-the-art CNN-based deblurring solutions produce multiple 2-D event frames based on the accumulation of event data over a time period. In most of these techniques, however, the number of event frames is fixed and predefined, which reduces temporal resolution drastically, particularly for scenarios when fast-moving objects are present or when longer exposure times are required. It is also important to note that recent modern cameras (e.g., cameras in mobile phones) dynamically set the exposure time of the image, which presents an additional problem for networks developed for a fixed number of event frames. A Long Short-Term Memory (LSTM)-based event feature extraction module has been developed for addressing these challenges, which enables us to use a dynamically varying number of event frames. Using these modules, we constructed a state-of-the-art deblurring network, Deformable Convolutions and LSTM-based Flexible Event Frame Fusion Network (DLEFNet). It is particularly useful for scenarios in which exposure times vary depending on factors such as lighting conditions or the presence of fast-moving objects in the scene. It has been demonstrated through evaluation results that the proposed method can outperform the existing state-of-the-art networks for deblurring task in synthetic and real-world data sets.
[ "cs.CV", "cs.AI", "cs.LG" ]
false
2306.00864
2023-06-01T16:23:47Z
A Transformer-based representation-learning model with unified processing of multimodal input for clinical diagnostics
[ "Hong-Yu Zhou", "Yizhou Yu", "Chengdi Wang", "Shu Zhang", "Yuanxu Gao", "Jia Pan", "Jun Shao", "Guangming Lu", "Kang Zhang", "Weimin Li" ]
During the diagnostic process, clinicians leverage multimodal information, such as chief complaints, medical images, and laboratory-test results. Deep-learning models for aiding diagnosis have yet to meet this requirement. Here we report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner. Rather than learning modality-specific features, the model uses embedding layers to convert images and unstructured and structured text into visual tokens and text tokens, and bidirectional blocks with intramodal and intermodal attention to learn a holistic representation of radiographs, the unstructured chief complaint and clinical history, structured clinical information such as laboratory-test results and patient demographic information. The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases (by 12% and 9%, respectively) and in the prediction of adverse clinical outcomes in patients with COVID-19 (by 29% and 7%, respectively). Leveraging unified multimodal Transformer-based models may help streamline triage of patients and facilitate the clinical decision process.
[ "cs.CV", "cs.CL", "cs.LG" ]
false
2306.00905
2023-06-01T17:02:51Z
T2IAT: Measuring Valence and Stereotypical Biases in Text-to-Image Generation
[ "Jialu Wang", "Xinyue Gabby Liu", "Zonglin Di", "Yang Liu", "Xin Eric Wang" ]
Warning: This paper contains several contents that may be toxic, harmful, or offensive. In the last few years, text-to-image generative models have gained remarkable success in generating images with unprecedented quality accompanied by a breakthrough of inference speed. Despite their rapid progress, human biases that manifest in the training examples, particularly with regard to common stereotypical biases, like gender and skin tone, still have been found in these generative models. In this work, we seek to measure more complex human biases exist in the task of text-to-image generations. Inspired by the well-known Implicit Association Test (IAT) from social psychology, we propose a novel Text-to-Image Association Test (T2IAT) framework that quantifies the implicit stereotypes between concepts and valence, and those in the images. We replicate the previously documented bias tests on generative models, including morally neutral tests on flowers and insects as well as demographic stereotypical tests on diverse social attributes. The results of these experiments demonstrate the presence of complex stereotypical behaviors in image generations.
[ "cs.CL", "cs.AI", "cs.CV", "I.2.6" ]
false
2306.00927
2023-06-01T17:31:07Z
Second Sight: Using brain-optimized encoding models to align image distributions with human brain activity
[ "Reese Kneeland", "Jordyn Ojeda", "Ghislain St-Yves", "Thomas Naselaris" ]
Two recent developments have accelerated progress in image reconstruction from human brain activity: large datasets that offer samples of brain activity in response to many thousands of natural scenes, and the open-sourcing of powerful stochastic image-generators that accept both low- and high-level guidance. Most work in this space has focused on obtaining point estimates of the target image, with the ultimate goal of approximating literal pixel-wise reconstructions of target images from the brain activity patterns they evoke. This emphasis belies the fact that there is always a family of images that are equally compatible with any evoked brain activity pattern, and the fact that many image-generators are inherently stochastic and do not by themselves offer a method for selecting the single best reconstruction from among the samples they generate. We introduce a novel reconstruction procedure (Second Sight) that iteratively refines an image distribution to explicitly maximize the alignment between the predictions of a voxel-wise encoding model and the brain activity patterns evoked by any target image. We show that our process converges on a distribution of high-quality reconstructions by refining both semantic content and low-level image details across iterations. Images sampled from these converged image distributions are competitive with state-of-the-art reconstruction algorithms. Interestingly, the time-to-convergence varies systematically across visual cortex, with earlier visual areas generally taking longer and converging on narrower image distributions, relative to higher-level brain areas. Second Sight thus offers a succinct and novel method for exploring the diversity of representations across visual brain areas.
[ "q-bio.NC", "cs.CV", "cs.LG" ]
false
2306.00985
2023-06-01T17:59:55Z
Using generative AI to investigate medical imagery models and datasets
[ "Oran Lang", "Doron Yaya-Stupp", "Ilana Traynis", "Heather Cole-Lewis", "Chloe R. Bennett", "Courtney Lyles", "Charles Lau", "Christopher Semturs", "Dale R. Webster", "Greg S. Corrado", "Avinatan Hassidim", "Yossi Matias", "Yun Liu", "Naama Hammel", "Boris Babenko" ]
AI models have shown promise in many medical imaging tasks. However, our ability to explain what signals these models have learned is severely lacking. Explanations are needed in order to increase the trust in AI-based models, and could enable novel scientific discovery by uncovering signals in the data that are not yet known to experts. In this paper, we present a method for automatic visual explanations leveraging team-based expertise by generating hypotheses of what visual signals in the images are correlated with the task. We propose the following 4 steps: (i) Train a classifier to perform a given task (ii) Train a classifier guided StyleGAN-based image generator (StylEx) (iii) Automatically detect and visualize the top visual attributes that the classifier is sensitive towards (iv) Formulate hypotheses for the underlying mechanisms, to stimulate future research. Specifically, we present the discovered attributes to an interdisciplinary panel of experts so that hypotheses can account for social and structural determinants of health. We demonstrate results on eight prediction tasks across three medical imaging modalities: retinal fundus photographs, external eye photographs, and chest radiographs. We showcase examples of attributes that capture clinically known features, confounders that arise from factors beyond physiological mechanisms, and reveal a number of physiologically plausible novel attributes. Our approach has the potential to enable researchers to better understand, improve their assessment, and extract new knowledge from AI-based models. Importantly, we highlight that attributes generated by our framework can capture phenomena beyond physiology or pathophysiology, reflecting the real world nature of healthcare delivery and socio-cultural factors. Finally, we intend to release code to enable researchers to train their own StylEx models and analyze their predictive tasks.
[ "eess.IV", "cs.CV", "cs.LG" ]
false
2306.00987
2023-06-01T17:59:57Z
StyleGAN knows Normal, Depth, Albedo, and More
[ "Anand Bhattad", "Daniel McKee", "Derek Hoiem", "D. A. Forsyth" ]
Intrinsic images, in the original sense, are image-like maps of scene properties like depth, normal, albedo or shading. This paper demonstrates that StyleGAN can easily be induced to produce intrinsic images. The procedure is straightforward. We show that, if StyleGAN produces $G({w})$ from latents ${w}$, then for each type of intrinsic image, there is a fixed offset ${d}_c$ so that $G({w}+{d}_c)$ is that type of intrinsic image for $G({w})$. Here ${d}_c$ is {\em independent of ${w}$}. The StyleGAN we used was pretrained by others, so this property is not some accident of our training regime. We show that there are image transformations StyleGAN will {\em not} produce in this fashion, so StyleGAN is not a generic image regression engine. It is conceptually exciting that an image generator should ``know'' and represent intrinsic images. There may also be practical advantages to using a generative model to produce intrinsic images. The intrinsic images obtained from StyleGAN compare well both qualitatively and quantitatively with those obtained by using SOTA image regression techniques; but StyleGAN's intrinsic images are robust to relighting effects, unlike SOTA methods.
[ "cs.CV", "cs.GR", "cs.LG" ]
false
2306.01075
2023-06-01T18:27:48Z
Pedestrian Crossing Action Recognition and Trajectory Prediction with 3D Human Keypoints
[ "Jiachen Li", "Xinwei Shi", "Feiyu Chen", "Jonathan Stroud", "Zhishuai Zhang", "Tian Lan", "Junhua Mao", "Jeonhyung Kang", "Khaled S. Refaat", "Weilong Yang", "Eugene Ie", "Congcong Li" ]
Accurate understanding and prediction of human behaviors are critical prerequisites for autonomous vehicles, especially in highly dynamic and interactive scenarios such as intersections in dense urban areas. In this work, we aim at identifying crossing pedestrians and predicting their future trajectories. To achieve these goals, we not only need the context information of road geometry and other traffic participants but also need fine-grained information of the human pose, motion and activity, which can be inferred from human keypoints. In this paper, we propose a novel multi-task learning framework for pedestrian crossing action recognition and trajectory prediction, which utilizes 3D human keypoints extracted from raw sensor data to capture rich information on human pose and activity. Moreover, we propose to apply two auxiliary tasks and contrastive learning to enable auxiliary supervisions to improve the learned keypoints representation, which further enhances the performance of major tasks. We validate our approach on a large-scale in-house dataset, as well as a public benchmark dataset, and show that our approach achieves state-of-the-art performance on a wide range of evaluation metrics. The effectiveness of each model component is validated in a detailed ablation study.
[ "cs.CV", "cs.AI", "cs.LG", "cs.RO" ]
false
2306.01081
2023-06-01T18:43:16Z
4DSR-GCN: 4D Video Point Cloud Upsampling using Graph Convolutional Networks
[ "Lorenzo Berlincioni", "Stefano Berretti", "Marco Bertini", "Alberto Del Bimbo" ]
Time varying sequences of 3D point clouds, or 4D point clouds, are now being acquired at an increasing pace in several applications (e.g., LiDAR in autonomous or assisted driving). In many cases, such volume of data is transmitted, thus requiring that proper compression tools are applied to either reduce the resolution or the bandwidth. In this paper, we propose a new solution for upscaling and restoration of time-varying 3D video point clouds after they have been heavily compressed. In consideration of recent growing relevance of 3D applications, %We focused on a model allowing user-side upscaling and artifact removal for 3D video point clouds, a real-time stream of which would require . Our model consists of a specifically designed Graph Convolutional Network (GCN) that combines Dynamic Edge Convolution and Graph Attention Networks for feature aggregation in a Generative Adversarial setting. By taking inspiration PointNet++, We present a different way to sample dense point clouds with the intent to make these modules work in synergy to provide each node enough features about its neighbourhood in order to later on generate new vertices. Compared to other solutions in the literature that address the same task, our proposed model is capable of obtaining comparable results in terms of quality of the reconstruction, while using a substantially lower number of parameters (about 300KB), making our solution deployable in edge computing devices such as LiDAR.
[ "cs.CV", "cs.AI", "cs.MM" ]
false
2306.06116
2023-06-01T17:05:18Z
Overview of Deep Learning Methods for Retinal Vessel Segmentation
[ "Gorana Gojić", "Ognjen Kundačina", "Dragiša Mišković", "Dinu Dragan" ]
Methods for automated retinal vessel segmentation play an important role in the treatment and diagnosis of many eye and systemic diseases. With the fast development of deep learning methods, more and more retinal vessel segmentation methods are implemented as deep neural networks. In this paper, we provide a brief review of recent deep learning methods from highly influential journals and conferences. The review objectives are: (1) to assess the design characteristics of the latest methods, (2) to report and analyze quantitative values of performance evaluation metrics, and (3) to analyze the advantages and disadvantages of the recent solutions.
[ "eess.IV", "cs.CV", "cs.LG" ]
false
2306.00548
2023-06-01T11:09:31Z
Label- and slide-free tissue histology using 3D epi-mode quantitative phase imaging and virtual H&E staining
[ "Tanishq Mathew Abraham", "Paloma Casteleiro Costa", "Caroline Filan", "Zhe Guang", "Zhaobin Zhang", "Stewart Neill", "Jeffrey J. Olson", "Richard Levenson", "Francisco E. Robles" ]
Histological staining of tissue biopsies, especially hematoxylin and eosin (H&E) staining, serves as the benchmark for disease diagnosis and comprehensive clinical assessment of tissue. However, the process is laborious and time-consuming, often limiting its usage in crucial applications such as surgical margin assessment. To address these challenges, we combine an emerging 3D quantitative phase imaging technology, termed quantitative oblique back illumination microscopy (qOBM), with an unsupervised generative adversarial network pipeline to map qOBM phase images of unaltered thick tissues (i.e., label- and slide-free) to virtually stained H&E-like (vH&E) images. We demonstrate that the approach achieves high-fidelity conversions to H&E with subcellular detail using fresh tissue specimens from mouse liver, rat gliosarcoma, and human gliomas. We also show that the framework directly enables additional capabilities such as H&E-like contrast for volumetric imaging. The quality and fidelity of the vH&E images are validated using both a neural network classifier trained on real H&E images and tested on virtual H&E images, and a user study with neuropathologists. Given its simple and low-cost embodiment and ability to provide real-time feedback in vivo, this deep learning-enabled qOBM approach could enable new workflows for histopathology with the potential to significantly save time, labor, and costs in cancer screening, detection, treatment guidance, and more.
[ "eess.IV", "cs.CV", "cs.LG", "physics.med-ph", "q-bio.QM" ]
false
2306.00956
2023-06-01T17:51:22Z
The ObjectFolder Benchmark: Multisensory Learning with Neural and Real Objects
[ "Ruohan Gao", "Yiming Dou", "Hao Li", "Tanmay Agarwal", "Jeannette Bohg", "Yunzhu Li", "Li Fei-Fei", "Jiajun Wu" ]
We introduce the ObjectFolder Benchmark, a benchmark suite of 10 tasks for multisensory object-centric learning, centered around object recognition, reconstruction, and manipulation with sight, sound, and touch. We also introduce the ObjectFolder Real dataset, including the multisensory measurements for 100 real-world household objects, building upon a newly designed pipeline for collecting the 3D meshes, videos, impact sounds, and tactile readings of real-world objects. We conduct systematic benchmarking on both the 1,000 multisensory neural objects from ObjectFolder, and the real multisensory data from ObjectFolder Real. Our results demonstrate the importance of multisensory perception and reveal the respective roles of vision, audio, and touch for different object-centric learning tasks. By publicly releasing our dataset and benchmark suite, we hope to catalyze and enable new research in multisensory object-centric learning in computer vision, robotics, and beyond. Project page: https://objectfolder.stanford.edu
[ "cs.CV", "cs.AI", "cs.GR", "cs.HC", "cs.RO" ]
true
2306.01016
2023-06-01T05:39:45Z
PV2TEA: Patching Visual Modality to Textual-Established Information Extraction
[ "Hejie Cui", "Rongmei Lin", "Nasser Zalmout", "Chenwei Zhang", "Jingbo Shang", "Carl Yang", "Xian Li" ]
Information extraction, e.g., attribute value extraction, has been extensively studied and formulated based only on text. However, many attributes can benefit from image-based extraction, like color, shape, pattern, among others. The visual modality has long been underutilized, mainly due to multimodal annotation difficulty. In this paper, we aim to patch the visual modality to the textual-established attribute information extractor. The cross-modality integration faces several unique challenges: (C1) images and textual descriptions are loosely paired intra-sample and inter-samples; (C2) images usually contain rich backgrounds that can mislead the prediction; (C3) weakly supervised labels from textual-established extractors are biased for multimodal training. We present PV2TEA, an encoder-decoder architecture equipped with three bias reduction schemes: (S1) Augmented label-smoothed contrast to improve the cross-modality alignment for loosely-paired image and text; (S2) Attention-pruning that adaptively distinguishes the visual foreground; (S3) Two-level neighborhood regularization that mitigates the label textual bias via reliability estimation. Empirical results on real-world e-Commerce datasets demonstrate up to 11.74% absolute (20.97% relatively) F1 increase over unimodal baselines.
[ "cs.CL", "cs.AI", "cs.CV", "cs.LG", "cs.MM" ]
false
2306.06117
2023-06-01T20:35:06Z
Strengths and Weaknesses of 3D Pose Estimation and Inertial Motion Capture System for Movement Therapy
[ "Shawan Mohammed", "Hannah Siebers", "Ted Preuß" ]
3D pose estimation offers the opportunity for fast, non-invasive, and accurate motion analysis. This is of special interest also for clinical use. Currently, motion capture systems are used, as they offer robust and precise data acquisition, which is essential in the case of clinical applications. In this study, we investigate the accuracy of the state-of-the-art 3D position estimation approach MeTrabs, compared to the established inertial sensor system MTw Awinda for specific motion exercises. The study uses and provides an evaluation dataset of parallel recordings from 10 subjects during various movement therapy exercises. The information from the Awinda system and the frames for monocular pose estimation are synchronized. For the comparison, clinically relevant parameters for joint angles of ankle, knee, back, and elbow flexion-extension were estimated and evaluated using mean, median, and maximum deviation between the calculated joint angles for the different exercises, camera positions, and clothing items. The results of the analysis indicate that the mean and median deviations can be kept below 5{\deg} for some of the studied angles. These joints could be considered for medical applications even considering the maximum deviations of 15{\deg}. However, caution should be applied to certain particularly problematic joints. In particular, elbow flexions, which showed high maximum deviations of up to 50{\deg} in our analysis. Furthermore, the type of exercise plays a crucial role in the reliable and safe application of the 3D position estimation method. For example, all joint angles showed a significant deterioration in performance during exercises near the ground.
[ "eess.IV", "cs.AI", "cs.CV", "cs.LG", "eess.SP" ]
false
2306.00400
2023-06-01T07:03:47Z
BiSync: A Bilingual Editor for Synchronized Monolingual Texts
[ "Josep Crego", "Jitao Xu", "François Yvon" ]
In our globalized world, a growing number of situations arise where people are required to communicate in one or several foreign languages. In the case of written communication, users with a good command of a foreign language may find assistance from computer-aided translation (CAT) technologies. These technologies often allow users to access external resources, such as dictionaries, terminologies or bilingual concordancers, thereby interrupting and considerably hindering the writing process. In addition, CAT systems assume that the source sentence is fixed and also restrict the possible changes on the target side. In order to make the writing process smoother, we present BiSync, a bilingual writing assistant that allows users to freely compose text in two languages, while maintaining the two monolingual texts synchronized. We also include additional functionalities, such as the display of alternative prefix translations and paraphrases, which are intended to facilitate the authoring of texts. We detail the model architecture used for synchronization and evaluate the resulting tool, showing that high accuracy can be attained with limited computational resources. The interface and models are publicly available at https://github.com/jmcrego/BiSync and a demonstration video can be watched on YouTube at https://youtu.be/_l-ugDHfNgU .
[ "cs.CL" ]
false
2306.00434
2023-06-01T08:21:20Z
Divide, Conquer, and Combine: Mixture of Semantic-Independent Experts for Zero-Shot Dialogue State Tracking
[ "Qingyue Wang", "Liang Ding", "Yanan Cao", "Yibing Zhan", "Zheng Lin", "Shi Wang", "Dacheng Tao", "Li Guo" ]
Zero-shot transfer learning for Dialogue State Tracking (DST) helps to handle a variety of task-oriented dialogue domains without the cost of collecting in-domain data. Existing works mainly study common data- or model-level augmentation methods to enhance the generalization but fail to effectively decouple the semantics of samples, limiting the zero-shot performance of DST. In this paper, we present a simple and effective "divide, conquer and combine" solution, which explicitly disentangles the semantics of seen data, and leverages the performance and robustness with the mixture-of-experts mechanism. Specifically, we divide the seen data into semantically independent subsets and train corresponding experts, the newly unseen samples are mapped and inferred with mixture-of-experts with our designed ensemble inference. Extensive experiments on MultiWOZ2.1 upon the T5-Adapter show our schema significantly and consistently improves the zero-shot performance, achieving the SOTA on settings without external knowledge, with only 10M trainable parameters1.
[ "cs.CL" ]
false
2306.00435
2023-06-01T08:22:21Z
How Many Answers Should I Give? An Empirical Study of Multi-Answer Reading Comprehension
[ "Chen Zhang", "Jiuheng Lin", "Xiao Liu", "Yuxuan Lai", "Yansong Feng", "Dongyan Zhao" ]
The multi-answer phenomenon, where a question may have multiple answers scattered in the document, can be well handled by humans but is challenging enough for machine reading comprehension (MRC) systems. Despite recent progress in multi-answer MRC, there lacks a systematic analysis of how this phenomenon arises and how to better address it. In this work, we design a taxonomy to categorize commonly-seen multi-answer MRC instances, with which we inspect three multi-answer datasets and analyze where the multi-answer challenge comes from. We further analyze how well different paradigms of current multi-answer MRC models deal with different types of multi-answer instances. We find that some paradigms capture well the key information in the questions while others better model the relationship between questions and contexts. We thus explore strategies to make the best of the strengths of different paradigms. Experiments show that generation models can be a promising platform to incorporate different paradigms. Our annotations and code are released for further research.
[ "cs.CL" ]
false
2306.00437
2023-06-01T08:27:00Z
Responsibility Perspective Transfer for Italian Femicide News
[ "Gosse Minnema", "Huiyuan Lai", "Benedetta Muscato", "Malvina Nissim" ]
Different ways of linguistically expressing the same real-world event can lead to different perceptions of what happened. Previous work has shown that different descriptions of gender-based violence (GBV) influence the reader's perception of who is to blame for the violence, possibly reinforcing stereotypes which see the victim as partly responsible, too. As a contribution to raise awareness on perspective-based writing, and to facilitate access to alternative perspectives, we introduce the novel task of automatically rewriting GBV descriptions as a means to alter the perceived level of responsibility on the perpetrator. We present a quasi-parallel dataset of sentences with low and high perceived responsibility levels for the perpetrator, and experiment with unsupervised (mBART-based), zero-shot and few-shot (GPT3-based) methods for rewriting sentences. We evaluate our models using a questionnaire study and a suite of automatic metrics.
[ "cs.CL" ]
false
2306.00645
2023-06-01T13:10:48Z
Contextual Distortion Reveals Constituency: Masked Language Models are Implicit Parsers
[ "Jiaxi Li", "Wei Lu" ]
Recent advancements in pre-trained language models (PLMs) have demonstrated that these models possess some degree of syntactic awareness. To leverage this knowledge, we propose a novel chart-based method for extracting parse trees from masked language models (LMs) without the need to train separate parsers. Our method computes a score for each span based on the distortion of contextual representations resulting from linguistic perturbations. We design a set of perturbations motivated by the linguistic concept of constituency tests, and use these to score each span by aggregating the distortion scores. To produce a parse tree, we use chart parsing to find the tree with the minimum score. Our method consistently outperforms previous state-of-the-art methods on English with masked LMs, and also demonstrates superior performance in a multilingual setting, outperforming the state of the art in 6 out of 8 languages. Notably, although our method does not involve parameter updates or extensive hyperparameter search, its performance can even surpass some unsupervised parsing methods that require fine-tuning. Our analysis highlights that the distortion of contextual representation resulting from syntactic perturbation can serve as an effective indicator of constituency across languages.
[ "cs.CL" ]
false
2306.00660
2023-06-01T13:34:21Z
Improving Polish to English Neural Machine Translation with Transfer Learning: Effects of Data Volume and Language Similarity
[ "Juuso Eronen", "Michal Ptaszynski", "Karol Nowakowski", "Zheng Lin Chia", "Fumito Masui" ]
This paper investigates the impact of data volume and the use of similar languages on transfer learning in a machine translation task. We find out that having more data generally leads to better performance, as it allows the model to learn more patterns and generalizations from the data. However, related languages can also be particularly effective when there is limited data available for a specific language pair, as the model can leverage the similarities between the languages to improve performance. To demonstrate, we fine-tune mBART model for a Polish-English translation task using the OPUS-100 dataset. We evaluate the performance of the model under various transfer learning configurations, including different transfer source languages and different shot levels for Polish, and report the results. Our experiments show that a combination of related languages and larger amounts of data outperforms the model trained on related languages or larger amounts of data alone. Additionally, we show the importance of related languages in zero-shot and few-shot configurations.
[ "cs.CL" ]
false
2306.00665
2023-06-01T13:37:55Z
Automatic Glossary of Clinical Terminology: a Large-Scale Dictionary of Biomedical Definitions Generated from Ontological Knowledge
[ "François Remy", "Thomas Demeester" ]
Background: More than 400,000 biomedical concepts and some of their relationships are contained in SnomedCT, a comprehensive biomedical ontology. However, their concept names are not always readily interpretable by non-experts, or patients looking at their own electronic health records (EHR). Clear definitions or descriptions in understandable language are often not available. Therefore, generating human-readable definitions for biomedical concepts might help make the information they encode more accessible and understandable to a wider public. Objective: In this article, we introduce the Automatic Glossary of Clinical Terminology (AGCT), a large-scale biomedical dictionary of clinical concepts generated using high-quality information extracted from the biomedical knowledge contained in SnomedCT. Methods: We generate a novel definition for every SnomedCT concept, after prompting the OpenAI Turbo model, a variant of GPT 3.5, using a high-quality verbalization of the SnomedCT relationships of the to-be-defined concept. A significant subset of the generated definitions was subsequently judged by NLP researchers with biomedical expertise on 5-point scales along the following three axes: factuality, insight, and fluency. Results: AGCT contains 422,070 computer-generated definitions for SnomedCT concepts, covering various domains such as diseases, procedures, drugs, and anatomy. The average length of the definitions is 49 words. The definitions were assigned average scores of over 4.5 out of 5 on all three axes, indicating a majority of factual, insightful, and fluent definitions. Conclusion: AGCT is a novel and valuable resource for biomedical tasks that require human-readable definitions for SnomedCT concepts. It can also serve as a base for developing robust biomedical retrieval models or other applications that leverage natural language understanding of biomedical knowledge.
[ "cs.CL" ]
false
2306.00672
2023-06-01T13:44:45Z
Towards Argument-Aware Abstractive Summarization of Long Legal Opinions with Summary Reranking
[ "Mohamed Elaraby", "Yang Zhong", "Diane Litman" ]
We propose a simple approach for the abstractive summarization of long legal opinions that considers the argument structure of the document. Legal opinions often contain complex and nuanced argumentation, making it challenging to generate a concise summary that accurately captures the main points of the legal opinion. Our approach involves using argument role information to generate multiple candidate summaries, then reranking these candidates based on alignment with the document's argument structure. We demonstrate the effectiveness of our approach on a dataset of long legal opinions and show that it outperforms several strong baselines.
[ "cs.CL" ]
false
2306.00708
2023-06-01T14:16:53Z
Boosting the Performance of Transformer Architectures for Semantic Textual Similarity
[ "Ivan Rep", "Vladimir Čeperić" ]
Semantic textual similarity is the task of estimating the similarity between the meaning of two texts. In this paper, we fine-tune transformer architectures for semantic textual similarity on the Semantic Textual Similarity Benchmark by tuning the model partially and then end-to-end. We experiment with BERT, RoBERTa, and DeBERTaV3 cross-encoders by approaching the problem as a binary classification task or a regression task. We combine the outputs of the transformer models and use handmade features as inputs for boosting algorithms. Due to worse test set results coupled with improvements on the validation set, we experiment with different dataset splits to further investigate this occurrence. We also provide an error analysis, focused on the edges of the prediction range.
[ "cs.CL", "I.2.7" ]
false
2306.00858
2023-06-01T16:17:16Z
Adversarial learning of neural user simulators for dialogue policy optimisation
[ "Simon Keizer", "Caroline Dockes", "Norbert Braunschweiler", "Svetlana Stoyanchev", "Rama Doddipatla" ]
Reinforcement learning based dialogue policies are typically trained in interaction with a user simulator. To obtain an effective and robust policy, this simulator should generate user behaviour that is both realistic and varied. Current data-driven simulators are trained to accurately model the user behaviour in a dialogue corpus. We propose an alternative method using adversarial learning, with the aim to simulate realistic user behaviour with more variation. We train and evaluate several simulators on a corpus of restaurant search dialogues, and then use them to train dialogue system policies. In policy cross-evaluation experiments we demonstrate that an adversarially trained simulator produces policies with 8.3% higher success rate than those trained with a maximum likelihood simulator. Subjective results from a crowd-sourced dialogue system user evaluation confirm the effectiveness of adversarially training user simulators.
[ "cs.CL" ]
false
2306.01058
2023-06-01T18:01:33Z
Are Layout-Infused Language Models Robust to Layout Distribution Shifts? A Case Study with Scientific Documents
[ "Catherine Chen", "Zejiang Shen", "Dan Klein", "Gabriel Stanovsky", "Doug Downey", "Kyle Lo" ]
Recent work has shown that infusing layout features into language models (LMs) improves processing of visually-rich documents such as scientific papers. Layout-infused LMs are often evaluated on documents with familiar layout features (e.g., papers from the same publisher), but in practice models encounter documents with unfamiliar distributions of layout features, such as new combinations of text sizes and styles, or new spatial configurations of textual elements. In this work we test whether layout-infused LMs are robust to layout distribution shifts. As a case study we use the task of scientific document structure recovery, segmenting a scientific paper into its structural categories (e.g., "title", "caption", "reference"). To emulate distribution shifts that occur in practice we re-partition the GROTOAP2 dataset. We find that under layout distribution shifts model performance degrades by up to 20 F1. Simple training strategies, such as increasing training diversity, can reduce this degradation by over 35% relative F1; however, models fail to reach in-distribution performance in any tested out-of-distribution conditions. This work highlights the need to consider layout distribution shifts during model evaluation, and presents a methodology for conducting such evaluations.
[ "cs.CL" ]
false
2306.01090
2023-06-01T19:04:17Z
Improving the Robustness of Summarization Systems with Dual Augmentation
[ "Xiuying Chen", "Guodong Long", "Chongyang Tao", "Mingzhe Li", "Xin Gao", "Chengqi Zhang", "Xiangliang Zhang" ]
A robust summarization system should be able to capture the gist of the document, regardless of the specific word choices or noise in the input. In this work, we first explore the summarization models' robustness against perturbations including word-level synonym substitution and noise. To create semantic-consistent substitutes, we propose a SummAttacker, which is an efficient approach to generating adversarial samples based on language models. Experimental results show that state-of-the-art summarization models have a significant decrease in performance on adversarial and noisy test sets. Next, we analyze the vulnerability of the summarization systems and explore improving the robustness by data augmentation. Specifically, the first brittleness factor we found is the poor understanding of infrequent words in the input. Correspondingly, we feed the encoder with more diverse cases created by SummAttacker in the input space. The other factor is in the latent space, where the attacked inputs bring more variations to the hidden states. Hence, we construct adversarial decoder input and devise manifold softmixing operation in hidden space to introduce more diversity. Experimental results on Gigaword and CNN/DM datasets demonstrate that our approach achieves significant improvements over strong baselines and exhibits higher robustness on noisy, attacked, and clean datasets.
[ "cs.CL" ]
false
2306.01117
2023-06-01T20:05:05Z
Examining the Causal Effect of First Names on Language Models: The Case of Social Commonsense Reasoning
[ "Sullam Jeoung", "Jana Diesner", "Halil Kilicoglu" ]
As language models continue to be integrated into applications of personal and societal relevance, ensuring these models' trustworthiness is crucial, particularly with respect to producing consistent outputs regardless of sensitive attributes. Given that first names may serve as proxies for (intersectional) socio-demographic representations, it is imperative to examine the impact of first names on commonsense reasoning capabilities. In this paper, we study whether a model's reasoning given a specific input differs based on the first names provided. Our underlying assumption is that the reasoning about Alice should not differ from the reasoning about James. We propose and implement a controlled experimental framework to measure the causal effect of first names on commonsense reasoning, enabling us to distinguish between model predictions due to chance and caused by actual factors of interest. Our results indicate that the frequency of first names has a direct effect on model prediction, with less frequent names yielding divergent predictions compared to more frequent names. To gain insights into the internal mechanisms of models that are contributing to these behaviors, we also conduct an in-depth explainable analysis. Overall, our findings suggest that to ensure model robustness, it is essential to augment datasets with more diverse first names during the configuration stage.
[ "cs.CL" ]
false
2306.01169
2023-06-01T21:58:33Z
Hybrid Long Document Summarization using C2F-FAR and ChatGPT: A Practical Study
[ "Guang Lu", "Sylvia B. Larcher", "Tu Tran" ]
Text summarization is a downstream natural language processing (NLP) task that challenges the understanding and generation capabilities of language models. Considerable progress has been made in automatically summarizing short texts, such as news articles, often leading to satisfactory results. However, summarizing long documents remains a major challenge. This is due to the complex contextual information in the text and the lack of open-source benchmarking datasets and evaluation frameworks that can be used to develop and test model performance. In this work, we use ChatGPT, the latest breakthrough in the field of large language models (LLMs), together with the extractive summarization model C2F-FAR (Coarse-to-Fine Facet-Aware Ranking) to propose a hybrid extraction and summarization pipeline for long documents such as business articles and books. We work with the world-renowned company getAbstract AG and leverage their expertise and experience in professional book summarization. A practical study has shown that machine-generated summaries can perform at least as well as human-written summaries when evaluated using current automated evaluation metrics. However, a closer examination of the texts generated by ChatGPT through human evaluations has shown that there are still critical issues in terms of text coherence, faithfulness, and style. Overall, our results show that the use of ChatGPT is a very promising but not yet mature approach for summarizing long documents and can at best serve as an inspiration for human editors. We anticipate that our work will inform NLP researchers about the extent to which ChatGPT's capabilities for summarizing long documents overlap with practitioners' needs. Further work is needed to test the proposed hybrid summarization pipeline, in particular involving GPT-4, and to propose a new evaluation framework tailored to the task of summarizing long documents.
[ "cs.CL" ]
false
2306.01183
2023-06-01T22:43:37Z
Systematic Evaluation of GPT-3 for Zero-Shot Personality Estimation
[ "Adithya V Ganesan", "Yash Kumar Lal", "August Håkan Nilsson", "H. Andrew Schwartz" ]
Very large language models (LLMs) perform extremely well on a spectrum of NLP tasks in a zero-shot setting. However, little is known about their performance on human-level NLP problems which rely on understanding psychological concepts, such as assessing personality traits. In this work, we investigate the zero-shot ability of GPT-3 to estimate the Big 5 personality traits from users' social media posts. Through a set of systematic experiments, we find that zero-shot GPT-3 performance is somewhat close to an existing pre-trained SotA for broad classification upon injecting knowledge about the trait in the prompts. However, when prompted to provide fine-grained classification, its performance drops to close to a simple most frequent class (MFC) baseline. We further analyze where GPT-3 performs better, as well as worse, than a pretrained lexical model, illustrating systematic errors that suggest ways to improve LLMs on human-level NLP tasks.
[ "cs.CL", "68T50", "J.4; I.2; I.7" ]
false
2306.01200
2023-06-01T23:27:49Z
Multi-Dimensional Evaluation of Text Summarization with In-Context Learning
[ "Sameer Jain", "Vaishakh Keshava", "Swarnashree Mysore Sathyendra", "Patrick Fernandes", "Pengfei Liu", "Graham Neubig", "Chunting Zhou" ]
Evaluation of natural language generation (NLG) is complex and multi-dimensional. Generated text can be evaluated for fluency, coherence, factuality, or any other dimensions of interest. Most frameworks that perform such multi-dimensional evaluation require training on large manually or synthetically generated datasets. In this paper, we study the efficacy of large language models as multi-dimensional evaluators using in-context learning, obviating the need for large training datasets. Our experiments show that in-context learning-based evaluators are competitive with learned evaluation frameworks for the task of text summarization, establishing state-of-the-art on dimensions such as relevance and factual consistency. We then analyze the effects of factors such as the selection and number of in-context examples on performance. Finally, we study the efficacy of in-context learning based evaluators in evaluating zero-shot summaries written by large language models such as GPT-3.
[ "cs.CL" ]
false
2306.00346
2023-06-01T04:55:43Z
CAISA at SemEval-2023 Task 8: Counterfactual Data Augmentation for Mitigating Class Imbalance in Causal Claim Identification
[ "Akbar Karimi", "Lucie Flek" ]
The class imbalance problem can cause machine learning models to produce an undesirable performance on the minority class as well as the whole dataset. Using data augmentation techniques to increase the number of samples is one way to tackle this problem. We introduce a novel counterfactual data augmentation by verb replacement for the identification of medical claims. In addition, we investigate the impact of this method and compare it with 3 other data augmentation techniques, showing that the proposed method can result in a significant (relative) improvement in the minority class.
[ "cs.CL", "cs.LG" ]
false
2306.00374
2023-06-01T06:13:51Z
CFL: Causally Fair Language Models Through Token-level Attribute Controlled Generation
[ "Rahul Madhavan", "Rishabh Garg", "Kahini Wadhawan", "Sameep Mehta" ]
We propose a method to control the attributes of Language Models (LMs) for the text generation task using Causal Average Treatment Effect (ATE) scores and counterfactual augmentation. We explore this method, in the context of LM detoxification, and propose the Causally Fair Language (CFL) architecture for detoxifying pre-trained LMs in a plug-and-play manner. Our architecture is based on a Structural Causal Model (SCM) that is mathematically transparent and computationally efficient as compared with many existing detoxification techniques. We also propose several new metrics that aim to better understand the behaviour of LMs in the context of toxic text generation. Further, we achieve state of the art performance for toxic degeneration, which are computed using \RTP (RTP) benchmark. Our experiments show that CFL achieves such a detoxification without much impact on the model perplexity. We also show that CFL mitigates the unintended bias problem through experiments on the BOLD dataset.
[ "cs.CL", "cs.AI" ]
false
2306.00445
2023-06-01T08:34:26Z
A big data approach towards sarcasm detection in Russian
[ "A. A. Gurin", "T. M. Sadykov", "T. A. Zhukov" ]
We present a set of deterministic algorithms for Russian inflection and automated text synthesis. These algorithms are implemented in a publicly available web-service www.passare.ru. This service provides functions for inflection of single words, word matching and synthesis of grammatically correct Russian text. Selected code and datasets are available at https://github.com/passare-ru/PassareFunctions/ Performance of the inflectional functions has been tested against the annotated corpus of Russian language OpenCorpora, compared with that of other solutions, and used for estimating the morphological variability and complexity of different parts of speech in Russian.
[ "cs.CL", "cs.AI" ]
false
2306.00502
2023-06-01T09:53:53Z
Revisiting Event Argument Extraction: Can EAE Models Learn Better When Being Aware of Event Co-occurrences?
[ "Yuxin He", "Jingyue Hu", "Buzhou Tang" ]
Event co-occurrences have been proved effective for event extraction (EE) in previous studies, but have not been considered for event argument extraction (EAE) recently. In this paper, we try to fill this gap between EE research and EAE research, by highlighting the question that ``Can EAE models learn better when being aware of event co-occurrences?''. To answer this question, we reformulate EAE as a problem of table generation and extend a SOTA prompt-based EAE model into a non-autoregressive generation framework, called TabEAE, which is able to extract the arguments of multiple events in parallel. Under this framework, we experiment with 3 different training-inference schemes on 4 datasets (ACE05, RAMS, WikiEvents and MLEE) and discover that via training the model to extract all events in parallel, it can better distinguish the semantic boundary of each event and its ability to extract single event gets substantially improved. Experimental results show that our method achieves new state-of-the-art performance on the 4 datasets. Our code is avilable at https://github.com/Stardust-hyx/TabEAE.
[ "cs.CL", "cs.AI" ]
false
2306.00535
2023-06-01T10:42:56Z
The Effects of Input Type and Pronunciation Dictionary Usage in Transfer Learning for Low-Resource Text-to-Speech
[ "Phat Do", "Matt Coler", "Jelske Dijkstra", "Esther Klabbers" ]
We compare phone labels and articulatory features as input for cross-lingual transfer learning in text-to-speech (TTS) for low-resource languages (LRLs). Experiments with FastSpeech 2 and the LRL West Frisian show that using articulatory features outperformed using phone labels in both intelligibility and naturalness. For LRLs without pronunciation dictionaries, we propose two novel approaches: a) using a massively multilingual model to convert grapheme-to-phone (G2P) in both training and synthesizing, and b) using a universal phone recognizer to create a makeshift dictionary. Results show that the G2P approach performs largely on par with using a ground-truth dictionary and the phone recognition approach, while performing generally worse, remains a viable option for LRLs less suitable for the G2P approach. Within each approach, using articulatory features as input outperforms using phone labels.
[ "cs.CL", "eess.AS" ]
false
2306.00539
2023-06-01T10:46:08Z
A Call for Standardization and Validation of Text Style Transfer Evaluation
[ "Phil Ostheimer", "Mayank Nagda", "Marius Kloft", "Sophie Fellenz" ]
Text Style Transfer (TST) evaluation is, in practice, inconsistent. Therefore, we conduct a meta-analysis on human and automated TST evaluation and experimentation that thoroughly examines existing literature in the field. The meta-analysis reveals a substantial standardization gap in human and automated evaluation. In addition, we also find a validation gap: only few automated metrics have been validated using human experiments. To this end, we thoroughly scrutinize both the standardization and validation gap and reveal the resulting pitfalls. This work also paves the way to close the standardization and validation gap in TST evaluation by calling out requirements to be met by future research.
[ "cs.LG", "cs.CL" ]
false
2306.00652
2023-06-01T13:20:22Z
Explanation Graph Generation via Generative Pre-training over Synthetic Graphs
[ "Han Cui", "Shangzhan Li", "Yu Zhang", "Qi Shi" ]
The generation of explanation graphs is a significant task that aims to produce explanation graphs in response to user input, revealing the internal reasoning process. This task is challenging due to the significant discrepancy between unstructured user queries and structured explanation graphs. Current research commonly fine-tunes a text-based pre-trained language model on a small downstream dataset that is annotated with labeled graphs. However, due to the limited scale of available datasets, this approach may prove to be insufficient in bridging the gap between natural language text and structured graphs. In this paper, to alleviate the above limitations, we propose a novel pre-trained framework EG3P(for Explanation Graph Generation via Generative Pre-training over synthetic graphs) for the explanation graph generation task. Specifically, we first propose a text-to-graph generative task to pre-train the model with the goal of bridging the text-graph gap. Additionally, we propose an automatic corpus synthesis strategy for synthesizing a large scale of high-quality corpus, reducing the reliance on costly manual annotation methods. Experimental results on ExplaGraphs show the effectiveness of EG3P that our model surpasses all baseline systems with remarkable margins. Besides, further analysis demonstrates that EG3P is able to generate better explanation graphs on actual reasoning tasks such as CommonsenseQA and OpenbookQA.
[ "cs.CL", "cs.AI" ]
false
2306.00667
2023-06-01T13:39:33Z
Predicting the Quality of Revisions in Argumentative Writing
[ "Zhexiong Liu", "Diane Litman", "Elaine Wang", "Lindsay Matsumura", "Richard Correnti" ]
The ability to revise in response to feedback is critical to students' writing success. In the case of argument writing in specific, identifying whether an argument revision (AR) is successful or not is a complex problem because AR quality is dependent on the overall content of an argument. For example, adding the same evidence sentence could strengthen or weaken existing claims in different argument contexts (ACs). To address this issue we developed Chain-of-Thought prompts to facilitate ChatGPT-generated ACs for AR quality predictions. The experiments on two corpora, our annotated elementary essays and existing college essays benchmark, demonstrate the superiority of the proposed ACs over baselines.
[ "cs.CL", "cs.AI" ]
false
2306.00751
2023-06-01T14:46:34Z
Differentiable Tree Operations Promote Compositional Generalization
[ "Paul Soulos", "Edward Hu", "Kate McCurdy", "Yunmo Chen", "Roland Fernandez", "Paul Smolensky", "Jianfeng Gao" ]
In the context of structure-to-structure transformation tasks, learning sequences of discrete symbolic operations poses significant challenges due to their non-differentiability. To facilitate the learning of these symbolic sequences, we introduce a differentiable tree interpreter that compiles high-level symbolic tree operations into subsymbolic matrix operations on tensors. We present a novel Differentiable Tree Machine (DTM) architecture that integrates our interpreter with an external memory and an agent that learns to sequentially select tree operations to execute the target transformation in an end-to-end manner. With respect to out-of-distribution compositional generalization on synthetic semantic parsing and language generation tasks, DTM achieves 100% while existing baselines such as Transformer, Tree Transformer, LSTM, and Tree2Tree LSTM achieve less than 30%. DTM remains highly interpretable in addition to its perfect performance.
[ "cs.CL", "cs.LG" ]
false
2306.00774
2023-06-01T15:06:11Z
In-Context Learning User Simulators for Task-Oriented Dialog Systems
[ "Silvia Terragni", "Modestas Filipavicius", "Nghia Khau", "Bruna Guedes", "André Manso", "Roland Mathis" ]
This paper presents a novel application of large language models in user simulation for task-oriented dialog systems, specifically focusing on an in-context learning approach. By harnessing the power of these models, the proposed approach generates diverse utterances based on user goals and limited dialog examples. Unlike traditional simulators, this method eliminates the need for labor-intensive rule definition or extensive annotated data, making it more efficient and accessible. Additionally, an error analysis of the interaction between the user simulator and dialog system uncovers common mistakes, providing valuable insights into areas that require improvement. Our implementation is available at https://github.com/telepathylabsai/prompt-based-user-simulator.
[ "cs.CL", "cs.LG" ]
false
2306.00784
2023-06-01T15:16:18Z
Interpretable Math Word Problem Solution Generation Via Step-by-step Planning
[ "Mengxue Zhang", "Zichao Wang", "Zhichao Yang", "Weiqi Feng", "Andrew Lan" ]
Solutions to math word problems (MWPs) with step-by-step explanations are valuable, especially in education, to help students better comprehend problem-solving strategies. Most existing approaches only focus on obtaining the final correct answer. A few recent approaches leverage intermediate solution steps to improve final answer correctness but often cannot generate coherent steps with a clear solution strategy. Contrary to existing work, we focus on improving the correctness and coherence of the intermediate solutions steps. We propose a step-by-step planning approach for intermediate solution generation, which strategically plans the generation of the next solution step based on the MWP and the previous solution steps. Our approach first plans the next step by predicting the necessary math operation needed to proceed, given history steps, then generates the next step, token-by-token, by prompting a language model with the predicted math operation. Experiments on the GSM8K dataset demonstrate that our approach improves the accuracy and interpretability of the solution on both automatic metrics and human evaluation.
[ "cs.CL", "cs.AI" ]
false
2306.00791
2023-06-01T15:22:05Z
Modeling and Analyzing Scorer Preferences in Short-Answer Math Questions
[ "Mengxue Zhang", "Neil Heffernan", "Andrew Lan" ]
Automated scoring of student responses to open-ended questions, including short-answer questions, has great potential to scale to a large number of responses. Recent approaches for automated scoring rely on supervised learning, i.e., training classifiers or fine-tuning language models on a small number of responses with human-provided score labels. However, since scoring is a subjective process, these human scores are noisy and can be highly variable, depending on the scorer. In this paper, we investigate a collection of models that account for the individual preferences and tendencies of each human scorer in the automated scoring task. We apply these models to a short-answer math response dataset where each response is scored (often differently) by multiple different human scorers. We conduct quantitative experiments to show that our scorer models lead to improved automated scoring accuracy. We also conduct quantitative experiments and case studies to analyze the individual preferences and tendencies of scorers. We found that scorers can be grouped into several obvious clusters, with each cluster having distinct features, and analyzed them in detail.
[ "cs.CL", "cs.AI" ]
false
2306.01061
2023-06-01T18:08:51Z
Reimagining Retrieval Augmented Language Models for Answering Queries
[ "Wang-Chiew Tan", "Yuliang Li", "Pedro Rodriguez", "Richard James", "Xi Victoria Lin", "Alon Halevy", "Scott Yih" ]
We present a reality check on large language models and inspect the promise of retrieval augmented language models in comparison. Such language models are semi-parametric, where models integrate model parameters and knowledge from external data sources to make their predictions, as opposed to the parametric nature of vanilla large language models. We give initial experimental findings that semi-parametric architectures can be enhanced with views, a query analyzer/planner, and provenance to make a significantly more powerful system for question answering in terms of accuracy and efficiency, and potentially for other NLP tasks
[ "cs.CL", "cs.DB" ]
true
2306.01093
2023-06-01T19:10:09Z
UCAS-IIE-NLP at SemEval-2023 Task 12: Enhancing Generalization of Multilingual BERT for Low-resource Sentiment Analysis
[ "Dou Hu", "Lingwei Wei", "Yaxin Liu", "Wei Zhou", "Songlin Hu" ]
This paper describes our system designed for SemEval-2023 Task 12: Sentiment analysis for African languages. The challenge faced by this task is the scarcity of labeled data and linguistic resources in low-resource settings. To alleviate these, we propose a generalized multilingual system SACL-XLMR for sentiment analysis on low-resource languages. Specifically, we design a lexicon-based multilingual BERT to facilitate language adaptation and sentiment-aware representation learning. Besides, we apply a supervised adversarial contrastive learning technique to learn sentiment-spread structured representations and enhance model generalization. Our system achieved competitive results, largely outperforming baselines on both multilingual and zero-shot sentiment classification subtasks. Notably, the system obtained the 1st rank on the zero-shot classification subtask in the official ranking. Extensive experiments demonstrate the effectiveness of our system.
[ "cs.CL", "cs.AI" ]
false
2306.01116
2023-06-01T20:03:56Z
The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data Only
[ "Guilherme Penedo", "Quentin Malartic", "Daniel Hesslow", "Ruxandra Cojocaru", "Alessandro Cappelli", "Hamza Alobeidli", "Baptiste Pannier", "Ebtesam Almazrouei", "Julien Launay" ]
Large language models are commonly trained on a mixture of filtered web data and curated high-quality corpora, such as social media conversations, books, or technical papers. This curation process is believed to be necessary to produce performant models with broad zero-shot generalization abilities. However, as larger models requiring pretraining on trillions of tokens are considered, it is unclear how scalable is curation and whether we will run out of unique high-quality data soon. At variance with previous beliefs, we show that properly filtered and deduplicated web data alone can lead to powerful models; even significantly outperforming models from the state-of-the-art trained on The Pile. Despite extensive filtering, the high-quality data we extract from the web is still plentiful, and we are able to obtain five trillion tokens from CommonCrawl. We publicly release an extract of 600 billion tokens from our RefinedWeb dataset, and 1.3/7.5B parameters language models trained on it.
[ "cs.CL", "cs.AI" ]
true
2306.01144
2023-06-01T20:56:34Z
Evaluating the Capabilities of Multi-modal Reasoning Models with Synthetic Task Data
[ "Nathan Vaska", "Victoria Helus" ]
The impressive advances and applications of large language and joint language-and-visual understanding models has led to an increased need for methods of probing their potential reasoning capabilities. However, the difficulty of gather naturally-occurring data for complex multi-modal reasoning tasks bottlenecks the evaluation of AI methods on tasks which are not already covered by an academic dataset. In this work, we leverage recent advances in high resolution text-to-image generation to develop a framework for generating evaluation data for multi-modal reasoning tasks. We apply this framework to generate context-dependent anomaly data, creating a synthetic dataset on a challenging task which is not well covered by existing datasets. We benchmark the performance of a state-of-the-art visual question answering (VQA) model against data generated with this method, and demonstrate that while the task is tractable, the model performs significantly worse on the context-dependent anomaly detection task than on standard VQA tasks.
[ "cs.LG", "cs.CL" ]
false
2306.01150
2023-06-01T21:11:24Z
Did You Read the Instructions? Rethinking the Effectiveness of Task Definitions in Instruction Learning
[ "Fan Yin", "Jesse Vig", "Philippe Laban", "Shafiq Joty", "Caiming Xiong", "Chien-Sheng Jason Wu" ]
Large language models (LLMs) have shown impressive performance in following natural language instructions to solve unseen tasks. However, it remains unclear whether models truly understand task definitions and whether the human-written definitions are optimal. In this paper, we systematically study the role of task definitions in instruction learning. We first conduct an ablation analysis informed by human annotations to understand which parts of a task definition are most important, and find that model performance only drops substantially when removing contents describing the task output, in particular label information. Next, we propose an automatic algorithm to compress task definitions to a minimal supporting set of tokens, and find that 60\% of tokens can be removed while maintaining or even improving model performance. Based on these results, we propose two strategies to help models better leverage task instructions: (1) providing only key information for tasks in a common structured format, and (2) adding a meta-tuning stage to help the model better understand the definitions. With these two strategies, we achieve a 4.2 Rouge-L improvement over 119 unseen test tasks.
[ "cs.CL", "cs.AI" ]
false
2306.01164
2023-06-01T21:40:48Z
Leveraging Natural Language Processing For Public Health Screening On YouTube: A COVID-19 Case Study
[ "Ahrar Bin Aslam", "Zafi Sherhan Syed", "Muhammad Faiz Khan", "Asghar Baloch", "Muhammad Shehram Shah Syed" ]
Background: Social media platforms have become a viable source of medical information, with patients and healthcare professionals using them to share health-related information and track diseases. Similarly, YouTube, the largest video-sharing platform in the world contains vlogs where individuals talk about their illnesses. The aim of our study was to investigate the use of Natural Language Processing (NLP) to identify the spoken content of YouTube vlogs related to the diagnosis of Coronavirus disease of 2019 (COVID-19) for public health screening. Methods: COVID-19 videos on YouTube were searched using relevant keywords. A total of 1000 videos being spoken in English were downloaded out of which 791 were classified as vlogs, 192 were non-vlogs, and 17 were deleted by the channel. The videos were converted into a textual format using Microsoft Streams. The textual data was preprocessed using basic and advanced preprocessing methods. A lexicon of 200 words was created which contained words related to COVID-19. The data was analyzed using topic modeling, word clouds, and lexicon matching. Results: The word cloud results revealed discussions about COVID-19 symptoms like "fever", along with generic terms such as "mask" and "isolation". Lexical analysis demonstrated that in 96.46% of videos, patients discussed generic terms, and in 95.45% of videos, people talked about COVID-19 symptoms. LDA Topic Modeling results also generated topics that successfully captured key themes and content related to our investigation of COVID-19 diagnoses in YouTube vlogs. Conclusion: By leveraging NLP techniques on YouTube vlogs public health practitioners can enhance their ability to mitigate the effects of pandemics and effectively respond to public health challenges.
[ "cs.CL", "cs.SI" ]
false
2306.00288
2023-06-01T02:06:13Z
Training-free Neural Architecture Search for RNNs and Transformers
[ "Aaron Serianni", "Jugal Kalita" ]
Neural architecture search (NAS) has allowed for the automatic creation of new and effective neural network architectures, offering an alternative to the laborious process of manually designing complex architectures. However, traditional NAS algorithms are slow and require immense amounts of computing power. Recent research has investigated training-free NAS metrics for image classification architectures, drastically speeding up search algorithms. In this paper, we investigate training-free NAS metrics for recurrent neural network (RNN) and BERT-based transformer architectures, targeted towards language modeling tasks. First, we develop a new training-free metric, named hidden covariance, that predicts the trained performance of an RNN architecture and significantly outperforms existing training-free metrics. We experimentally evaluate the effectiveness of the hidden covariance metric on the NAS-Bench-NLP benchmark. Second, we find that the current search space paradigm for transformer architectures is not optimized for training-free neural architecture search. Instead, a simple qualitative analysis can effectively shrink the search space to the best performing architectures. This conclusion is based on our investigation of existing training-free metrics and new metrics developed from recent transformer pruning literature, evaluated on our own benchmark of trained BERT architectures. Ultimately, our analysis shows that the architecture search space and the training-free metric must be developed together in order to achieve effective results.
[ "cs.LG", "cs.AI", "cs.CL" ]
false
2306.00377
2023-06-01T06:19:01Z
Developing and Building Ontologies in Cyber Security
[ "Muhammad Shoaib Farooq", "Muhammad Talha Waseem" ]
Cyber Security is one of the most arising disciplines in our modern society. We work on Cybersecurity domain and in this the topic we chose is Cyber Security Ontologies. In this we gather all latest and previous ontologies and compare them on the basis of different analyzing factors to get best of them. Reason to select this topic is to assemble different ontologies from different era of time. Because, researches that included in this SLR is mostly studied single ontology. If any researcher wants to study ontologies, he has to study every single ontology and select which one is best for his research. So, we assemble different types of ontology and compare them against each other to get best of them. A total 24 papers between years 2010-2020 are carefully selected through systematic process and classified accordingly. Lastly, this SLR have been presented to provide the researchers promising future directions in the domain of cybersecurity ontologies.
[ "cs.CR", "cs.AI", "cs.CL" ]
false
2306.00410
2023-06-01T07:25:10Z
Towards hate speech detection in low-resource languages: Comparing ASR to acoustic word embeddings on Wolof and Swahili
[ "Christiaan Jacobs", "Nathanaël Carraz Rakotonirina", "Everlyn Asiko Chimoto", "Bruce A. Bassett", "Herman Kamper" ]
We consider hate speech detection through keyword spotting on radio broadcasts. One approach is to build an automatic speech recognition (ASR) system for the target low-resource language. We compare this to using acoustic word embedding (AWE) models that map speech segments to a space where matching words have similar vectors. We specifically use a multilingual AWE model trained on labelled data from well-resourced languages to spot keywords in data in the unseen target language. In contrast to ASR, the AWE approach only requires a few keyword exemplars. In controlled experiments on Wolof and Swahili where training and test data are from the same domain, an ASR model trained on just five minutes of data outperforms the AWE approach. But in an in-the-wild test on Swahili radio broadcasts with actual hate speech keywords, the AWE model (using one minute of template data) is more robust, giving similar performance to an ASR system trained on 30 hours of labelled data.
[ "cs.CL", "cs.SD", "eess.AS" ]
false
2306.00550
2023-06-01T11:11:39Z
Chain-Of-Thought Prompting Under Streaming Batch: A Case Study
[ "Yuxin Tang" ]
Recently, Large Language Models (LLMs) have demonstrated remarkable capabilities. Chain-of-Thought (CoT) has been proposed as a way of assisting LLMs in performing complex reasoning. However, developing effective prompts can be a challenging and labor-intensive task. Many studies come out of some way to automatically construct CoT from test data. Most of them assume that all test data is visible before testing and only select a small subset to generate rationales, which is an unrealistic assumption. In this paper, we present a case study on how to construct and optimize chain-of-thought prompting using batch data in streaming settings.
[ "cs.LG", "cs.AI", "cs.CL" ]
false
2306.00622
2023-06-01T12:45:53Z
ReviewerGPT? An Exploratory Study on Using Large Language Models for Paper Reviewing
[ "Ryan Liu", "Nihar B. Shah" ]
Given the rapid ascent of large language models (LLMs), we study the question: (How) can large language models help in reviewing of scientific papers or proposals? We first conduct some pilot studies where we find that (i) GPT-4 outperforms other LLMs (Bard, Vicuna, Koala, Alpaca, LLaMa, Dolly, OpenAssistant, StableLM), and (ii) prompting with a specific question (e.g., to identify errors) outperforms prompting to simply write a review. With these insights, we study the use of LLMs (specifically, GPT-4) for three tasks: 1. Identifying errors: We construct 13 short computer science papers each with a deliberately inserted error, and ask the LLM to check for the correctness of these papers. We observe that the LLM finds errors in 7 of them, spanning both mathematical and conceptual errors. 2. Verifying checklists: We task the LLM to verify 16 closed-ended checklist questions in the respective sections of 15 NeurIPS 2022 papers. We find that across 119 {checklist question, paper} pairs, the LLM had an 86.6% accuracy. 3. Choosing the "better" paper: We generate 10 pairs of abstracts, deliberately designing each pair in such a way that one abstract was clearly superior than the other. The LLM, however, struggled to discern these relatively straightforward distinctions accurately, committing errors in its evaluations for 6 out of the 10 pairs. Based on these experiments, we think that LLMs have a promising use as reviewing assistants for specific reviewing tasks, but not (yet) for complete evaluations of papers or proposals.
[ "cs.CL", "cs.AI", "cs.DL" ]
true
2306.00697
2023-06-01T14:07:19Z
How Generative Spoken Language Modeling Encodes Noisy Speech: Investigation from Phonetics to Syntactics
[ "Joonyong Park", "Shinnosuke Takamichi", "Tomohiko Nakamura", "Kentaro Seki", "Detai Xin", "Hiroshi Saruwatari" ]
We examine the speech modeling potential of generative spoken language modeling (GSLM), which involves using learned symbols derived from data rather than phonemes for speech analysis and synthesis. Since GSLM facilitates textless spoken language processing, exploring its effectiveness is critical for paving the way for novel paradigms in spoken-language processing. This paper presents the findings of GSLM's encoding and decoding effectiveness at the spoken-language and speech levels. Through speech resynthesis experiments, we revealed that resynthesis errors occur at the levels ranging from phonology to syntactics and GSLM frequently resynthesizes natural but content-altered speech.
[ "cs.CL", "cs.AI", "eess.AS" ]
false
2306.00755
2023-06-01T14:50:39Z
Enhancing the Unified Streaming and Non-streaming Model with Contrastive Learning
[ "Yuting Yang", "Yuke Li", "Binbin Du" ]
The unified streaming and non-streaming speech recognition model has achieved great success due to its comprehensive capabilities. In this paper, we propose to improve the accuracy of the unified model by bridging the inherent representation gap between the streaming and non-streaming modes with a contrastive objective. Specifically, the top-layer hidden representation at the same frame of the streaming and non-streaming modes are regarded as a positive pair, encouraging the representation of the streaming mode close to its non-streaming counterpart. The multiple negative samples are randomly selected from the rest frames of the same sample under the non-streaming mode. Experimental results demonstrate that the proposed method achieves consistent improvements toward the unified model in both streaming and non-streaming modes. Our method achieves CER of 4.66% in the streaming mode and CER of 4.31% in the non-streaming mode, which sets a new state-of-the-art on the AISHELL-1 benchmark.
[ "cs.CL", "cs.SD", "eess.AS" ]
false
2306.00924
2023-06-01T17:24:35Z
Minding Language Models' (Lack of) Theory of Mind: A Plug-and-Play Multi-Character Belief Tracker
[ "Melanie Sclar", "Sachin Kumar", "Peter West", "Alane Suhr", "Yejin Choi", "Yulia Tsvetkov" ]
Theory of Mind (ToM)$\unicode{x2014}$the ability to reason about the mental states of other people$\unicode{x2014}$is a key element of our social intelligence. Yet, despite their ever more impressive performance, large-scale neural language models still lack basic theory of mind capabilities out-of-the-box. We posit that simply scaling up models will not imbue them with theory of mind due to the inherently symbolic and implicit nature of the phenomenon, and instead investigate an alternative: can we design a decoding-time algorithm that enhances theory of mind of off-the-shelf neural language models without explicit supervision? We present SymbolicToM, a plug-and-play approach to reason about the belief states of multiple characters in reading comprehension tasks via explicit symbolic representation. More concretely, our approach tracks each entity's beliefs, their estimation of other entities' beliefs, and higher-order levels of reasoning, all through graphical representations, allowing for more precise and interpretable reasoning than previous approaches. Empirical results on the well-known ToMi benchmark (Le et al., 2019) demonstrate that SymbolicToM dramatically enhances off-the-shelf neural networks' theory of mind in a zero-shot setting while showing robust out-of-distribution performance compared to supervised baselines. Our work also reveals spurious patterns in existing theory of mind benchmarks, emphasizing the importance of out-of-distribution evaluation and methods that do not overfit a particular dataset.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2306.00928
2023-06-01T17:33:04Z
ACLM: A Selective-Denoising based Generative Data Augmentation Approach for Low-Resource Complex NER
[ "Sreyan Ghosh", "Utkarsh Tyagi", "Manan Suri", "Sonal Kumar", "S Ramaneswaran", "Dinesh Manocha" ]
Complex Named Entity Recognition (NER) is the task of detecting linguistically complex named entities in low-context text. In this paper, we present ACLM Attention-map aware keyword selection for Conditional Language Model fine-tuning), a novel data augmentation approach based on conditional generation to address the data scarcity problem in low-resource complex NER. ACLM alleviates the context-entity mismatch issue, a problem existing NER data augmentation techniques suffer from and often generates incoherent augmentations by placing complex named entities in the wrong context. ACLM builds on BART and is optimized on a novel text reconstruction or denoising task - we use selective masking (aided by attention maps) to retain the named entities and certain keywords in the input sentence that provide contextually relevant additional knowledge or hints about the named entities. Compared with other data augmentation strategies, ACLM can generate more diverse and coherent augmentations preserving the true word sense of complex entities in the sentence. We demonstrate the effectiveness of ACLM both qualitatively and quantitatively on monolingual, cross-lingual, and multilingual complex NER across various low-resource settings. ACLM outperforms all our neural baselines by a significant margin (1%-36%). In addition, we demonstrate the application of ACLM to other domains that suffer from data scarcity (e.g., biomedical). In practice, ACLM generates more effective and factual augmentations for these domains than prior methods. Code: https://github.com/Sreyan88/ACLM
[ "cs.CL", "cs.AI", "cs.IR" ]
false
2306.00947
2023-06-01T17:45:32Z
EEL: Efficiently Encoding Lattices for Reranking
[ "Prasann Singhal", "Jiacheng Xu", "Xi Ye", "Greg Durrett" ]
Standard decoding approaches for conditional text generation tasks typically search for an output hypothesis with high model probability, but this may not yield the best hypothesis according to human judgments of quality. Reranking to optimize for "downstream" metrics can better optimize for quality, but many metrics of interest are computed with pre-trained language models, which are slow to apply to large numbers of hypotheses. We explore an approach for reranking hypotheses by using Transformers to efficiently encode lattices of generated outputs, a method we call EEL. With a single Transformer pass over the entire lattice, we can approximately compute a contextualized representation of each token as if it were only part of a single hypothesis in isolation. We combine this approach with a new class of token-factored rerankers (TFRs) that allow for efficient extraction of high reranker-scoring hypotheses from the lattice. Empirically, our approach incurs minimal degradation error compared to the exponentially slower approach of encoding each hypothesis individually. When applying EEL with TFRs across three text generation tasks, our results show both substantial speedup compared to naive reranking and often better performance on downstream metrics than comparable approaches.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2306.01031
2023-06-01T14:56:19Z
Bypass Temporal Classification: Weakly Supervised Automatic Speech Recognition with Imperfect Transcripts
[ "Dongji Gao", "Matthew Wiesner", "Hainan Xu", "Leibny Paola Garcia", "Daniel Povey", "Sanjeev Khudanpur" ]
This paper presents a novel algorithm for building an automatic speech recognition (ASR) model with imperfect training data. Imperfectly transcribed speech is a prevalent issue in human-annotated speech corpora, which degrades the performance of ASR models. To address this problem, we propose Bypass Temporal Classification (BTC) as an expansion of the Connectionist Temporal Classification (CTC) criterion. BTC explicitly encodes the uncertainties associated with transcripts during training. This is accomplished by enhancing the flexibility of the training graph, which is implemented as a weighted finite-state transducer (WFST) composition. The proposed algorithm improves the robustness and accuracy of ASR systems, particularly when working with imprecisely transcribed speech corpora. Our implementation will be open-sourced.
[ "cs.CL", "cs.LG", "cs.SD", "eess.AS" ]
false
2306.01069
2023-06-01T18:17:13Z
TimelineQA: A Benchmark for Question Answering over Timelines
[ "Wang-Chiew Tan", "Jane Dwivedi-Yu", "Yuliang Li", "Lambert Mathias", "Marzieh Saeidi", "Jing Nathan Yan", "Alon Y. Halevy" ]
Lifelogs are descriptions of experiences that a person had during their life. Lifelogs are created by fusing data from the multitude of digital services, such as online photos, maps, shopping and content streaming services. Question answering over lifelogs can offer personal assistants a critical resource when they try to provide advice in context. However, obtaining answers to questions over lifelogs is beyond the current state of the art of question answering techniques for a variety of reasons, the most pronounced of which is that lifelogs combine free text with some degree of structure such as temporal and geographical information. We create and publicly release TimelineQA1, a benchmark for accelerating progress on querying lifelogs. TimelineQA generates lifelogs of imaginary people. The episodes in the lifelog range from major life episodes such as high school graduation to those that occur on a daily basis such as going for a run. We describe a set of experiments on TimelineQA with several state-of-the-art QA models. Our experiments reveal that for atomic queries, an extractive QA system significantly out-performs a state-of-the-art retrieval-augmented QA system. For multi-hop queries involving aggregates, we show that the best result is obtained with a state-of-the-art table QA technique, assuming the ground truth set of episodes for deriving the answer is available.
[ "cs.CL", "cs.AI", "cs.IR" ]
false
2306.01160
2023-06-01T21:33:59Z
Faster Causal Attention Over Large Sequences Through Sparse Flash Attention
[ "Matteo Pagliardini", "Daniele Paliotta", "Martin Jaggi", "François Fleuret" ]
Transformer-based language models have found many diverse applications requiring them to process sequences of increasing length. For these applications, the causal self-attention -- which is the only component scaling quadratically w.r.t. the sequence length -- becomes a central concern. While many works have proposed schemes to sparsify the attention patterns and reduce the computational overhead of self-attention, those are often limited by implementations concerns and end up imposing a simple and static structure over the attention matrix. Conversely, implementing more dynamic sparse attentions often results in runtimes significantly slower than computing the full attention using the Flash implementation from Dao et al. (2022). We extend FlashAttention to accommodate a large class of attention sparsity patterns that, in particular, encompass key/query dropping and hashing-based attention. This leads to implementations with no computational complexity overhead and a multi-fold runtime speedup on top of FlashAttention. Even with relatively low degrees of sparsity, our method improves visibly upon FlashAttention as the sequence length increases. Without sacrificing perplexity, we increase the training speed of a transformer language model by $2.0\times$ and $3.3\times$ for sequences of respectively $8k$ and $16k$ tokens.
[ "cs.LG", "cs.AI", "cs.CL" ]
true
2306.01201
2023-06-01T23:29:23Z
Learning When to Speak: Latency and Quality Trade-offs for Simultaneous Speech-to-Speech Translation with Offline Models
[ "Liam Dugan", "Anshul Wadhawan", "Kyle Spence", "Chris Callison-Burch", "Morgan McGuire", "Victor Zordan" ]
Recent work in speech-to-speech translation (S2ST) has focused primarily on offline settings, where the full input utterance is available before any output is given. This, however, is not reasonable in many real-world scenarios. In latency-sensitive applications, rather than waiting for the full utterance, translations should be spoken as soon as the information in the input is present. In this work, we introduce a system for simultaneous S2ST targeting real-world use cases. Our system supports translation from 57 languages to English with tunable parameters for dynamically adjusting the latency of the output -- including four policies for determining when to speak an output sequence. We show that these policies achieve offline-level accuracy with minimal increases in latency over a Greedy (wait-$k$) baseline. We open-source our evaluation code and interactive test script to aid future SimulS2ST research and application development.
[ "cs.CL", "cs.LG", "cs.SD", "eess.AS" ]
false
2306.01206
2023-06-01T23:39:07Z
Estimating Semantic Similarity between In-Domain and Out-of-Domain Samples
[ "Rhitabrat Pokharel", "Ameeta Agrawal" ]
Prior work typically describes out-of-domain (OOD) or out-of-distribution (OODist) samples as those that originate from dataset(s) or source(s) different from the training set but for the same task. When compared to in-domain (ID) samples, the models have been known to usually perform poorer on OOD samples, although this observation is not consistent. Another thread of research has focused on OOD detection, albeit mostly using supervised approaches. In this work, we first consolidate and present a systematic analysis of multiple definitions of OOD and OODist as discussed in prior literature. Then, we analyze the performance of a model under ID and OOD/OODist settings in a principled way. Finally, we seek to identify an unsupervised method for reliably identifying OOD/OODist samples without using a trained model. The results of our extensive evaluation using 12 datasets from 4 different tasks suggest the promising potential of unsupervised metrics in this task.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2306.01805
2023-06-01T18:49:47Z
Cook-Gen: Robust Generative Modeling of Cooking Actions from Recipes
[ "Revathy Venkataramanan", "Kaushik Roy", "Kanak Raj", "Renjith Prasad", "Yuxin Zi", "Vignesh Narayanan", "Amit Sheth" ]
As people become more aware of their food choices, food computation models have become increasingly popular in assisting people in maintaining healthy eating habits. For example, food recommendation systems analyze recipe instructions to assess nutritional contents and provide recipe recommendations. The recent and remarkable successes of generative AI methods, such as auto-regressive large language models, can lead to robust methods for a more comprehensive understanding of recipes for healthy food recommendations beyond surface-level nutrition content assessments. In this study, we explore the use of generative AI methods to extend current food computation models, primarily involving the analysis of nutrition and ingredients, to also incorporate cooking actions (e.g., add salt, fry the meat, boil the vegetables, etc.). Cooking actions are notoriously hard to model using statistical learning methods due to irregular data patterns - significantly varying natural language descriptions for the same action (e.g., marinate the meat vs. marinate the meat and leave overnight) and infrequently occurring patterns (e.g., add salt occurs far more frequently than marinating the meat). The prototypical approach to handling irregular data patterns is to increase the volume of data that the model ingests by orders of magnitude. Unfortunately, in the cooking domain, these problems are further compounded with larger data volumes presenting a unique challenge that is not easily handled by simply scaling up. In this work, we propose novel aggregation-based generative AI methods, Cook-Gen, that reliably generate cooking actions from recipes, despite difficulties with irregular data patterns, while also outperforming Large Language Models and other strong baselines.
[ "cs.CL", "cs.AI", "cs.IR" ]
false
2306.03773
2023-06-01T11:42:34Z
Some voices are too common: Building fair speech recognition systems using the Common Voice dataset
[ "Lucas Maison", "Yannick Estève" ]
Automatic speech recognition (ASR) systems become increasingly efficient thanks to new advances in neural network training like self-supervised learning. However, they are known to be unfair toward certain groups, for instance, people speaking with an accent. In this work, we use the French Common Voice dataset to quantify the biases of a pre-trained wav2vec~2.0 model toward several demographic groups. By fine-tuning the pre-trained model on a variety of fixed-size, carefully crafted training sets, we demonstrate the importance of speaker diversity. We also run an in-depth analysis of the Common Voice corpus and identify important shortcomings that should be taken into account by users of this dataset.
[ "eess.AS", "cs.CL", "cs.LG", "cs.SD" ]
false
2306.03789
2023-06-01T21:31:00Z
On the Robustness of Arabic Speech Dialect Identification
[ "Peter Sullivan", "AbdelRahim Elmadany", "Muhammad Abdul-Mageed" ]
Arabic dialect identification (ADI) tools are an important part of the large-scale data collection pipelines necessary for training speech recognition models. As these pipelines require application of ADI tools to potentially out-of-domain data, we aim to investigate how vulnerable the tools may be to this domain shift. With self-supervised learning (SSL) models as a starting point, we evaluate transfer learning and direct classification from SSL features. We undertake our evaluation under rich conditions, with a goal to develop ADI systems from pretrained models and ultimately evaluate performance on newly collected data. In order to understand what factors contribute to model decisions, we carry out a careful human study of a subset of our data. Our analysis confirms that domain shift is a major challenge for ADI models. We also find that while self-training does alleviate this challenges, it may be insufficient for realistic conditions.
[ "eess.AS", "cs.CL", "cs.LG" ]
false
2306.00482
2023-06-01T09:31:57Z
Inspecting Spoken Language Understanding from Kids for Basic Math Learning at Home
[ "Eda Okur", "Roddy Fuentes Alba", "Saurav Sahay", "Lama Nachman" ]
Enriching the quality of early childhood education with interactive math learning at home systems, empowered by recent advances in conversational AI technologies, is slowly becoming a reality. With this motivation, we implement a multimodal dialogue system to support play-based learning experiences at home, guiding kids to master basic math concepts. This work explores Spoken Language Understanding (SLU) pipeline within a task-oriented dialogue system developed for Kid Space, with cascading Automatic Speech Recognition (ASR) and Natural Language Understanding (NLU) components evaluated on our home deployment data with kids going through gamified math learning activities. We validate the advantages of a multi-task architecture for NLU and experiment with a diverse set of pretrained language representations for Intent Recognition and Entity Extraction tasks in the math learning domain. To recognize kids' speech in realistic home environments, we investigate several ASR systems, including the commercial Google Cloud and the latest open-source Whisper solutions with varying model sizes. We evaluate the SLU pipeline by testing our best-performing NLU models on noisy ASR output to inspect the challenges of understanding children for math learning in authentic homes.
[ "cs.CY", "cs.CL", "cs.SD", "eess.AS", "math.HO" ]
false
2306.00765
2023-06-01T15:00:39Z
Topic-Guided Sampling For Data-Efficient Multi-Domain Stance Detection
[ "Erik Arakelyan", "Arnav Arora", "Isabelle Augenstein" ]
Stance Detection is concerned with identifying the attitudes expressed by an author towards a target of interest. This task spans a variety of domains ranging from social media opinion identification to detecting the stance for a legal claim. However, the framing of the task varies within these domains, in terms of the data collection protocol, the label dictionary and the number of available annotations. Furthermore, these stance annotations are significantly imbalanced on a per-topic and inter-topic basis. These make multi-domain stance detection a challenging task, requiring standardization and domain adaptation. To overcome this challenge, we propose $\textbf{T}$opic $\textbf{E}$fficient $\textbf{St}$anc$\textbf{E}$ $\textbf{D}$etection (TESTED), consisting of a topic-guided diversity sampling technique and a contrastive objective that is used for fine-tuning a stance classifier. We evaluate the method on an existing benchmark of $16$ datasets with in-domain, i.e. all topics seen and out-of-domain, i.e. unseen topics, experiments. The results show that our method outperforms the state-of-the-art with an average of $3.5$ F1 points increase in-domain, and is more generalizable with an averaged increase of $10.2$ F1 on out-of-domain evaluation while using $\leq10\%$ of the training data. We show that our sampling technique mitigates both inter- and per-topic class imbalances. Finally, our analysis demonstrates that the contrastive learning objective allows the model a more pronounced segmentation of samples with varying labels.
[ "cs.CL", "cs.AI", "cs.IR", "stat.CO", "stat.ML" ]
false
2306.00256
2023-06-01T00:29:52Z
DSGD-CECA: Decentralized SGD with Communication-Optimal Exact Consensus Algorithm
[ "Lisang Ding", "Kexin Jin", "Bicheng Ying", "Kun Yuan", "Wotao Yin" ]
Decentralized Stochastic Gradient Descent (SGD) is an emerging neural network training approach that enables multiple agents to train a model collaboratively and simultaneously. Rather than using a central parameter server to collect gradients from all the agents, each agent keeps a copy of the model parameters and communicates with a small number of other agents to exchange model updates. Their communication, governed by the communication topology and gossip weight matrices, facilitates the exchange of model updates. The state-of-the-art approach uses the dynamic one-peer exponential-2 topology, achieving faster training times and improved scalability than the ring, grid, torus, and hypercube topologies. However, this approach requires a power-of-2 number of agents, which is impractical at scale. In this paper, we remove this restriction and propose \underline{D}ecentralized \underline{SGD} with \underline{C}ommunication-optimal \underline{E}xact \underline{C}onsensus \underline{A}lgorithm (DSGD-CECA), which works for any number of agents while still achieving state-of-the-art properties. In particular, DSGD-CECA incurs a unit per-iteration communication overhead and an $\tilde{O}(n^3)$ transient iteration complexity. Our proof is based on newly discovered properties of gossip weight matrices and a novel approach to combine them with DSGD's convergence analysis. Numerical experiments show the efficiency of DSGD-CECA.
[ "cs.LG" ]
false
2306.00620
2023-06-01T12:45:00Z
OTW: Optimal Transport Warping for Time Series
[ "Fabian Latorre", "Chenghao Liu", "Doyen Sahoo", "Steven C. H. Hoi" ]
Dynamic Time Warping (DTW) has become the pragmatic choice for measuring distance between time series. However, it suffers from unavoidable quadratic time complexity when the optimal alignment matrix needs to be computed exactly. This hinders its use in deep learning architectures, where layers involving DTW computations cause severe bottlenecks. To alleviate these issues, we introduce a new metric for time series data based on the Optimal Transport (OT) framework, called Optimal Transport Warping (OTW). OTW enjoys linear time/space complexity, is differentiable and can be parallelized. OTW enjoys a moderate sensitivity to time and shape distortions, making it ideal for time series. We show the efficacy and efficiency of OTW on 1-Nearest Neighbor Classification and Hierarchical Clustering, as well as in the case of using OTW instead of DTW in Deep Learning architectures.
[ "cs.LG" ]
false
2306.00972
2023-06-01T17:58:46Z
Improving and Benchmarking Offline Reinforcement Learning Algorithms
[ "Bingyi Kang", "Xiao Ma", "Yirui Wang", "Yang Yue", "Shuicheng Yan" ]
Recently, Offline Reinforcement Learning (RL) has achieved remarkable progress with the emergence of various algorithms and datasets. However, these methods usually focus on algorithmic advancements, ignoring that many low-level implementation choices considerably influence or even drive the final performance. As a result, it becomes hard to attribute the progress in Offline RL as these choices are not sufficiently discussed and aligned in the literature. In addition, papers focusing on a dataset (e.g., D4RL) often ignore algorithms proposed on another dataset (e.g., RL Unplugged), causing isolation among the algorithms, which might slow down the overall progress. Therefore, this work aims to bridge the gaps caused by low-level choices and datasets. To this end, we empirically investigate 20 implementation choices using three representative algorithms (i.e., CQL, CRR, and IQL) and present a guidebook for choosing implementations. Following the guidebook, we find two variants CRR+ and CQL+ , achieving new state-of-the-art on D4RL. Moreover, we benchmark eight popular offline RL algorithms across datasets under unified training and evaluation framework. The findings are inspiring: the success of a learning paradigm severely depends on the data distribution, and some previous conclusions are biased by the dataset used. Our code is available at https://github.com/sail-sg/offbench.
[ "cs.LG" ]
false
2306.01070
2023-06-01T18:17:23Z
Hierarchical Attention Encoder Decoder
[ "Asier Mujika" ]
Recent advances in large language models have shown that autoregressive modeling can generate complex and novel sequences that have many real-world applications. However, these models must generate outputs autoregressively, which becomes time-consuming when dealing with long sequences. Hierarchical autoregressive approaches that compress data have been proposed as a solution, but these methods still generate outputs at the original data frequency, resulting in slow and memory-intensive models. In this paper, we propose a model based on the Hierarchical Recurrent Encoder Decoder (HRED) architecture. This model independently encodes input sub-sequences without global context, processes these sequences using a lower-frequency model, and decodes outputs at the original data frequency. By interpreting the encoder as an implicitly defined embedding matrix and using sampled softmax estimation, we develop a training algorithm that can train the entire model without a high-frequency decoder, which is the most memory and compute-intensive part of hierarchical approaches. In a final, brief phase, we train the decoder to generate data at the original granularity. Our algorithm significantly reduces memory requirements for training autoregressive models and it also improves the total training wall-clock time.
[ "cs.LG" ]
false
2306.01129
2023-06-01T20:28:44Z
White-Box Transformers via Sparse Rate Reduction
[ "Yaodong Yu", "Sam Buchanan", "Druv Pai", "Tianzhe Chu", "Ziyang Wu", "Shengbang Tong", "Benjamin D. Haeffele", "Yi Ma" ]
In this paper, we contend that the objective of representation learning is to compress and transform the distribution of the data, say sets of tokens, towards a mixture of low-dimensional Gaussian distributions supported on incoherent subspaces. The quality of the final representation can be measured by a unified objective function called sparse rate reduction. From this perspective, popular deep networks such as transformers can be naturally viewed as realizing iterative schemes to optimize this objective incrementally. Particularly, we show that the standard transformer block can be derived from alternating optimization on complementary parts of this objective: the multi-head self-attention operator can be viewed as a gradient descent step to compress the token sets by minimizing their lossy coding rate, and the subsequent multi-layer perceptron can be viewed as attempting to sparsify the representation of the tokens. This leads to a family of white-box transformer-like deep network architectures which are mathematically fully interpretable. Despite their simplicity, experiments show that these networks indeed learn to optimize the designed objective: they compress and sparsify representations of large-scale real-world vision datasets such as ImageNet, and achieve performance very close to thoroughly engineered transformers such as ViT. Code is at \url{https://github.com/Ma-Lab-Berkeley/CRATE}.
[ "cs.LG" ]
false
2306.01154
2023-06-01T21:24:53Z
The Law of Parsimony in Gradient Descent for Learning Deep Linear Networks
[ "Can Yaras", "Peng Wang", "Wei Hu", "Zhihui Zhu", "Laura Balzano", "Qing Qu" ]
Over the past few years, an extensively studied phenomenon in training deep networks is the implicit bias of gradient descent towards parsimonious solutions. In this work, we investigate this phenomenon by narrowing our focus to deep linear networks. Through our analysis, we reveal a surprising "law of parsimony" in the learning dynamics when the data possesses low-dimensional structures. Specifically, we show that the evolution of gradient descent starting from orthogonal initialization only affects a minimal portion of singular vector spaces across all weight matrices. In other words, the learning process happens only within a small invariant subspace of each weight matrix, despite the fact that all weight parameters are updated throughout training. This simplicity in learning dynamics could have significant implications for both efficient training and a better understanding of deep networks. First, the analysis enables us to considerably improve training efficiency by taking advantage of the low-dimensional structure in learning dynamics. We can construct smaller, equivalent deep linear networks without sacrificing the benefits associated with the wider counterparts. Second, it allows us to better understand deep representation learning by elucidating the linear progressive separation and concentration of representations from shallow to deep layers. We also conduct numerical experiments to support our theoretical results. The code for our experiments can be found at https://github.com/cjyaras/lawofparsimony.
[ "cs.LG" ]
false
2306.01189
2023-06-01T22:59:45Z
A General Framework for Uncertainty Quantification via Neural SDE-RNN
[ "Shweta Dahale", "Sai Munikoti", "Balasubramaniam Natarajan" ]
Uncertainty quantification is a critical yet unsolved challenge for deep learning, especially for the time series imputation with irregularly sampled measurements. To tackle this problem, we propose a novel framework based on the principles of recurrent neural networks and neural stochastic differential equations for reconciling irregularly sampled measurements. We impute measurements at any arbitrary timescale and quantify the uncertainty in the imputations in a principled manner. Specifically, we derive analytical expressions for quantifying and propagating the epistemic and aleatoric uncertainty across time instants. Our experiments on the IEEE 37 bus test distribution system reveal that our framework can outperform state-of-the-art uncertainty quantification approaches for time-series data imputations.
[ "cs.LG" ]
false
2306.00295
2023-06-01T02:27:08Z
EMOTE: An Explainable architecture for Modelling the Other Through Empathy
[ "Manisha Senadeera", "Thommen Karimpanal George", "Sunil Gupta", "Stephan Jacobs", "Santu Rana" ]
We can usually assume others have goals analogous to our own. This assumption can also, at times, be applied to multi-agent games - e.g. Agent 1's attraction to green pellets is analogous to Agent 2's attraction to red pellets. This "analogy" assumption is tied closely to the cognitive process known as empathy. Inspired by empathy, we design a simple and explainable architecture to model another agent's action-value function. This involves learning an "Imagination Network" to transform the other agent's observed state in order to produce a human-interpretable "empathetic state" which, when presented to the learning agent, produces behaviours that mimic the other agent. Our approach is applicable to multi-agent scenarios consisting of a single learning agent and other (independent) agents acting according to fixed policies. This architecture is particularly beneficial for (but not limited to) algorithms using a composite value or reward function. We show our method produces better performance in multi-agent games, where it robustly estimates the other's model in different environment configurations. Additionally, we show that the empathetic states are human interpretable, and thus verifiable.
[ "cs.AI", "cs.LG" ]
false
2306.00312
2023-06-01T03:22:15Z
(Almost) Provable Error Bounds Under Distribution Shift via Disagreement Discrepancy
[ "Elan Rosenfeld", "Saurabh Garg" ]
We derive an (almost) guaranteed upper bound on the error of deep neural networks under distribution shift using unlabeled test data. Prior methods either give bounds that are vacuous in practice or give estimates that are accurate on average but heavily underestimate error for a sizeable fraction of shifts. In particular, the latter only give guarantees based on complex continuous measures such as test calibration -- which cannot be identified without labels -- and are therefore unreliable. Instead, our bound requires a simple, intuitive condition which is well justified by prior empirical works and holds in practice effectively 100% of the time. The bound is inspired by $\mathcal{H}\Delta\mathcal{H}$-divergence but is easier to evaluate and substantially tighter, consistently providing non-vacuous guarantees. Estimating the bound requires optimizing one multiclass classifier to disagree with another, for which some prior works have used sub-optimal proxy losses; we devise a "disagreement loss" which is theoretically justified and performs better in practice. We expect this loss can serve as a drop-in replacement for future methods which require maximizing multiclass disagreement. Across a wide range of benchmarks, our method gives valid error bounds while achieving average accuracy comparable to competitive estimation baselines. Code is publicly available at https://github.com/erosenfeld/disagree_discrep .
[ "stat.ML", "cs.LG" ]
false
2306.00315
2023-06-01T03:26:11Z
Explicit Feature Interaction-aware Uplift Network for Online Marketing
[ "Dugang Liu", "Xing Tang", "Han Gao", "Fuyuan Lyu", "Xiuqiang He" ]
As a key component in online marketing, uplift modeling aims to accurately capture the degree to which different treatments motivate different users, such as coupons or discounts, also known as the estimation of individual treatment effect (ITE). In an actual business scenario, the options for treatment may be numerous and complex, and there may be correlations between different treatments. In addition, each marketing instance may also have rich user and contextual features. However, existing methods still fall short in both fully exploiting treatment information and mining features that are sensitive to a particular treatment. In this paper, we propose an explicit feature interaction-aware uplift network (EFIN) to address these two problems. Our EFIN includes four customized modules: 1) a feature encoding module encodes not only the user and contextual features, but also the treatment features; 2) a self-interaction module aims to accurately model the user's natural response with all but the treatment features; 3) a treatment-aware interaction module accurately models the degree to which a particular treatment motivates a user through interactions between the treatment features and other features, i.e., ITE; and 4) an intervention constraint module is used to balance the ITE distribution of users between the control and treatment groups so that the model would still achieve a accurate uplift ranking on data collected from a non-random intervention marketing scenario. We conduct extensive experiments on two public datasets and one product dataset to verify the effectiveness of our EFIN. In addition, our EFIN has been deployed in a credit card bill payment scenario of a large online financial platform with a significant improvement.
[ "cs.LG", "cs.IR" ]
false
2306.00317
2023-06-01T03:31:12Z
FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization
[ "Jung Hyun Lee", "Jeonghoon Kim", "Se Jung Kwon", "Dongsoo Lee" ]
Post-training quantization (PTQ) has been gaining popularity for the deployment of deep neural networks on resource-limited devices since unlike quantization-aware training, neither a full training dataset nor end-to-end training is required at all. As PTQ schemes based on reconstructing each layer or block output turn out to be effective to enhance quantized model performance, recent works have developed algorithms to devise and learn a new weight-rounding scheme so as to better reconstruct each layer or block output. In this work, we propose a simple yet effective new weight-rounding mechanism for PTQ, coined FlexRound, based on element-wise division instead of typical element-wise addition such that FlexRound enables jointly learning a common quantization grid size as well as a different scale for each pre-trained weight. Thanks to the reciprocal rule of derivatives induced by element-wise division, FlexRound is inherently able to exploit pre-trained weights when updating their corresponding scales, and thus, flexibly quantize pre-trained weights depending on their magnitudes. We empirically validate the efficacy of FlexRound on a wide range of models and tasks. To the best of our knowledge, our work is the first to carry out comprehensive experiments on not only image classification and natural language understanding but also natural language generation, assuming a per-tensor uniform PTQ setting. Moreover, we demonstrate, for the first time, that large language models can be efficiently quantized, with only a negligible impact on performance compared to half-precision baselines, achieved by reconstructing the output in a block-by-block manner.
[ "cs.LG", "cs.AI" ]
false
2306.00324
2023-06-01T03:43:53Z
Achieving Fairness in Multi-Agent Markov Decision Processes Using Reinforcement Learning
[ "Peizhong Ju", "Arnob Ghosh", "Ness B. Shroff" ]
Fairness plays a crucial role in various multi-agent systems (e.g., communication networks, financial markets, etc.). Many multi-agent dynamical interactions can be cast as Markov Decision Processes (MDPs). While existing research has focused on studying fairness in known environments, the exploration of fairness in such systems for unknown environments remains open. In this paper, we propose a Reinforcement Learning (RL) approach to achieve fairness in multi-agent finite-horizon episodic MDPs. Instead of maximizing the sum of individual agents' value functions, we introduce a fairness function that ensures equitable rewards across agents. Since the classical Bellman's equation does not hold when the sum of individual value functions is not maximized, we cannot use traditional approaches. Instead, in order to explore, we maintain a confidence bound of the unknown environment and then propose an online convex optimization based approach to obtain a policy constrained to this confidence region. We show that such an approach achieves sub-linear regret in terms of the number of episodes. Additionally, we provide a probably approximately correct (PAC) guarantee based on the obtained regret bound. We also propose an offline RL algorithm and bound the optimality gap with respect to the optimal fair solution. To mitigate computational complexity, we introduce a policy-gradient type method for the fair objective. Simulation experiments also demonstrate the efficacy of our approach.
[ "cs.LG", "cs.MA" ]
false
2306.00338
2023-06-01T04:38:32Z
Last Switch Dependent Bandits with Monotone Payoff Functions
[ "Ayoub Foussoul", "Vineet Goyal", "Orestis Papadigenopoulos", "Assaf Zeevi" ]
In a recent work, Laforgue et al. introduce the model of last switch dependent (LSD) bandits, in an attempt to capture nonstationary phenomena induced by the interaction between the player and the environment. Examples include satiation, where consecutive plays of the same action lead to decreased performance, or deprivation, where the payoff of an action increases after an interval of inactivity. In this work, we take a step towards understanding the approximability of planning LSD bandits, namely, the (NP-hard) problem of computing an optimal arm-pulling strategy under complete knowledge of the model. In particular, we design the first efficient constant approximation algorithm for the problem and show that, under a natural monotonicity assumption on the payoffs, its approximation guarantee (almost) matches the state-of-the-art for the special and well-studied class of recharging bandits (also known as delay-dependent). In this attempt, we develop new tools and insights for this class of problems, including a novel higher-dimensional relaxation and the technique of mirroring the evolution of virtual states. We believe that these novel elements could potentially be used for approaching richer classes of action-induced nonstationary bandits (e.g., special instances of restless bandits). In the case where the model parameters are initially unknown, we develop an online learning adaptation of our algorithm for which we provide sublinear regret guarantees against its full-information counterpart.
[ "cs.LG", "cs.DS" ]
false
2306.00344
2023-06-01T04:50:06Z
BOtied: Multi-objective Bayesian optimization with tied multivariate ranks
[ "Ji Won Park", "Nataša Tagasovska", "Michael Maser", "Stephen Ra", "Kyunghyun Cho" ]
Many scientific and industrial applications require joint optimization of multiple, potentially competing objectives. Multi-objective Bayesian optimization (MOBO) is a sample-efficient framework for identifying Pareto-optimal solutions. We show a natural connection between non-dominated solutions and the highest multivariate rank, which coincides with the outermost level line of the joint cumulative distribution function (CDF). We propose the CDF indicator, a Pareto-compliant metric for evaluating the quality of approximate Pareto sets that complements the popular hypervolume indicator. At the heart of MOBO is the acquisition function, which determines the next candidate to evaluate by navigating the best compromises among the objectives. Multi-objective acquisition functions that rely on box decomposition of the objective space, such as the expected hypervolume improvement (EHVI) and entropy search, scale poorly to a large number of objectives. We propose an acquisition function, called BOtied, based on the CDF indicator. BOtied can be implemented efficiently with copulas, a statistical tool for modeling complex, high-dimensional distributions. We benchmark BOtied against common acquisition functions, including EHVI and random scalarization (ParEGO), in a series of synthetic and real-data experiments. BOtied performs on par with the baselines across datasets and metrics while being computationally efficient.
[ "cs.LG", "stat.ML" ]
false
2306.00381
2023-06-01T06:25:58Z
Better Context Makes Better Code Language Models: A Case Study on Function Call Argument Completion
[ "Hengzhi Pei", "Jinman Zhao", "Leonard Lausen", "Sheng Zha", "George Karypis" ]
Pretrained code language models have enabled great progress towards program synthesis. However, common approaches only consider in-file local context and thus miss information and constraints imposed by other parts of the codebase and its external dependencies. Existing code completion benchmarks also lack such context. To resolve these restrictions we curate a new dataset of permissively licensed Python packages that includes full projects and their dependencies and provide tools to extract non-local information with the help of program analyzers. We then focus on the task of function call argument completion which requires predicting the arguments to function calls. We show that existing code completion models do not yield good results on our completion task. To better solve this task, we query a program analyzer for information relevant to a given function call, and consider ways to provide the analyzer results to different code completion models during inference and training. Our experiments show that providing access to the function implementation and function usages greatly improves the argument completion performance. Our ablation study provides further insights on how different types of information available from the program analyzer and different ways of incorporating the information affect the model performance.
[ "cs.SE", "cs.LG", "I.2.2; I.2.7" ]
false
2306.00382
2023-06-01T06:26:26Z
Calibrated Propensity Scores for Causal Effect Estimation
[ "Shachi Deshpande", "Volodymyr Kuleshov" ]
Propensity scores are commonly used to balance observed covariates while estimating treatment effects. Estimates obtained through propensity score weighing can be biased when the propensity score model cannot learn the true treatment assignment mechanism. We argue that the probabilistic output of a learned propensity score model should be calibrated, i.e. a predictive treatment probability of 90% should correspond to 90% of individuals being assigned the treatment group. We propose simple recalibration techniques to ensure this property. We investigate the theoretical properties of a calibrated propensity score model and its role in unbiased treatment effect estimation. We demonstrate improved causal effect estimation with calibrated propensity scores in several tasks including high-dimensional genome-wide association studies, where we also show reduced computational requirements when calibration is applied to simpler propensity score models.
[ "stat.ME", "cs.LG", "I.2.m" ]
false
2306.00452
2023-06-01T08:51:18Z
Speech Self-Supervised Representation Benchmarking: Are We Doing it Right?
[ "Salah Zaiem", "Youcef Kemiche", "Titouan Parcollet", "Slim Essid", "Mirco Ravanelli" ]
Self-supervised learning (SSL) has recently allowed leveraging large datasets of unlabeled speech signals to reach impressive performance on speech tasks using only small amounts of annotated data. The high number of proposed approaches fostered the need and rise of extended benchmarks that evaluate their performance on a set of downstream tasks exploring various aspects of the speech signal. However, and while the number of considered tasks has been growing, most rely upon a single decoding architecture that maps the frozen SSL representations to the downstream labels. This work investigates the robustness of such benchmarking results to changes in the decoder architecture. Interestingly, it appears that varying the architecture of the downstream decoder leads to significant variations in the leaderboards of most tasks. Concerningly, our study reveals that benchmarking using limited decoders may cause a counterproductive increase in the sizes of the developed SSL models.
[ "eess.AS", "cs.LG" ]
false
2306.00481
2023-06-01T09:30:49Z
Automatic Data Augmentation for Domain Adapted Fine-Tuning of Self-Supervised Speech Representations
[ "Salah Zaiem", "Titouan Parcollet", "Slim Essid" ]
Self-Supervised Learning (SSL) has allowed leveraging large amounts of unlabeled speech data to improve the performance of speech recognition models even with small annotated datasets. Despite this, speech SSL representations may fail while facing an acoustic mismatch between the pretraining and target datasets. To address this issue, we propose a novel supervised domain adaptation method, designed for cases exhibiting such a mismatch in acoustic domains. It consists in applying properly calibrated data augmentations on a large clean dataset, bringing it closer to the target domain, and using it as part of an initial fine-tuning stage. Augmentations are automatically selected through the minimization of a conditional-dependence estimator, based on the target dataset. The approach is validated during an oracle experiment with controlled distortions and on two amateur-collected low-resource domains, reaching better performances compared to the baselines in both cases.
[ "eess.AS", "cs.LG" ]
false
2306.00520
2023-06-01T10:20:44Z
On Masked Pre-training and the Marginal Likelihood
[ "Pablo Moreno-Muñoz", "Pol G. Recasens", "Søren Hauberg" ]
Masked pre-training removes random input dimensions and learns a model that can predict the missing values. Empirical results indicate that this intuitive form of self-supervised learning yields models that generalize very well to new domains. A theoretical understanding is, however, lacking. This paper shows that masked pre-training with a suitable cumulative scoring function corresponds to maximizing the model's marginal likelihood, which is de facto the Bayesian model selection measure of generalization. Beyond shedding light on the success of masked pre-training, this insight also suggests that Bayesian models can be trained with appropriately designed self-supervision. Empirically, we confirm the developed theory and explore the main learning principles of masked pre-training in large language models.
[ "stat.ML", "cs.LG" ]
false
2306.00522
2023-06-01T10:23:28Z
A New PHO-rmula for Improved Performance of Semi-Structured Networks
[ "David Rügamer" ]
Recent advances to combine structured regression models and deep neural networks for better interpretability, more expressiveness, and statistically valid uncertainty quantification demonstrate the versatility of semi-structured neural networks (SSNs). We show that techniques to properly identify the contributions of the different model components in SSNs, however, lead to suboptimal network estimation, slower convergence, and degenerated or erroneous predictions. In order to solve these problems while preserving favorable model properties, we propose a non-invasive post-hoc orthogonalization (PHO) that guarantees identifiability of model components and provides better estimation and prediction quality. Our theoretical findings are supported by numerical experiments, a benchmark comparison as well as a real-world application to COVID-19 infections.
[ "cs.LG", "stat.ML" ]
false
2306.00541
2023-06-01T10:51:12Z
Decomposing Global Feature Effects Based on Feature Interactions
[ "Julia Herbinger", "Bernd Bischl", "Giuseppe Casalicchio" ]
Global feature effect methods, such as partial dependence plots, provide an intelligible visualization of the expected marginal feature effect. However, such global feature effect methods can be misleading, as they do not represent local feature effects of single observations well when feature interactions are present. We formally introduce generalized additive decomposition of global effects (GADGET), which is a new framework based on recursive partitioning to find interpretable regions in the feature space such that the interaction-related heterogeneity of local feature effects is minimized. We provide a mathematical foundation of the framework and show that it is applicable to the most popular methods to visualize marginal feature effects, namely partial dependence, accumulated local effects, and Shapley additive explanations (SHAP) dependence. Furthermore, we introduce a new permutation-based interaction test to detect significant feature interactions that is applicable to any feature effect method that fits into our proposed framework. We empirically evaluate the theoretical characteristics of the proposed methods based on various feature effect methods in different experimental settings. Moreover, we apply our introduced methodology to two real-world examples to showcase their usefulness.
[ "stat.ML", "cs.LG" ]
false
2306.00554
2023-06-01T11:16:58Z
ShaRP: Shape-Regularized Multidimensional Projections
[ "Alister Machado", "Alexandru Telea", "Michael Behrisch" ]
Projections, or dimensionality reduction methods, are techniques of choice for the visual exploration of high-dimensional data. Many such techniques exist, each one of them having a distinct visual signature - i.e., a recognizable way to arrange points in the resulting scatterplot. Such signatures are implicit consequences of algorithm design, such as whether the method focuses on local vs global data pattern preservation; optimization techniques; and hyperparameter settings. We present a novel projection technique - ShaRP - that provides users explicit control over the visual signature of the created scatterplot, which can cater better to interactive visualization scenarios. ShaRP scales well with dimensionality and dataset size, generically handles any quantitative dataset, and provides this extended functionality of controlling projection shapes at a small, user-controllable cost in terms of quality metrics.
[ "cs.HC", "cs.LG" ]
false
2306.00582
2023-06-01T11:52:58Z
Anomaly Detection with Variance Stabilized Density Estimation
[ "Amit Rozner", "Barak Battash", "Henry Li", "Lior Wolf", "Ofir Lindenbaum" ]
Density estimation based anomaly detection schemes typically model anomalies as examples that reside in low-density regions. We propose a modified density estimation problem and demonstrate its effectiveness for anomaly detection. Specifically, we assume the density function of normal samples is uniform in some compact domain. This assumption implies the density function is more stable (with lower variance) around normal samples than anomalies. We first corroborate this assumption empirically using a wide range of real-world data. Then, we design a variance stabilized density estimation problem for maximizing the likelihood of the observed samples while minimizing the variance of the density around normal samples. We introduce an ensemble of autoregressive models to learn the variance stabilized distribution. Finally, we perform an extensive benchmark with 52 datasets demonstrating that our method leads to state-of-the-art results while alleviating the need for data-specific hyperparameter tuning.
[ "cs.LG", "cs.AI" ]
false
2306.00586
2023-06-01T11:57:47Z
Evaluating the "Learning on Graphs" Conference Experience
[ "Bastian Rieck", "Corinna Coupette" ]
With machine learning conferences growing ever larger, and reviewing processes becoming increasingly elaborate, more data-driven insights into their workings are required. In this report, we present the results of a survey accompanying the first "Learning on Graphs" (LoG) Conference. The survey was directed to evaluate the submission and review process from different perspectives, including authors, reviewers, and area chairs alike.
[ "cs.LG", "cs.CY" ]
false
2306.00616
2023-06-01T12:41:05Z
Progressive Learning for Physics-informed Neural Motion Planning
[ "Ruiqi Ni", "Ahmed H. Qureshi" ]
Motion planning (MP) is one of the core robotics problems requiring fast methods for finding a collision-free robot motion path connecting the given start and goal states. Neural motion planners (NMPs) demonstrate fast computational speed in finding path solutions but require a huge amount of expert trajectories for learning, thus adding a significant training computational load. In contrast, recent advancements have also led to a physics-informed NMP approach that directly solves the Eikonal equation for motion planning and does not require expert demonstrations for learning. However, experiments show that the physics-informed NMP approach performs poorly in complex environments and lacks scalability in multiple scenarios and high-dimensional real robot settings. To overcome these limitations, this paper presents a novel and tractable Eikonal equation formulation and introduces a new progressive learning strategy to train neural networks without expert data in complex, cluttered, multiple high-dimensional robot motion planning scenarios. The results demonstrate that our method outperforms state-of-the-art traditional MP, data-driven NMP, and physics-informed NMP methods by a significant margin in terms of computational planning speed, path quality, and success rates. We also show that our approach scales to multiple complex, cluttered scenarios and the real robot set up in a narrow passage environment. The proposed method's videos and code implementations are available at https://github.com/ruiqini/P-NTFields.
[ "cs.RO", "cs.LG" ]
false
2306.00656
2023-06-01T13:24:56Z
Normalization Enhances Generalization in Visual Reinforcement Learning
[ "Lu Li", "Jiafei Lyu", "Guozheng Ma", "Zilin Wang", "Zhenjie Yang", "Xiu Li", "Zhiheng Li" ]
Recent advances in visual reinforcement learning (RL) have led to impressive success in handling complex tasks. However, these methods have demonstrated limited generalization capability to visual disturbances, which poses a significant challenge for their real-world application and adaptability. Though normalization techniques have demonstrated huge success in supervised and unsupervised learning, their applications in visual RL are still scarce. In this paper, we explore the potential benefits of integrating normalization into visual RL methods with respect to generalization performance. We find that, perhaps surprisingly, incorporating suitable normalization techniques is sufficient to enhance the generalization capabilities, without any additional special design. We utilize the combination of two normalization techniques, CrossNorm and SelfNorm, for generalizable visual RL. Extensive experiments are conducted on DMControl Generalization Benchmark and CARLA to validate the effectiveness of our method. We show that our method significantly improves generalization capability while only marginally affecting sample efficiency. In particular, when integrated with DrQ-v2, our method enhances the test performance of DrQ-v2 on CARLA across various scenarios, from 14% of the training performance to 97%.
[ "cs.LG", "cs.AI" ]
false