arxiv_id
stringlengths
10
10
published
stringlengths
20
20
titles
stringlengths
9
243
authors
listlengths
1
389
abstract
stringlengths
96
3.09k
categories
listlengths
1
10
selected
bool
2 classes
2305.20086
2023-05-31T17:58:02Z
Understanding and Mitigating Copying in Diffusion Models
[ "Gowthami Somepalli", "Vasu Singla", "Micah Goldblum", "Jonas Geiping", "Tom Goldstein" ]
Images generated by diffusion models like Stable Diffusion are increasingly widespread. Recent works and even lawsuits have shown that these models are prone to replicating their training data, unbeknownst to the user. In this paper, we first analyze this memorization problem in text-to-image diffusion models. While it is widely believed that duplicated images in the training set are responsible for content replication at inference time, we observe that the text conditioning of the model plays a similarly important role. In fact, we see in our experiments that data replication often does not happen for unconditional models, while it is common in the text-conditional case. Motivated by our findings, we then propose several techniques for reducing data replication at both training and inference time by randomizing and augmenting image captions in the training set.
[ "cs.LG", "cs.CR", "cs.CV" ]
true
2306.00103
2023-05-31T18:23:57Z
ManagerTower: Aggregating the Insights of Uni-Modal Experts for Vision-Language Representation Learning
[ "Xiao Xu", "Bei Li", "Chenfei Wu", "Shao-Yen Tseng", "Anahita Bhiwandiwalla", "Shachar Rosenman", "Vasudev Lal", "Wanxiang Che", "Nan Duan" ]
Two-Tower Vision-Language (VL) models have shown promising improvements on various downstream VL tasks. Although the most advanced work improves performance by building bridges between encoders, it suffers from ineffective layer-by-layer utilization of uni-modal representations and cannot flexibly exploit different levels of uni-modal semantic knowledge. In this work, we propose ManagerTower, a novel VL model architecture that gathers and combines the insights of pre-trained uni-modal experts at different levels. The managers introduced in each cross-modal layer can adaptively aggregate uni-modal semantic knowledge to facilitate more comprehensive cross-modal alignment and fusion. ManagerTower outperforms previous strong baselines both with and without Vision-Language Pre-training (VLP). With only 4M VLP data, ManagerTower achieves superior performances on various downstream VL tasks, especially 79.15% accuracy on VQAv2 Test-Std, 86.56% IR@1 and 95.64% TR@1 on Flickr30K. Code and checkpoints are available at https://github.com/LooperXX/ManagerTower.
[ "cs.CV", "cs.CL", "cs.LG" ]
false
2306.00180
2023-05-31T20:58:46Z
FlowCam: Training Generalizable 3D Radiance Fields without Camera Poses via Pixel-Aligned Scene Flow
[ "Cameron Smith", "Yilun Du", "Ayush Tewari", "Vincent Sitzmann" ]
Reconstruction of 3D neural fields from posed images has emerged as a promising method for self-supervised representation learning. The key challenge preventing the deployment of these 3D scene learners on large-scale video data is their dependence on precise camera poses from structure-from-motion, which is prohibitively expensive to run at scale. We propose a method that jointly reconstructs camera poses and 3D neural scene representations online and in a single forward pass. We estimate poses by first lifting frame-to-frame optical flow to 3D scene flow via differentiable rendering, preserving locality and shift-equivariance of the image processing backbone. SE(3) camera pose estimation is then performed via a weighted least-squares fit to the scene flow field. This formulation enables us to jointly supervise pose estimation and a generalizable neural scene representation via re-rendering the input video, and thus, train end-to-end and fully self-supervised on real-world video datasets. We demonstrate that our method performs robustly on diverse, real-world video, notably on sequences traditionally challenging to optimization-based pose estimation techniques.
[ "cs.CV", "cs.AI", "cs.GR", "cs.LG" ]
false
2306.00181
2023-05-31T20:59:47Z
Conditionally Strongly Log-Concave Generative Models
[ "Florentin Guth", "Etienne Lempereur", "Joan Bruna", "Stéphane Mallat" ]
There is a growing gap between the impressive results of deep image generative models and classical algorithms that offer theoretical guarantees. The former suffer from mode collapse or memorization issues, limiting their application to scientific data. The latter require restrictive assumptions such as log-concavity to escape the curse of dimensionality. We partially bridge this gap by introducing conditionally strongly log-concave (CSLC) models, which factorize the data distribution into a product of conditional probability distributions that are strongly log-concave. This factorization is obtained with orthogonal projectors adapted to the data distribution. It leads to efficient parameter estimation and sampling algorithms, with theoretical guarantees, although the data distribution is not globally log-concave. We show that several challenging multiscale processes are conditionally log-concave using wavelet packet orthogonal projectors. Numerical results are shown for physical fields such as the $\varphi^4$ model and weak lensing convergence maps with higher resolution than in previous works.
[ "stat.ML", "cs.CV", "cs.LG", "eess.SP" ]
false
2306.00188
2023-05-31T21:06:42Z
Multi-environment lifelong deep reinforcement learning for medical imaging
[ "Guangyao Zheng", "Shuhao Lai", "Vladimir Braverman", "Michael A. Jacobs", "Vishwa S. Parekh" ]
Deep reinforcement learning(DRL) is increasingly being explored in medical imaging. However, the environments for medical imaging tasks are constantly evolving in terms of imaging orientations, imaging sequences, and pathologies. To that end, we developed a Lifelong DRL framework, SERIL to continually learn new tasks in changing imaging environments without catastrophic forgetting. SERIL was developed using selective experience replay based lifelong learning technique for the localization of five anatomical landmarks in brain MRI on a sequence of twenty-four different imaging environments. The performance of SERIL, when compared to two baseline setups: MERT(multi-environment-best-case) and SERT(single-environment-worst-case) demonstrated excellent performance with an average distance of $9.90\pm7.35$ pixels from the desired landmark across all 120 tasks, compared to $10.29\pm9.07$ for MERT and $36.37\pm22.41$ for SERT($p<0.05$), demonstrating the excellent potential for continuously learning multiple tasks across dynamically changing imaging environments.
[ "cs.LG", "cs.CV", "eess.IV" ]
false
2306.00197
2023-05-31T21:28:08Z
SSL-CPCD: Self-supervised learning with composite pretext-class discrimination for improved generalisability in endoscopic image analysis
[ "Ziang Xu", "Jens Rittscher", "Sharib Ali" ]
Data-driven methods have shown tremendous progress in medical image analysis. In this context, deep learning-based supervised methods are widely popular. However, they require a large amount of training data and face issues in generalisability to unseen datasets that hinder clinical translation. Endoscopic imaging data incorporates large inter- and intra-patient variability that makes these models more challenging to learn representative features for downstream tasks. Thus, despite the publicly available datasets and datasets that can be generated within hospitals, most supervised models still underperform. While self-supervised learning has addressed this problem to some extent in natural scene data, there is a considerable performance gap in the medical image domain. In this paper, we propose to explore patch-level instance-group discrimination and penalisation of inter-class variation using additive angular margin within the cosine similarity metrics. Our novel approach enables models to learn to cluster similar representative patches, thereby improving their ability to provide better separation between different classes. Our results demonstrate significant improvement on all metrics over the state-of-the-art (SOTA) methods on the test set from the same and diverse datasets. We evaluated our approach for classification, detection, and segmentation. SSL-CPCD achieves 79.77% on Top 1 accuracy for ulcerative colitis classification, 88.62% on mAP for polyp detection, and 82.32% on dice similarity coefficient for segmentation tasks are nearly over 4%, 2%, and 3%, respectively, compared to the baseline architectures. We also demonstrate that our method generalises better than all SOTA methods to unseen datasets, reporting nearly 7% improvement in our generalisability assessment.
[ "cs.CV", "cs.AI", "cs.LG" ]
false
2306.00228
2023-05-31T22:48:27Z
Using Visual Cropping to Enhance Fine-Detail Question Answering of BLIP-Family Models
[ "Jiarui Zhang", "Mahyar Khayatkhoei", "Prateek Chhikara", "Filip Ilievski" ]
Visual Question Answering is a challenging task, as it requires seamless interaction between perceptual, linguistic, and background knowledge systems. While the recent progress of visual and natural language models like BLIP has led to improved performance on this task, we lack understanding of the ability of such models to perform on different kinds of questions and reasoning types. As our initial analysis of BLIP-family models revealed difficulty with answering fine-detail questions, we investigate the following question: Can visual cropping be employed to improve the performance of state-of-the-art visual question answering models on fine-detail questions? Given the recent success of the BLIP-family models, we study a zero-shot and a fine-tuned BLIP model. We define three controlled subsets of the popular VQA-v2 benchmark to measure whether cropping can help model performance. Besides human cropping, we devise two automatic cropping strategies based on multi-modal embedding by CLIP and BLIP visual QA model gradients. Our experiments demonstrate that the performance of BLIP model variants can be significantly improved through human cropping, and automatic cropping methods can produce comparable benefits. A deeper dive into our findings indicates that the performance enhancement is more pronounced in zero-shot models than in fine-tuned models and more salient with smaller bounding boxes than larger ones. We perform case studies to connect quantitative differences with qualitative observations across question types and datasets. Finally, we see that the cropping enhancement is robust, as we gain an improvement of 4.59% (absolute) in the general VQA-random task by simply inputting a concatenation of the original and gradient-based cropped images. We make our code available to facilitate further innovation on visual cropping methods for question answering.
[ "cs.CV", "cs.AI", "cs.CL" ]
false
2306.06073
2023-05-31T20:27:10Z
Feature Selection on Sentinel-2 Multi-spectral Imagery for Efficient Tree Cover Estimation
[ "Usman Nazir", "Momin Uppal", "Muhammad Tahir", "Zubair Khalid" ]
This paper proposes a multi-spectral random forest classifier with suitable feature selection and masking for tree cover estimation in urban areas. The key feature of the proposed classifier is filtering out the built-up region using spectral indices followed by random forest classification on the remaining mask with carefully selected features. Using Sentinel-2 satellite imagery, we evaluate the performance of the proposed technique on a specified area (approximately 82 acres) of Lahore University of Management Sciences (LUMS) and demonstrate that our method outperforms a conventional random forest classifier as well as state-of-the-art methods such as European Space Agency (ESA) WorldCover 10m 2020 product as well as a DeepLabv3 deep learning architecture.
[ "cs.CV", "cs.LG", "eess.IV" ]
false
2305.20074
2023-05-31T17:48:44Z
Feature Learning in Image Hierarchies using Functional Maximal Correlation
[ "Bo Hu", "Yuheng Bu", "José C. Príncipe" ]
This paper proposes the Hierarchical Functional Maximal Correlation Algorithm (HFMCA), a hierarchical methodology that characterizes dependencies across two hierarchical levels in multiview systems. By framing view similarities as dependencies and ensuring contrastivity by imposing orthonormality, HFMCA achieves faster convergence and increased stability in self-supervised learning. HFMCA defines and measures dependencies within image hierarchies, from pixels and patches to full images. We find that the network topology for approximating orthonormal basis functions aligns with a vanilla CNN, enabling the decomposition of density ratios between neighboring layers of feature maps. This approach provides powerful interpretability, revealing the resemblance between supervision and self-supervision through the lens of internal representations.
[ "cs.CV", "cs.AI", "cs.IT", "cs.LG", "math.IT" ]
false
2305.19474
2023-05-31T01:04:20Z
Ethical Considerations for Machine Translation of Indigenous Languages: Giving a Voice to the Speakers
[ "Manuel Mager", "Elisabeth Mager", "Katharina Kann", "Ngoc Thang Vu" ]
In recent years machine translation has become very successful for high-resource language pairs. This has also sparked new interest in research on the automatic translation of low-resource languages, including Indigenous languages. However, the latter are deeply related to the ethnic and cultural groups that speak (or used to speak) them. The data collection, modeling and deploying machine translation systems thus result in new ethical questions that must be addressed. Motivated by this, we first survey the existing literature on ethical considerations for the documentation, translation, and general natural language processing for Indigenous languages. Afterward, we conduct and analyze an interview study to shed light on the positions of community leaders, teachers, and language activists regarding ethical concerns for the automatic translation of their languages. Our results show that the inclusion, at different degrees, of native speakers and community members is vital to performing better and more ethical research on Indigenous languages.
[ "cs.CL" ]
false
2305.19497
2023-05-31T02:15:15Z
Towards Flow Graph Prediction of Open-Domain Procedural Texts
[ "Keisuke Shirai", "Hirotaka Kameko", "Shinsuke Mori" ]
Machine comprehension of procedural texts is essential for reasoning about the steps and automating the procedures. However, this requires identifying entities within a text and resolving the relationships between the entities. Previous work focused on the cooking domain and proposed a framework to convert a recipe text into a flow graph (FG) representation. In this work, we propose a framework based on the recipe FG for flow graph prediction of open-domain procedural texts. To investigate flow graph prediction performance in non-cooking domains, we introduce the wikiHow-FG corpus from articles on wikiHow, a website of how-to instruction articles. In experiments, we consider using the existing recipe corpus and performing domain adaptation from the cooking to the target domain. Experimental results show that the domain adaptation models achieve higher performance than those trained only on the cooking or target domain data.
[ "cs.CL" ]
false
2305.19500
2023-05-31T02:17:04Z
Exploring Lottery Prompts for Pre-trained Language Models
[ "Yulin Chen", "Ning Ding", "Xiaobin Wang", "Shengding Hu", "Hai-Tao Zheng", "Zhiyuan Liu", "Pengjun Xie" ]
Consistently scaling pre-trained language models (PLMs) imposes substantial burdens on model adaptation, necessitating more efficient alternatives to conventional fine-tuning. Given the advantage of prompting in the zero-shot setting and the observed performance fluctuation among different prompts, we explore the instance-level prompt and their generalizability. By searching through the prompt space, we first validate the assumption that for every instance, there is almost always a lottery prompt that induces the correct prediction from the PLM, and such prompt can be obtained at a low cost thanks to the inherent ability of PLMs. Meanwhile, we find that some strong lottery prompts have high performance over the whole training set, and they are equipped with distinguishable linguistic features. Lastly, we attempt to generalize the searched strong lottery prompts to unseen data with prompt ensembling method without any parameter tuning. Experiments are conducted on various types of NLP classification tasks and demonstrate that the proposed method can achieve comparable results with other gradient-free and optimization-free baselines.
[ "cs.CL" ]
false
2305.19549
2023-05-31T04:31:16Z
Accurate and Structured Pruning for Efficient Automatic Speech Recognition
[ "Huiqiang Jiang", "Li Lyna Zhang", "Yuang Li", "Yu Wu", "Shijie Cao", "Ting Cao", "Yuqing Yang", "Jinyu Li", "Mao Yang", "Lili Qiu" ]
Automatic Speech Recognition (ASR) has seen remarkable advancements with deep neural networks, such as Transformer and Conformer. However, these models typically have large model sizes and high inference costs, posing a challenge to deploy on resource-limited devices. In this paper, we propose a novel compression strategy that leverages structured pruning and knowledge distillation to reduce the model size and inference cost of the Conformer model while preserving high recognition performance. Our approach utilizes a set of binary masks to indicate whether to retain or prune each Conformer module, and employs L0 regularization to learn the optimal mask values. To further enhance pruning performance, we use a layerwise distillation strategy to transfer knowledge from unpruned to pruned models. Our method outperforms all pruning baselines on the widely used LibriSpeech benchmark, achieving a 50% reduction in model size and a 28% reduction in inference cost with minimal performance loss.
[ "cs.CL" ]
false
2305.19589
2023-05-31T06:22:07Z
SLABERT Talk Pretty One Day: Modeling Second Language Acquisition with BERT
[ "Aditya Yadavalli", "Alekhya Yadavalli", "Vera Tobin" ]
Second language acquisition (SLA) research has extensively studied cross-linguistic transfer, the influence of linguistic structure of a speaker's native language [L1] on the successful acquisition of a foreign language [L2]. Effects of such transfer can be positive (facilitating acquisition) or negative (impeding acquisition). We find that NLP literature has not given enough attention to the phenomenon of negative transfer. To understand patterns of both positive and negative transfer between L1 and L2, we model sequential second language acquisition in LMs. Further, we build a Mutlilingual Age Ordered CHILDES (MAO-CHILDES) -- a dataset consisting of 5 typologically diverse languages, i.e., German, French, Polish, Indonesian, and Japanese -- to understand the degree to which native Child-Directed Speech (CDS) [L1] can help or conflict with English language acquisition [L2]. To examine the impact of native CDS, we use the TILT-based cross lingual transfer learning approach established by Papadimitriou and Jurafsky (2020) and find that, as in human SLA, language family distance predicts more negative transfer. Additionally, we find that conversational speech data shows greater facilitation for language acquisition than scripted speech data. Our findings call for further research using our novel Transformer-based SLA models and we would like to encourage it by releasing our code, data, and models.
[ "cs.CL" ]
false
2305.19650
2023-05-31T08:30:08Z
Adverbs, Surprisingly
[ "Dmitry Nikolaev", "Collin F. Baker", "Miriam R. L. Petruck", "Sebastian Padó" ]
This paper begins with the premise that adverbs are neglected in computational linguistics. This view derives from two analyses: a literature review and a novel adverb dataset to probe a state-of-the-art language model, thereby uncovering systematic gaps in accounts for adverb meaning. We suggest that using Frame Semantics for characterizing word meaning, as in FrameNet, provides a promising approach to adverb analysis, given its ability to describe ambiguity, semantic roles, and null instantiation.
[ "cs.CL" ]
false
2305.19689
2023-05-31T09:34:26Z
Assessing Word Importance Using Models Trained for Semantic Tasks
[ "Dávid Javorský", "Ondřej Bojar", "François Yvon" ]
Many NLP tasks require to automatically identify the most significant words in a text. In this work, we derive word significance from models trained to solve semantic task: Natural Language Inference and Paraphrase Identification. Using an attribution method aimed to explain the predictions of these models, we derive importance scores for each input token. We evaluate their relevance using a so-called cross-task evaluation: Analyzing the performance of one model on an input masked according to the other model's weight, we show that our method is robust with respect to the choice of the initial task. Additionally, we investigate the scores from the syntax point of view and observe interesting patterns, e.g. words closer to the root of a syntactic tree receive higher importance scores. Altogether, these observations suggest that our method can be used to identify important words in sentences without any explicit word importance labeling in training.
[ "cs.CL" ]
false
2305.19707
2023-05-31T10:03:18Z
Building Extractive Question Answering System to Support Human-AI Health Coaching Model for Sleep Domain
[ "Iva Bojic", "Qi Chwen Ong", "Shafiq Joty", "Josip Car" ]
Non-communicable diseases (NCDs) are a leading cause of global deaths, necessitating a focus on primary prevention and lifestyle behavior change. Health coaching, coupled with Question Answering (QA) systems, has the potential to transform preventive healthcare. This paper presents a human-Artificial Intelligence (AI) health coaching model incorporating a domain-specific extractive QA system. A sleep-focused dataset, SleepQA, was manually assembled and used to fine-tune domain-specific BERT models. The QA system was evaluated using automatic and human methods. A data-centric framework enhanced the system's performance by improving passage retrieval and question reformulation. Although the system did not outperform the baseline in automatic evaluation, it excelled in the human evaluation of real-world questions. Integration into a Human-AI health coaching model was tested in a pilot Randomized Controlled Trial (RCT).
[ "cs.CL" ]
false
2305.19747
2023-05-31T11:20:48Z
Analyzing Text Representations by Measuring Task Alignment
[ "Cesar Gonzalez-Gutierrez", "Audi Primadhanty", "Francesco Cazzaro", "Ariadna Quattoni" ]
Textual representations based on pre-trained language models are key, especially in few-shot learning scenarios. What makes a representation good for text classification? Is it due to the geometric properties of the space or because it is well aligned with the task? We hypothesize the second claim. To test it, we develop a task alignment score based on hierarchical clustering that measures alignment at different levels of granularity. Our experiments on text classification validate our hypothesis by showing that task alignment can explain the classification performance of a given representation.
[ "cs.CL" ]
false
2305.19754
2023-05-31T11:39:10Z
Sentence Simplification Using Paraphrase Corpus for Initialization
[ "Kang Liu", "Jipeng Qiang" ]
Neural sentence simplification method based on sequence-to-sequence framework has become the mainstream method for sentence simplification (SS) task. Unfortunately, these methods are currently limited by the scarcity of parallel SS corpus. In this paper, we focus on how to reduce the dependence on parallel corpus by leveraging a careful initialization for neural SS methods from paraphrase corpus. Our work is motivated by the following two findings: (1) Paraphrase corpus includes a large proportion of sentence pairs belonging to SS corpus. (2) We can construct large-scale pseudo parallel SS data by keeping these sentence pairs with a higher complexity difference. Therefore, we propose two strategies to initialize neural SS methods using paraphrase corpus. We train three different neural SS methods with our initialization, which can obtain substantial improvements on the available WikiLarge data compared with themselves without initialization.
[ "cs.CL" ]
false
2305.19757
2023-05-31T11:41:24Z
Automatic Discrimination of Human and Neural Machine Translation in Multilingual Scenarios
[ "Malina Chichirau", "Rik van Noord", "Antonio Toral" ]
We tackle the task of automatically discriminating between human and machine translations. As opposed to most previous work, we perform experiments in a multilingual setting, considering multiple languages and multilingual pretrained language models. We show that a classifier trained on parallel data with a single source language (in our case German-English) can still perform well on English translations that come from different source languages, even when the machine translations were produced by other systems than the one it was trained on. Additionally, we demonstrate that incorporating the source text in the input of a multilingual classifier improves (i) its accuracy and (ii) its robustness on cross-system evaluation, compared to a monolingual classifier. Furthermore, we find that using training data from multiple source languages (German, Russian, and Chinese) tends to improve the accuracy of both monolingual and multilingual classifiers. Finally, we show that bilingual classifiers and classifiers trained on multiple source languages benefit from being trained on longer text sequences, rather than on sentences.
[ "cs.CL" ]
false
2305.19783
2023-05-31T12:19:40Z
IDAS: Intent Discovery with Abstractive Summarization
[ "Maarten De Raedt", "Fréderic Godin", "Thomas Demeester", "Chris Develder" ]
Intent discovery is the task of inferring latent intents from a set of unlabeled utterances, and is a useful step towards the efficient creation of new conversational agents. We show that recent competitive methods in intent discovery can be outperformed by clustering utterances based on abstractive summaries, i.e., "labels", that retain the core elements while removing non-essential information. We contribute the IDAS approach, which collects a set of descriptive utterance labels by prompting a Large Language Model, starting from a well-chosen seed set of prototypical utterances, to bootstrap an In-Context Learning procedure to generate labels for non-prototypical utterances. The utterances and their resulting noisy labels are then encoded by a frozen pre-trained encoder, and subsequently clustered to recover the latent intents. For the unsupervised task (without any intent labels) IDAS outperforms the state-of-the-art by up to +7.42% in standard cluster metrics for the Banking, StackOverflow, and Transport datasets. For the semi-supervised task (with labels for a subset of intents) IDAS surpasses 2 recent methods on the CLINC benchmark without even using labeled data.
[ "cs.CL" ]
false
2305.19845
2023-05-31T13:33:29Z
Guiding Computational Stance Detection with Expanded Stance Triangle Framework
[ "Zhengyuan Liu", "Yong Keong Yap", "Hai Leong Chieu", "Nancy F. Chen" ]
Stance detection determines whether the author of a piece of text is in favor of, against, or neutral towards a specified target, and can be used to gain valuable insights into social media. The ubiquitous indirect referral of targets makes this task challenging, as it requires computational solutions to model semantic features and infer the corresponding implications from a literal statement. Moreover, the limited amount of available training data leads to subpar performance in out-of-domain and cross-target scenarios, as data-driven approaches are prone to rely on superficial and domain-specific features. In this work, we decompose the stance detection task from a linguistic perspective, and investigate key components and inference paths in this task. The stance triangle is a generic linguistic framework previously proposed to describe the fundamental ways people express their stance. We further expand it by characterizing the relationship between explicit and implicit objects. We then use the framework to extend one single training corpus with additional annotation. Experimental results show that strategically-enriched data can significantly improve the performance on out-of-domain and cross-target evaluation.
[ "cs.CL" ]
false
2305.19857
2023-05-31T13:48:45Z
TPDM: Selectively Removing Positional Information for Zero-shot Translation via Token-Level Position Disentangle Module
[ "Xingran Chen", "Ge Zhang", "Jie Fu" ]
Due to Multilingual Neural Machine Translation's (MNMT) capability of zero-shot translation, many works have been carried out to fully exploit the potential of MNMT in zero-shot translation. It is often hypothesized that positional information may hinder the MNMT from outputting a robust encoded representation for decoding. However, previous approaches treat all the positional information equally and thus are unable to selectively remove certain positional information. In sharp contrast, this paper investigates how to learn to selectively preserve useful positional information. We describe the specific mechanism of positional information influencing MNMT from the perspective of linguistics at the token level. We design a token-level position disentangle module (TPDM) framework to disentangle positional information at the token level based on the explanation. Our experiments demonstrate that our framework improves zero-shot translation by a large margin while reducing the performance loss in the supervised direction compared to previous works.
[ "cs.CL" ]
false
2305.19902
2023-05-31T14:35:53Z
AQE: Argument Quadruplet Extraction via a Quad-Tagging Augmented Generative Approach
[ "Jia Guo", "Liying Cheng", "Wenxuan Zhang", "Stanley Kok", "Xin Li", "Lidong Bing" ]
Argument mining involves multiple sub-tasks that automatically identify argumentative elements, such as claim detection, evidence extraction, stance classification, etc. However, each subtask alone is insufficient for a thorough understanding of the argumentative structure and reasoning process. To learn a complete view of an argument essay and capture the interdependence among argumentative components, we need to know what opinions people hold (i.e., claims), why those opinions are valid (i.e., supporting evidence), which source the evidence comes from (i.e., evidence type), and how those claims react to the debating topic (i.e., stance). In this work, we for the first time propose a challenging argument quadruplet extraction task (AQE), which can provide an all-in-one extraction of four argumentative components, i.e., claims, evidence, evidence types, and stances. To support this task, we construct a large-scale and challenging dataset. However, there is no existing method that can solve the argument quadruplet extraction. To fill this gap, we propose a novel quad-tagging augmented generative approach, which leverages a quadruplet tagging module to augment the training of the generative framework. The experimental results on our dataset demonstrate the empirical superiority of our proposed approach over several strong baselines.
[ "cs.CL" ]
false
2305.19905
2023-05-31T14:38:14Z
How to Plant Trees in Language Models: Data and Architectural Effects on the Emergence of Syntactic Inductive Biases
[ "Aaron Mueller", "Tal Linzen" ]
Accurate syntactic representations are essential for robust generalization in natural language. Recent work has found that pre-training can teach language models to rely on hierarchical syntactic features - as opposed to incorrect linear features - when performing tasks after fine-tuning. We test what aspects of pre-training are important for endowing encoder-decoder Transformers with an inductive bias that favors hierarchical syntactic generalizations. We focus on architectural features (depth, width, and number of parameters), as well as the genre and size of the pre-training corpus, diagnosing inductive biases using two syntactic transformation tasks: question formation and passivization, both in English. We find that the number of parameters alone does not explain hierarchical generalization: model depth plays greater role than model width. We also find that pre-training on simpler language, such as child-directed speech, induces a hierarchical bias using an order-of-magnitude less data than pre-training on more typical datasets based on web text or Wikipedia; this suggests that in cognitively plausible language acquisition settings, neural language models may be more data-efficient than previously thought.
[ "cs.CL" ]
false
2305.19974
2023-05-31T16:01:57Z
Correcting Semantic Parses with Natural Language through Dynamic Schema Encoding
[ "Parker Glenn", "Parag Pravin Dakle", "Preethi Raghavan" ]
In addressing the task of converting natural language to SQL queries, there are several semantic and syntactic challenges. It becomes increasingly important to understand and remedy the points of failure as the performance of semantic parsing systems improve. We explore semantic parse correction with natural language feedback, proposing a new solution built on the success of autoregressive decoders in text-to-SQL tasks. By separating the semantic and syntactic difficulties of the task, we show that the accuracy of text-to-SQL parsers can be boosted by up to 26% with only one turn of correction with natural language. Additionally, we show that a T5-base model is capable of correcting the errors of a T5-large model in a zero-shot, cross-parser setting.
[ "cs.CL" ]
false
2305.20080
2023-05-31T17:55:21Z
Findings of the VarDial Evaluation Campaign 2023
[ "Noëmi Aepli", "Çağrı Çöltekin", "Rob Van Der Goot", "Tommi Jauhiainen", "Mourhaf Kazzaz", "Nikola Ljubešić", "Kai North", "Barbara Plank", "Yves Scherrer", "Marcos Zampieri" ]
This report presents the results of the shared tasks organized as part of the VarDial Evaluation Campaign 2023. The campaign is part of the tenth workshop on Natural Language Processing (NLP) for Similar Languages, Varieties and Dialects (VarDial), co-located with EACL 2023. Three separate shared tasks were included this year: Slot and intent detection for low-resource language varieties (SID4LR), Discriminating Between Similar Languages -- True Labels (DSL-TL), and Discriminating Between Similar Languages -- Speech (DSL-S). All three tasks were organized for the first time this year.
[ "cs.CL" ]
false
2306.00100
2023-05-31T18:22:33Z
MetaXLR -- Mixed Language Meta Representation Transformation for Low-resource Cross-lingual Learning based on Multi-Armed Bandit
[ "Liat Bezalel", "Eyal Orgad" ]
Transfer learning for extremely low resource languages is a challenging task as there is no large scale monolingual corpora for pre training or sufficient annotated data for fine tuning. We follow the work of MetaXL which suggests using meta learning for transfer learning from a single source language to an extremely low resource one. We propose an enhanced approach which uses multiple source languages chosen in a data driven manner. In addition, we introduce a sample selection strategy for utilizing the languages in training by using a multi armed bandit algorithm. Using both of these improvements we managed to achieve state of the art results on the NER task for the extremely low resource languages while using the same amount of data, making the representations better generalized. Also, due to the method ability to use multiple languages it allows the framework to use much larger amounts of data, while still having superior results over the former MetaXL method even with the same amounts of data.
[ "cs.CL" ]
false
2306.00121
2023-05-31T18:52:41Z
Multilingual Multi-Figurative Language Detection
[ "Huiyuan Lai", "Antonio Toral", "Malvina Nissim" ]
Figures of speech help people express abstract concepts and evoke stronger emotions than literal expressions, thereby making texts more creative and engaging. Due to its pervasive and fundamental character, figurative language understanding has been addressed in Natural Language Processing, but it's highly understudied in a multilingual setting and when considering more than one figure of speech at the same time. To bridge this gap, we introduce multilingual multi-figurative language modelling, and provide a benchmark for sentence-level figurative language detection, covering three common figures of speech and seven languages. Specifically, we develop a framework for figurative language detection based on template-based prompt learning. In so doing, we unify multiple detection tasks that are interrelated across multiple figures of speech and languages, without requiring task- or language-specific modules. Experimental results show that our framework outperforms several strong baselines and may serve as a blueprint for the joint modelling of other interrelated tasks.
[ "cs.CL" ]
false
2306.00124
2023-05-31T19:00:33Z
Pre-Trained Language-Meaning Models for Multilingual Parsing and Generation
[ "Chunliu Wang", "Huiyuan Lai", "Malvina Nissim", "Johan Bos" ]
Pre-trained language models (PLMs) have achieved great success in NLP and have recently been used for tasks in computational semantics. However, these tasks do not fully benefit from PLMs since meaning representations are not explicitly included in the pre-training stage. We introduce multilingual pre-trained language-meaning models based on Discourse Representation Structures (DRSs), including meaning representations besides natural language texts in the same model, and design a new strategy to reduce the gap between the pre-training and fine-tuning objectives. Since DRSs are language neutral, cross-lingual transfer learning is adopted to further improve the performance of non-English tasks. Automatic evaluation results show that our approach achieves the best performance on both the multilingual DRS parsing and DRS-to-text generation tasks. Correlation analysis between automatic metrics and human judgements on the generation task further validates the effectiveness of our model. Human inspection reveals that out-of-vocabulary tokens are the main cause of erroneous results.
[ "cs.CL" ]
false
2306.00137
2023-05-31T19:28:00Z
A Sequence-to-Sequence&Set Model for Text-to-Table Generation
[ "Tong Li", "Zhihao Wang", "Liangying Shao", "Xuling Zheng", "Xiaoli Wang", "Jinsong Su" ]
Recently, the text-to-table generation task has attracted increasing attention due to its wide applications. In this aspect, the dominant model formalizes this task as a sequence-to-sequence generation task and serializes each table into a token sequence during training by concatenating all rows in a top-down order. However, it suffers from two serious defects: 1) the predefined order introduces a wrong bias during training, which highly penalizes shifts in the order between rows; 2) the error propagation problem becomes serious when the model outputs a long token sequence. In this paper, we first conduct a preliminary study to demonstrate the generation of most rows is order-insensitive. Furthermore, we propose a novel sequence-to-sequence&set text-to-table generation model. Specifically, in addition to a text encoder encoding the input text, our model is equipped with a table header generator to first output a table header, i.e., the first row of the table, in the manner of sequence generation. Then we use a table body generator with learnable row embeddings and column embeddings to generate a set of table body rows in parallel. Particularly, to deal with the issue that there is no correspondence between each generated table body row and target during training, we propose a target assignment strategy based on the bipartite matching between the first cells of generated table body rows and targets. Experiment results show that our model significantly surpasses the baselines, achieving state-of-the-art performance on commonly-used datasets.
[ "cs.CL" ]
false
2306.00177
2023-05-31T20:54:43Z
Contrastive Hierarchical Discourse Graph for Scientific Document Summarization
[ "Haopeng Zhang", "Xiao Liu", "Jiawei Zhang" ]
The extended structural context has made scientific paper summarization a challenging task. This paper proposes CHANGES, a contrastive hierarchical graph neural network for extractive scientific paper summarization. CHANGES represents a scientific paper with a hierarchical discourse graph and learns effective sentence representations with dedicated designed hierarchical graph information aggregation. We also propose a graph contrastive learning module to learn global theme-aware sentence representations. Extensive experiments on the PubMed and arXiv benchmark datasets prove the effectiveness of CHANGES and the importance of capturing hierarchical structure information in modeling scientific papers.
[ "cs.CL" ]
false
2306.00186
2023-05-31T21:04:04Z
Factually Consistent Summarization via Reinforcement Learning with Textual Entailment Feedback
[ "Paul Roit", "Johan Ferret", "Lior Shani", "Roee Aharoni", "Geoffrey Cideron", "Robert Dadashi", "Matthieu Geist", "Sertan Girgin", "Léonard Hussenot", "Orgad Keller", "Nikola Momchev", "Sabela Ramos", "Piotr Stanczyk", "Nino Vieillard", "Olivier Bachem", "Gal Elidan", "Avinatan Hassidim", "Olivier Pietquin", "Idan Szpektor" ]
Despite the seeming success of contemporary grounded text generation systems, they often tend to generate factually inconsistent text with respect to their input. This phenomenon is emphasized in tasks like summarization, in which the generated summaries should be corroborated by their source article. In this work, we leverage recent progress on textual entailment models to directly address this problem for abstractive summarization systems. We use reinforcement learning with reference-free, textual entailment rewards to optimize for factual consistency and explore the ensuing trade-offs, as improved consistency may come at the cost of less informative or more extractive summaries. Our results, according to both automatic metrics and human evaluation, show that our method considerably improves the faithfulness, salience, and conciseness of the generated summaries.
[ "cs.CL" ]
false
2305.19584
2023-05-31T06:09:11Z
The Tag-Team Approach: Leveraging CLS and Language Tagging for Enhancing Multilingual ASR
[ "Kaousheik Jayakumar", "Vrunda N. Sukhadia", "A Arunkumar", "S. Umesh" ]
Building a multilingual Automated Speech Recognition (ASR) system in a linguistically diverse country like India can be a challenging task due to the differences in scripts and the limited availability of speech data. This problem can be solved by exploiting the fact that many of these languages are phonetically similar. These languages can be converted into a Common Label Set (CLS) by mapping similar sounds to common labels. In this paper, new approaches are explored and compared to improve the performance of CLS based multilingual ASR model. Specific language information is infused in the ASR model by giving Language ID or using CLS to Native script converter on top of the CLS Multilingual model. These methods give a significant improvement in Word Error Rate (WER) compared to the CLS baseline. These methods are further tried on out-of-distribution data to check their robustness.
[ "cs.CL", "eess.AS" ]
false
2305.19585
2023-05-31T06:09:59Z
LAIT: Efficient Multi-Segment Encoding in Transformers with Layer-Adjustable Interaction
[ "Jeremiah Milbauer", "Annie Louis", "Mohammad Javad Hosseini", "Alex Fabrikant", "Donald Metzler", "Tal Schuster" ]
Transformer encoders contextualize token representations by attending to all other tokens at each layer, leading to quadratic increase in compute effort with the input length. In practice, however, the input text of many NLP tasks can be seen as a sequence of related segments (e.g., the sequence of sentences within a passage, or the hypothesis and premise in NLI). While attending across these segments is highly beneficial for many tasks, we hypothesize that this interaction can be delayed until later encoding stages. To this end, we introduce Layer-Adjustable Interactions in Transformers (LAIT). Within LAIT, segmented inputs are first encoded independently, and then jointly. This partial two-tower architecture bridges the gap between a Dual Encoder's ability to pre-compute representations for segments and a fully self-attentive Transformer's capacity to model cross-segment attention. The LAIT framework effectively leverages existing pretrained Transformers and converts them into the hybrid of the two aforementioned architectures, allowing for easy and intuitive control over the performance-efficiency tradeoff. Experimenting on a wide range of NLP tasks, we find LAIT able to reduce 30-50% of the attention FLOPs on many tasks, while preserving high accuracy; in some practical settings, LAIT could reduce actual latency by orders of magnitude.
[ "cs.CL", "cs.LG" ]
false
2305.19597
2023-05-31T06:45:09Z
What does the Failure to Reason with "Respectively" in Zero/Few-Shot Settings Tell Us about Language Models?
[ "Ruixiang Cui", "Seolhwa Lee", "Daniel Hershcovich", "Anders Søgaard" ]
Humans can effortlessly understand the coordinate structure of sentences such as "Niels Bohr and Kurt Cobain were born in Copenhagen and Seattle, respectively". In the context of natural language inference (NLI), we examine how language models (LMs) reason with respective readings (Gawron and Kehler, 2004) from two perspectives: syntactic-semantic and commonsense-world knowledge. We propose a controlled synthetic dataset WikiResNLI and a naturally occurring dataset NatResNLI to encompass various explicit and implicit realizations of "respectively". We show that fine-tuned NLI models struggle with understanding such readings without explicit supervision. While few-shot learning is easy in the presence of explicit cues, longer training is required when the reading is evoked implicitly, leaving models to rely on common sense inferences. Furthermore, our fine-grained analysis indicates models fail to generalize across different constructions. To conclude, we demonstrate that LMs still lag behind humans in generalizing to the long tail of linguistic constructions.
[ "cs.CL", "cs.AI" ]
false
2305.19607
2023-05-31T07:23:46Z
Adversarial Clean Label Backdoor Attacks and Defenses on Text Classification Systems
[ "Ashim Gupta", "Amrith Krishna" ]
Clean-label (CL) attack is a form of data poisoning attack where an adversary modifies only the textual input of the training data, without requiring access to the labeling function. CL attacks are relatively unexplored in NLP, as compared to label flipping (LF) attacks, where the latter additionally requires access to the labeling function as well. While CL attacks are more resilient to data sanitization and manual relabeling methods than LF attacks, they often demand as high as ten times the poisoning budget than LF attacks. In this work, we first introduce an Adversarial Clean Label attack which can adversarially perturb in-class training examples for poisoning the training set. We then show that an adversary can significantly bring down the data requirements for a CL attack, using the aforementioned approach, to as low as 20% of the data otherwise required. We then systematically benchmark and analyze a number of defense methods, for both LF and CL attacks, some previously employed solely for LF attacks in the textual domain and others adapted from computer vision. We find that text-specific defenses greatly vary in their effectiveness depending on their properties.
[ "cs.CL", "cs.CR" ]
false
2305.19759
2023-05-31T11:43:16Z
Simple yet Effective Code-Switching Language Identification with Multitask Pre-Training and Transfer Learning
[ "Shuyue Stella Li", "Cihan Xiao", "Tianjian Li", "Bismarck Odoom" ]
Code-switching, also called code-mixing, is the linguistics phenomenon where in casual settings, multilingual speakers mix words from different languages in one utterance. Due to its spontaneous nature, code-switching is extremely low-resource, which makes it a challenging problem for language and speech processing tasks. In such contexts, Code-Switching Language Identification (CSLID) becomes a difficult but necessary task if we want to maximally leverage existing monolingual tools for other tasks. In this work, we propose two novel approaches toward improving language identification accuracy on an English-Mandarin child-directed speech dataset. Our methods include a stacked Residual CNN+GRU model and a multitask pre-training approach to use Automatic Speech Recognition (ASR) as an auxiliary task for CSLID. Due to the low-resource nature of code-switching, we also employ careful silver data creation using monolingual corpora in both languages and up-sampling as data augmentation. We focus on English-Mandarin code-switched data, but our method works on any language pair. Our best model achieves a balanced accuracy of 0.781 on a real English-Mandarin code-switching child-directed speech corpus and outperforms the previous baseline by 55.3%.
[ "cs.CL", "eess.AS" ]
false
2305.19835
2023-05-31T13:23:04Z
Deliberate then Generate: Enhanced Prompting Framework for Text Generation
[ "Bei Li", "Rui Wang", "Junliang Guo", "Kaitao Song", "Xu Tan", "Hany Hassan", "Arul Menezes", "Tong Xiao", "Jiang Bian", "JingBo Zhu" ]
Large language models (LLMs) have shown remarkable success across a wide range of natural language generation tasks, where proper prompt designs make great impacts. While existing prompting methods are normally restricted to providing correct information, in this paper, we encourage the model to deliberate by proposing a novel Deliberate then Generate (DTG) prompting framework, which consists of error detection instructions and candidates that may contain errors. DTG is a simple yet effective technique that can be applied to various text generation tasks with minimal modifications. We conduct extensive experiments on 20+ datasets across 7 text generation tasks, including summarization, translation, dialogue, and more. We show that DTG consistently outperforms existing prompting methods and achieves state-of-the-art performance on multiple text generation tasks. We also provide in-depth analyses to reveal the underlying mechanisms of DTG, which may inspire future research on prompting for LLMs.
[ "cs.CL", "cs.AI" ]
true
2305.19847
2023-05-31T13:36:51Z
How Does Pretraining Improve Discourse-Aware Translation?
[ "Zhihong Huang", "Longyue Wang", "Siyou Liu", "Derek F. Wong" ]
Pretrained language models (PLMs) have produced substantial improvements in discourse-aware neural machine translation (NMT), for example, improved coherence in spoken language translation. However, the underlying reasons for their strong performance have not been well explained. To bridge this gap, we introduce a probing task to interpret the ability of PLMs to capture discourse relation knowledge. We validate three state-of-the-art PLMs across encoder-, decoder-, and encoder-decoder-based models. The analysis shows that (1) the ability of PLMs on discourse modelling varies from architecture and layer; (2) discourse elements in a text lead to different learning difficulties for PLMs. Besides, we investigate the effects of different PLMs on spoken language translation. Through experiments on IWSLT2017 Chinese-English dataset, we empirically reveal that NMT models initialized from different layers of PLMs exhibit the same trends with the probing task. Our findings are instructive to understand how and when discourse knowledge in PLMs should work for downstream tasks.
[ "cs.CL", "cs.AI" ]
false
2305.19911
2023-05-31T14:44:33Z
Neuron to Graph: Interpreting Language Model Neurons at Scale
[ "Alex Foote", "Neel Nanda", "Esben Kran", "Ioannis Konstas", "Shay Cohen", "Fazl Barez" ]
Advances in Large Language Models (LLMs) have led to remarkable capabilities, yet their inner mechanisms remain largely unknown. To understand these models, we need to unravel the functions of individual neurons and their contribution to the network. This paper introduces a novel automated approach designed to scale interpretability techniques across a vast array of neurons within LLMs, to make them more interpretable and ultimately safe. Conventional methods require examination of examples with strong neuron activation and manual identification of patterns to decipher the concepts a neuron responds to. We propose Neuron to Graph (N2G), an innovative tool that automatically extracts a neuron's behaviour from the dataset it was trained on and translates it into an interpretable graph. N2G uses truncation and saliency methods to emphasise only the most pertinent tokens to a neuron while enriching dataset examples with diverse samples to better encompass the full spectrum of neuron behaviour. These graphs can be visualised to aid researchers' manual interpretation, and can generate token activations on text for automatic validation by comparison with the neuron's ground truth activations, which we use to show that the model is better at predicting neuron activation than two baseline methods. We also demonstrate how the generated graph representations can be flexibly used to facilitate further automation of interpretability research, by searching for neurons with particular properties, or programmatically comparing neurons to each other to identify similar neurons. Our method easily scales to build graph representations for all neurons in a 6-layer Transformer model using a single Tesla T4 GPU, allowing for wide usability. We release the code and instructions for use at https://github.com/alexjfoote/Neuron2Graph.
[ "cs.LG", "cs.CL" ]
false
2305.19936
2023-05-31T15:20:54Z
Metropolis-Hastings algorithm in joint-attention naming game: Experimental semiotics study
[ "Ryota Okumura", "Tadahiro Taniguchi", "Yosinobu Hagiwara", "Akira Taniguchi" ]
In this study, we explore the emergence of symbols during interactions between individuals through an experimental semiotic study. Previous studies investigate how humans organize symbol systems through communication using artificially designed subjective experiments. In this study, we have focused on a joint attention-naming game (JA-NG) in which participants independently categorize objects and assign names while assuming their joint attention. In the theory of the Metropolis-Hastings naming game (MHNG), listeners accept provided names according to the acceptance probability computed using the Metropolis-Hastings (MH) algorithm. The theory of MHNG suggests that symbols emerge as an approximate decentralized Bayesian inference of signs, which is represented as a shared prior variable if the conditions of MHNG are satisfied. This study examines whether human participants exhibit behavior consistent with MHNG theory when playing JA-NG. By comparing human acceptance decisions of a partner's naming with acceptance probabilities computed in the MHNG, we tested whether human behavior is consistent with the MHNG theory. The main contributions of this study are twofold. First, we reject the null hypothesis that humans make acceptance judgments with a constant probability, regardless of the acceptance probability calculated by the MH algorithm. This result suggests that people followed the acceptance probability computed by the MH algorithm to some extent. Second, the MH-based model predicted human acceptance/rejection behavior more accurately than the other four models: Constant, Numerator, Subtraction, and Binary. This result indicates that symbol emergence in JA-NG can be explained using MHNG and is considered an approximate decentralized Bayesian inference.
[ "cs.CL", "cs.HC" ]
false
2305.19998
2023-05-31T16:19:13Z
Efficient Shapley Values Estimation by Amortization for Text Classification
[ "Chenghao Yang", "Fan Yin", "He He", "Kai-Wei Chang", "Xiaofei Ma", "Bing Xiang" ]
Despite the popularity of Shapley Values in explaining neural text classification models, computing them is prohibitive for large pretrained models due to a large number of model evaluations. In practice, Shapley Values are often estimated with a small number of stochastic model evaluations. However, we show that the estimated Shapley Values are sensitive to random seed choices -- the top-ranked features often have little overlap across different seeds, especially on examples with longer input texts. This can only be mitigated by aggregating thousands of model evaluations, which on the other hand, induces substantial computational overheads. To mitigate the trade-off between stability and efficiency, we develop an amortized model that directly predicts each input feature's Shapley Value without additional model evaluations. It is trained on a set of examples whose Shapley Values are estimated from a large number of model evaluations to ensure stability. Experimental results on two text classification datasets demonstrate that our amortized model estimates Shapley Values accurately with up to 60 times speedup compared to traditional methods. Furthermore, the estimated values are stable as the inference is deterministic. We release our code at https://github.com/yangalan123/Amortized-Interpretability.
[ "cs.CL", "cs.LG" ]
false
2305.20018
2023-05-31T16:47:20Z
Scalable Learning of Latent Language Structure With Logical Offline Cycle Consistency
[ "Maxwell Crouse", "Ramon Astudillo", "Tahira Naseem", "Subhajit Chaudhury", "Pavan Kapanipathi", "Salim Roukos", "Alexander Gray" ]
We introduce Logical Offline Cycle Consistency Optimization (LOCCO), a scalable, semi-supervised method for training a neural semantic parser. Conceptually, LOCCO can be viewed as a form of self-learning where the semantic parser being trained is used to generate annotations for unlabeled text that are then used as new supervision. To increase the quality of annotations, our method utilizes a count-based prior over valid formal meaning representations and a cycle-consistency score produced by a neural text generation model as additional signals. Both the prior and semantic parser are updated in an alternate fashion from full passes over the training data, which can be seen as approximating the marginalization of latent structures through stochastic variational inference. The use of a count-based prior, frozen text generation model, and offline annotation process yields an approach with negligible complexity and latency increases as compared to conventional self-learning. As an added bonus, the annotations produced by LOCCO can be trivially repurposed to train a neural text generation model. We demonstrate the utility of LOCCO on the well-known WebNLG benchmark where we obtain an improvement of 2 points against a self-learning parser under equivalent conditions, an improvement of 1.3 points against the previous state-of-the-art parser, and competitive text generation performance in terms of BLEU score.
[ "cs.CL", "cs.AI" ]
false
2305.20045
2023-05-31T17:18:47Z
ActiveAED: A Human in the Loop Improves Annotation Error Detection
[ "Leon Weber", "Barbara Plank" ]
Manually annotated datasets are crucial for training and evaluating Natural Language Processing models. However, recent work has discovered that even widely-used benchmark datasets contain a substantial number of erroneous annotations. This problem has been addressed with Annotation Error Detection (AED) models, which can flag such errors for human re-annotation. However, even though many of these AED methods assume a final curation step in which a human annotator decides whether the annotation is erroneous, they have been developed as static models without any human-in-the-loop component. In this work, we propose ActiveAED, an AED method that can detect errors more accurately by repeatedly querying a human for error corrections in its prediction loop. We evaluate ActiveAED on eight datasets spanning five different tasks and find that it leads to improvements over the state of the art on seven of them, with gains of up to six percentage points in average precision.
[ "cs.CL", "cs.LG" ]
false
2306.00176
2023-05-31T20:50:45Z
Automated Annotation with Generative AI Requires Validation
[ "Nicholas Pangakis", "Samuel Wolken", "Neil Fasching" ]
Generative large language models (LLMs) can be a powerful tool for augmenting text annotation procedures, but their performance varies across annotation tasks due to prompt quality, text data idiosyncrasies, and conceptual difficulty. Because these challenges will persist even as LLM technology improves, we argue that any automated annotation process using an LLM must validate the LLM's performance against labels generated by humans. To this end, we outline a workflow to harness the annotation potential of LLMs in a principled, efficient way. Using GPT-4, we validate this approach by replicating 27 annotation tasks across 11 datasets from recent social science articles in high-impact journals. We find that LLM performance for text annotation is promising but highly contingent on both the dataset and the type of annotation task, which reinforces the necessity to validate on a task-by-task basis. We make available easy-to-use software designed to implement our workflow and streamline the deployment of LLMs for automated annotation.
[ "cs.CL", "cs.AI" ]
false
2306.00198
2023-05-31T21:35:08Z
An Invariant Learning Characterization of Controlled Text Generation
[ "Carolina Zheng", "Claudia Shi", "Keyon Vafa", "Amir Feder", "David M. Blei" ]
Controlled generation refers to the problem of creating text that contains stylistic or semantic attributes of interest. Many approaches reduce this problem to training a predictor of the desired attribute. For example, researchers hoping to deploy a large language model to produce non-toxic content may use a toxicity classifier to filter generated text. In practice, the generated text to classify, which is determined by user prompts, may come from a wide range of distributions. In this paper, we show that the performance of controlled generation may be poor if the distributions of text in response to user prompts differ from the distribution the predictor was trained on. To address this problem, we cast controlled generation under distribution shift as an invariant learning problem: the most effective predictor should be invariant across multiple text environments. We then discuss a natural solution that arises from this characterization and propose heuristics for selecting natural environments. We study this characterization and the proposed method empirically using both synthetic and real data. Experiments demonstrate both the challenge of distribution shift in controlled generation and the potential of invariance methods in this setting.
[ "cs.CL", "cs.LG" ]
false
2306.01004
2023-05-31T11:50:43Z
AoM: Detecting Aspect-oriented Information for Multimodal Aspect-Based Sentiment Analysis
[ "Ru Zhou", "Wenya Guo", "Xumeng Liu", "Shenglong Yu", "Ying Zhang", "Xiaojie Yuan" ]
Multimodal aspect-based sentiment analysis (MABSA) aims to extract aspects from text-image pairs and recognize their sentiments. Existing methods make great efforts to align the whole image to corresponding aspects. However, different regions of the image may relate to different aspects in the same sentence, and coarsely establishing image-aspect alignment will introduce noise to aspect-based sentiment analysis (i.e., visual noise). Besides, the sentiment of a specific aspect can also be interfered by descriptions of other aspects (i.e., textual noise). Considering the aforementioned noises, this paper proposes an Aspect-oriented Method (AoM) to detect aspect-relevant semantic and sentiment information. Specifically, an aspect-aware attention module is designed to simultaneously select textual tokens and image blocks that are semantically related to the aspects. To accurately aggregate sentiment information, we explicitly introduce sentiment embedding into AoM, and use a graph convolutional network to model the vision-text and text-text interaction. Extensive experiments demonstrate the superiority of AoM to existing methods. The source code is publicly released at https://github.com/SilyRab/AoM.
[ "cs.CL", "cs.AI" ]
false
2305.19563
2023-05-31T05:17:17Z
Zero-Shot Automatic Pronunciation Assessment
[ "Hongfu Liu", "Mingqian Shi", "Ye Wang" ]
Automatic Pronunciation Assessment (APA) is vital for computer-assisted language learning. Prior methods rely on annotated speech-text data to train Automatic Speech Recognition (ASR) models or speech-score data to train regression models. In this work, we propose a novel zero-shot APA method based on the pre-trained acoustic model, HuBERT. Our method involves encoding speech input and corrupting them via a masking module. We then employ the Transformer encoder and apply k-means clustering to obtain token sequences. Finally, a scoring module is designed to measure the number of wrongly recovered tokens. Experimental results on speechocean762 demonstrate that the proposed method achieves comparable performance to supervised regression baselines and outperforms non-regression baselines in terms of Pearson Correlation Coefficient (PCC). Additionally, we analyze how masking strategies affect the performance of APA.
[ "cs.SD", "cs.CL", "cs.LG", "eess.AS" ]
false
2305.19709
2023-05-31T10:05:33Z
XPhoneBERT: A Pre-trained Multilingual Model for Phoneme Representations for Text-to-Speech
[ "Linh The Nguyen", "Thinh Pham", "Dat Quoc Nguyen" ]
We present XPhoneBERT, the first multilingual model pre-trained to learn phoneme representations for the downstream text-to-speech (TTS) task. Our XPhoneBERT has the same model architecture as BERT-base, trained using the RoBERTa pre-training approach on 330M phoneme-level sentences from nearly 100 languages and locales. Experimental results show that employing XPhoneBERT as an input phoneme encoder significantly boosts the performance of a strong neural TTS model in terms of naturalness and prosody and also helps produce fairly high-quality speech with limited training data. We publicly release our pre-trained XPhoneBERT with the hope that it would facilitate future research and downstream TTS applications for multiple languages. Our XPhoneBERT model is available at https://github.com/VinAIResearch/XPhoneBERT
[ "cs.CL", "cs.SD", "eess.AS" ]
false
2305.19734
2023-05-31T10:55:41Z
Knowledge Base Question Answering for Space Debris Queries
[ "Paul Darm", "Antonio Valerio Miceli-Barone", "Shay B. Cohen", "Annalisa Riccardi" ]
Space agencies execute complex satellite operations that need to be supported by the technical knowledge contained in their extensive information systems. Knowledge bases (KB) are an effective way of storing and accessing such information at scale. In this work we present a system, developed for the European Space Agency (ESA), that can answer complex natural language queries, to support engineers in accessing the information contained in a KB that models the orbital space debris environment. Our system is based on a pipeline which first generates a sequence of basic database operations, called a %program sketch, from a natural language question, then specializes the sketch into a concrete query program with mentions of entities, attributes and relations, and finally executes the program against the database. This pipeline decomposition approach enables us to train the system by leveraging out-of-domain data and semi-synthetic data generated by GPT-3, thus reducing overfitting and shortcut learning even with limited amount of in-domain training data. Our code can be found at \url{https://github.com/PaulDrm/DISCOSQA}.
[ "cs.AI", "cs.CL", "cs.DB", "I.2.7" ]
false
2305.19750
2023-05-31T11:33:18Z
Text-to-Speech Pipeline for Swiss German -- A comparison
[ "Tobias Bollinger", "Jan Deriu", "Manfred Vogel" ]
In this work, we studied the synthesis of Swiss German speech using different Text-to-Speech (TTS) models. We evaluated the TTS models on three corpora, and we found, that VITS models performed best, hence, using them for further testing. We also introduce a new method to evaluate TTS models by letting the discriminator of a trained vocoder GAN model predict whether a given waveform is human or synthesized. In summary, our best model delivers speech synthesis for different Swiss German dialects with previously unachieved quality.
[ "cs.CL", "cs.SD", "eess.AS" ]
false
2305.19761
2023-05-31T11:46:13Z
Recursive Metropolis-Hastings Naming Game: Symbol Emergence in a Multi-agent System based on Probabilistic Generative Models
[ "Jun Inukai", "Tadahiro Taniguchi", "Akira Taniguchi", "Yoshinobu Hagiwara" ]
In the studies on symbol emergence and emergent communication in a population of agents, a computational model was employed in which agents participate in various language games. Among these, the Metropolis-Hastings naming game (MHNG) possesses a notable mathematical property: symbol emergence through MHNG is proven to be a decentralized Bayesian inference of representations shared by the agents. However, the previously proposed MHNG is limited to a two-agent scenario. This paper extends MHNG to an N-agent scenario. The main contributions of this paper are twofold: (1) we propose the recursive Metropolis-Hastings naming game (RMHNG) as an N-agent version of MHNG and demonstrate that RMHNG is an approximate Bayesian inference method for the posterior distribution over a latent variable shared by agents, similar to MHNG; and (2) we empirically evaluate the performance of RMHNG on synthetic and real image data, enabling multiple agents to develop and share a symbol system. Furthermore, we introduce two types of approximations -- one-sample and limited-length -- to reduce computational complexity while maintaining the ability to explain communication in a population of agents. The experimental findings showcased the efficacy of RMHNG as a decentralized Bayesian inference for approximating the posterior distribution concerning latent variables, which are jointly shared among agents, akin to MHNG. Moreover, the utilization of RMHNG elucidated the agents' capacity to exchange symbols. Furthermore, the study discovered that even the computationally simplified version of RMHNG could enable symbols to emerge among the agents.
[ "cs.CL", "cs.LG", "cs.MA" ]
false
2305.19769
2023-05-31T12:00:51Z
Attention-Based Methods For Audio Question Answering
[ "Parthasaarathy Sudarsanam", "Tuomas Virtanen" ]
Audio question answering (AQA) is the task of producing natural language answers when a system is provided with audio and natural language questions. In this paper, we propose neural network architectures based on self-attention and cross-attention for the AQA task. The self-attention layers extract powerful audio and textual representations. The cross-attention maps audio features that are relevant to the textual features to produce answers. All our models are trained on the recently proposed Clotho-AQA dataset for both binary yes/no questions and single-word answer questions. Our results clearly show improvement over the reference method reported in the original paper. On the yes/no binary classification task, our proposed model achieves an accuracy of 68.3% compared to 62.7% in the reference model. For the single-word answers multiclass classifier, our model produces a top-1 and top-5 accuracy of 57.9% and 99.8% compared to 54.2% and 93.7% in the reference model respectively. We further discuss some of the challenges in the Clotho-AQA dataset such as the presence of the same answer word in multiple tenses, singular and plural forms, and the presence of specific and generic answers to the same question. We address these issues and present a revised version of the dataset.
[ "cs.CL", "cs.LG", "cs.SD", "eess.AS" ]
false
2305.19840
2023-05-31T13:29:07Z
BEIR-PL: Zero Shot Information Retrieval Benchmark for the Polish Language
[ "Konrad Wojtasik", "Vadim Shishkin", "Kacper Wołowiec", "Arkadiusz Janz", "Maciej Piasecki" ]
The BEIR dataset is a large, heterogeneous benchmark for Information Retrieval (IR) in zero-shot settings, garnering considerable attention within the research community. However, BEIR and analogous datasets are predominantly restricted to the English language. Our objective is to establish extensive large-scale resources for IR in the Polish language, thereby advancing the research in this NLP area. In this work, inspired by mMARCO and Mr.~TyDi datasets, we translated all accessible open IR datasets into Polish, and we introduced the BEIR-PL benchmark -- a new benchmark which comprises 13 datasets, facilitating further development, training and evaluation of modern Polish language models for IR tasks. We executed an evaluation and comparison of numerous IR models on the newly introduced BEIR-PL benchmark. Furthermore, we publish pre-trained open IR models for Polish language,d marking a pioneering development in this field. Additionally, the evaluation revealed that BM25 achieved significantly lower scores for Polish than for English, which can be attributed to high inflection and intricate morphological structure of the Polish language. Finally, we trained various re-ranking models to enhance the BM25 retrieval, and we compared their performance to identify their unique characteristic features. To ensure accurate model comparisons, it is necessary to scrutinise individual results rather than to average across the entire benchmark. Thus, we thoroughly analysed the outcomes of IR models in relation to each individual data subset encompassed by the BEIR benchmark. The benchmark data is available at URL {\bf https://huggingface.co/clarin-knext}.
[ "cs.IR", "cs.AI", "cs.CL" ]
false
2305.20010
2023-05-31T16:32:22Z
Human or Not? A Gamified Approach to the Turing Test
[ "Daniel Jannai", "Amos Meron", "Barak Lenz", "Yoav Levine", "Yoav Shoham" ]
We present "Human or Not?", an online game inspired by the Turing test, that measures the capability of AI chatbots to mimic humans in dialog, and of humans to tell bots from other humans. Over the course of a month, the game was played by over 1.5 million users who engaged in anonymous two-minute chat sessions with either another human or an AI language model which was prompted to behave like humans. The task of the players was to correctly guess whether they spoke to a person or to an AI. This largest scale Turing-style test conducted to date revealed some interesting facts. For example, overall users guessed the identity of their partners correctly in only 68% of the games. In the subset of the games in which users faced an AI bot, users had even lower correct guess rates of 60% (that is, not much higher than chance). This white paper details the development, deployment, and results of this unique experiment. While this experiment calls for many extensions and refinements, these findings already begin to shed light on the inevitable near future which will commingle humans and AI.
[ "cs.AI", "cs.CL", "cs.CY", "cs.HC", "68T50", "I.2.7" ]
true
2305.20019
2023-05-31T16:48:06Z
Monotonic Location Attention for Length Generalization
[ "Jishnu Ray Chowdhury", "Cornelia Caragea" ]
We explore different ways to utilize position-based cross-attention in seq2seq networks to enable length generalization in algorithmic tasks. We show that a simple approach of interpolating the original and reversed encoded representations combined with relative attention allows near-perfect length generalization for both forward and reverse lookup tasks or copy tasks that had been generally hard to tackle. We also devise harder diagnostic tasks where the relative distance of the ideal attention position varies with timestep. In such settings, the simple interpolation trick with relative attention is not sufficient. We introduce novel variants of location attention building on top of Dubois et al. (2020) to address the new diagnostic tasks. We also show the benefits of our approaches for length generalization in SCAN (Lake & Baroni, 2018) and CFQ (Keysers et al., 2020). Our code is available on GitHub.
[ "cs.LG", "cs.AI", "cs.CL" ]
false
2305.20050
2023-05-31T17:24:00Z
Let's Verify Step by Step
[ "Hunter Lightman", "Vineet Kosaraju", "Yura Burda", "Harri Edwards", "Bowen Baker", "Teddy Lee", "Jan Leike", "John Schulman", "Ilya Sutskever", "Karl Cobbe" ]
In recent years, large language models have greatly improved in their ability to perform complex multi-step reasoning. However, even state-of-the-art models still regularly produce logical mistakes. To train more reliable models, we can turn either to outcome supervision, which provides feedback for a final result, or process supervision, which provides feedback for each intermediate reasoning step. Given the importance of training reliable models, and given the high cost of human feedback, it is important to carefully compare the both methods. Recent work has already begun this comparison, but many questions still remain. We conduct our own investigation, finding that process supervision significantly outperforms outcome supervision for training models to solve problems from the challenging MATH dataset. Our process-supervised model solves 78% of problems from a representative subset of the MATH test set. Additionally, we show that active learning significantly improves the efficacy of process supervision. To support related research, we also release PRM800K, the complete dataset of 800,000 step-level human feedback labels used to train our best reward model.
[ "cs.LG", "cs.AI", "cs.CL" ]
false
2306.00208
2023-05-31T21:58:07Z
Strategies for improving low resource speech to text translation relying on pre-trained ASR models
[ "Santosh Kesiraju", "Marek Sarvas", "Tomas Pavlicek", "Cecile Macaire", "Alejandro Ciuba" ]
This paper presents techniques and findings for improving the performance of low-resource speech to text translation (ST). We conducted experiments on both simulated and real-low resource setups, on language pairs English - Portuguese, and Tamasheq - French respectively. Using the encoder-decoder framework for ST, our results show that a multilingual automatic speech recognition system acts as a good initialization under low-resource scenarios. Furthermore, using the CTC as an additional objective for translation during training and decoding helps to reorder the internal representations and improves the final translation. Through our experiments, we try to identify various factors (initializations, objectives, and hyper-parameters) that contribute the most for improvements in low-resource setups. With only 300 hours of pre-training data, our model achieved 7.3 BLEU score on Tamasheq - French data, outperforming prior published works from IWSLT 2022 by 1.6 points.
[ "cs.CL", "cs.SD", "eess.AS" ]
false
2306.01009
2023-05-31T21:29:49Z
Examining the Emergence of Deductive Reasoning in Generative Language Models
[ "Peter Belcak", "Luca A. Lanzendörfer", "Roger Wattenhofer" ]
We conduct a preliminary inquiry into the ability of generative transformer models to deductively reason from premises provided. We observe notable differences in the performance of models coming from different training setups and find that the deductive reasoning ability increases with scale. Further, we discover that the performance generally does not decrease with the length of the deductive chain needed to reach the conclusion, with the exception of OpenAI GPT-3 and GPT-3.5 models. Our study considers a wide variety of transformer-decoder models, ranging from 117 million to 175 billion parameters in size.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2306.00110
2023-05-31T18:34:16Z
MuseCoco: Generating Symbolic Music from Text
[ "Peiling Lu", "Xin Xu", "Chenfei Kang", "Botao Yu", "Chengyi Xing", "Xu Tan", "Jiang Bian" ]
Generating music from text descriptions is a user-friendly mode since the text is a relatively easy interface for user engagement. While some approaches utilize texts to control music audio generation, editing musical elements in generated audio is challenging for users. In contrast, symbolic music offers ease of editing, making it more accessible for users to manipulate specific musical elements. In this paper, we propose MuseCoco, which generates symbolic music from text descriptions with musical attributes as the bridge to break down the task into text-to-attribute understanding and attribute-to-music generation stages. MuseCoCo stands for Music Composition Copilot that empowers musicians to generate music directly from given text descriptions, offering a significant improvement in efficiency compared to creating music entirely from scratch. The system has two main advantages: Firstly, it is data efficient. In the attribute-to-music generation stage, the attributes can be directly extracted from music sequences, making the model training self-supervised. In the text-to-attribute understanding stage, the text is synthesized and refined by ChatGPT based on the defined attribute templates. Secondly, the system can achieve precise control with specific attributes in text descriptions and offers multiple control options through attribute-conditioned or text-conditioned approaches. MuseCoco outperforms baseline systems in terms of musicality, controllability, and overall score by at least 1.27, 1.08, and 1.32 respectively. Besides, there is a notable enhancement of about 20% in objective control accuracy. In addition, we have developed a robust large-scale model with 1.2 billion parameters, showcasing exceptional controllability and musicality.
[ "cs.SD", "cs.AI", "cs.CL", "cs.LG", "cs.MM", "eess.AS" ]
true
2305.19502
2023-05-31T02:28:59Z
Graph Entropy Minimization for Semi-supervised Node Classification
[ "Yi Luo", "Guangchun Luo", "Ke Qin", "Aiguo Chen" ]
Node classifiers are required to comprehensively reduce prediction errors, training resources, and inference latency in the industry. However, most graph neural networks (GNN) concentrate only on one or two of them. The compromised aspects thus are the shortest boards on the bucket, hindering their practical deployments for industrial-level tasks. This work proposes a novel semi-supervised learning method termed Graph Entropy Minimization (GEM) to resolve the three issues simultaneously. GEM benefits its one-hop aggregation from massive uncategorized nodes, making its prediction accuracy comparable to GNNs with two or more hops message passing. It can be decomposed to support stochastic training with mini-batches of independent edge samples, achieving extremely fast sampling and space-saving training. While its one-hop aggregation is faster in inference than deep GNNs, GEM can be further accelerated to an extreme by deriving a non-hop classifier via online knowledge distillation. Thus, GEM can be a handy choice for latency-restricted and error-sensitive services running on resource-constraint hardware. Code is available at https://github.com/cf020031308/GEM.
[ "cs.LG" ]
false
2305.19636
2023-05-31T08:07:35Z
Explainable AI for Malnutrition Risk Prediction from m-Health and Clinical Data
[ "Flavio Di Martino", "Franca Delmastro", "Cristina Dolciotti" ]
Malnutrition is a serious and prevalent health problem in the older population, and especially in hospitalised or institutionalised subjects. Accurate and early risk detection is essential for malnutrition management and prevention. M-health services empowered with Artificial Intelligence (AI) may lead to important improvements in terms of a more automatic, objective, and continuous monitoring and assessment. Moreover, the latest Explainable AI (XAI) methodologies may make AI decisions interpretable and trustworthy for end users. This paper presents a novel AI framework for early and explainable malnutrition risk detection based on heterogeneous m-health data. We performed an extensive model evaluation including both subject-independent and personalised predictions, and the obtained results indicate Random Forest (RF) and Gradient Boosting as the best performing classifiers, especially when incorporating body composition assessment data. We also investigated several benchmark XAI methods to extract global model explanations. Model-specific explanation consistency assessment indicates that each selected model privileges similar subsets of the most relevant predictors, with the highest agreement shown between SHapley Additive ExPlanations (SHAP) and feature permutation method. Furthermore, we performed a preliminary clinical validation to verify that the learned feature-output trends are compliant with the current evidence-based assessment.
[ "cs.LG" ]
false
2305.19717
2023-05-31T10:12:23Z
Is Rewiring Actually Helpful in Graph Neural Networks?
[ "Domenico Tortorella", "Alessio Micheli" ]
Graph neural networks compute node representations by performing multiple message-passing steps that consist in local aggregations of node features. Having deep models that can leverage longer-range interactions between nodes is hindered by the issues of over-smoothing and over-squashing. In particular, the latter is attributed to the graph topology which guides the message-passing, causing a node representation to become insensitive to information contained at distant nodes. Many graph rewiring methods have been proposed to remedy or mitigate this problem. However, properly evaluating the benefits of these methods is made difficult by the coupling of over-squashing with other issues strictly related to model training, such as vanishing gradients. Therefore, we propose an evaluation setting based on message-passing models that do not require training to compute node and graph representations. We perform a systematic experimental comparison on real-world node and graph classification tasks, showing that rewiring the underlying graph rarely does confer a practical benefit for message-passing.
[ "cs.LG" ]
false
2305.19726
2023-05-31T10:36:10Z
Learning Representations without Compositional Assumptions
[ "Tennison Liu", "Jeroen Berrevoets", "Zhaozhi Qian", "Mihaela van der Schaar" ]
This paper addresses unsupervised representation learning on tabular data containing multiple views generated by distinct sources of measurement. Traditional methods, which tackle this problem using the multi-view framework, are constrained by predefined assumptions that assume feature sets share the same information and representations should learn globally shared factors. However, this assumption is not always valid for real-world tabular datasets with complex dependencies between feature sets, resulting in localized information that is harder to learn. To overcome this limitation, we propose a data-driven approach that learns feature set dependencies by representing feature sets as graph nodes and their relationships as learnable edges. Furthermore, we introduce LEGATO, a novel hierarchical graph autoencoder that learns a smaller, latent graph to aggregate information from multiple views dynamically. This approach results in latent graph components that specialize in capturing localized information from different regions of the input, leading to superior downstream performance.
[ "cs.LG" ]
false
2305.19770
2023-05-31T12:03:12Z
Quality In / Quality Out: Assessing Data quality in an Anomaly Detection Benchmark
[ "José Camacho", "Katarzyna Wasielewska", "Marta Fuentes-García", "Rafael Rodríguez-Gómez" ]
Autonomous or self-driving networks are expected to provide a solution to the myriad of extremely demanding new applications in the Future Internet. The key to handle complexity is to perform tasks like network optimization and failure recovery with minimal human supervision. For this purpose, the community relies on the development of new Machine Learning (ML) models and techniques. However, ML can only be as good as the data it is fitted with. Datasets provided to the community as benchmarks for research purposes, which have a relevant impact in research findings and directions, are often assumed to be of good quality by default. In this paper, we show that relatively minor modifications on the same benchmark dataset (UGR'16, a flow-based real-traffic dataset for anomaly detection) cause significantly more impact on model performance than the specific ML technique considered. To understand this finding, we contribute a methodology to investigate the root causes for those differences, and to assess the quality of the data labelling. Our findings illustrate the need to devote more attention into (automatic) data quality assessment and optimization techniques in the context of autonomous networks.
[ "cs.LG" ]
false
2305.19871
2023-05-31T14:08:48Z
There is more to graphs than meets the eye: Learning universal features with self-supervision
[ "Laya Das", "Sai Munikoti", "Mahantesh Halappanavar" ]
We study the problem of learning universal features across multiple graphs through self-supervision. Graph self supervised learning has been shown to facilitate representation learning, and produce competitive models compared to supervised baselines. However, existing methods of self-supervision learn features from one graph, and thus, produce models that are specialized to a particular graph. We hypothesize that leveraging multiple graphs of the same type/class can improve the quality of learnt representations in the model by extracting features that are universal to the class of graphs. We adopt a transformer backbone that acts as a universal representation learning module for multiple graphs. We leverage neighborhood aggregation coupled with graph-specific embedding generator to transform disparate node embeddings from multiple graphs to a common space for the universal backbone. We learn both universal and graph-specific parameters in an end-to-end manner. Our experiments reveal that leveraging multiple graphs of the same type -- citation networks -- improves the quality of representations and results in better performance on downstream node classification task compared to self-supervision with one graph. The results of our study improve the state-of-the-art in graph self-supervised learning, and bridge the gap between self-supervised and supervised performance.
[ "cs.LG" ]
false
2305.19872
2023-05-31T14:09:42Z
Spectral Heterogeneous Graph Convolutions via Positive Noncommutative Polynomials
[ "Mingguo He", "Zhewei Wei", "Shikun Feng", "Zhengjie Huang", "Weibin Li", "Yu Sun", "Dianhai Yu" ]
Heterogeneous Graph Neural Networks (HGNNs) have gained significant popularity in various heterogeneous graph learning tasks. However, most HGNNs rely on spatial domain-based message passing and attention modules for information propagation and aggregation. These spatial-based HGNNs neglect the utilization of spectral graph convolutions, which are the foundation of Graph Convolutional Networks (GCN) on homogeneous graphs. Inspired by the effectiveness and scalability of spectral-based GNNs on homogeneous graphs, this paper explores the extension of spectral-based GNNs to heterogeneous graphs. We propose PSHGCN, a novel heterogeneous convolutional network based on positive noncommutative polynomials. PSHGCN provides a simple yet effective approach for learning spectral graph convolutions on heterogeneous graphs. Moreover, we demonstrate the rationale of PSHGCN in graph optimization. We conducted an extensive experimental study to show that PSHGCN can learn diverse spectral heterogeneous graph convolutions and achieve superior performance in node classification tasks. Our code is available at https://github.com/ivam-he/PSHGCN.
[ "cs.LG" ]
false
2305.19889
2023-05-31T14:24:35Z
Evaluating Machine Learning Models with NERO: Non-Equivariance Revealed on Orbits
[ "Zhuokai Zhao", "Takumi Matsuzawa", "William Irvine", "Michael Maire", "Gordon L Kindlmann" ]
Proper evaluations are crucial for better understanding, troubleshooting, interpreting model behaviors and further improving model performance. While using scalar-based error metrics provides a fast way to overview model performance, they are often too abstract to display certain weak spots and lack information regarding important model properties, such as robustness. This not only hinders machine learning models from being more interpretable and gaining trust, but also can be misleading to both model developers and users. Additionally, conventional evaluation procedures often leave researchers unclear about where and how model fails, which complicates model comparisons and further developments. To address these issues, we propose a novel evaluation workflow, named Non-Equivariance Revealed on Orbits (NERO) Evaluation. The goal of NERO evaluation is to turn focus from traditional scalar-based metrics onto evaluating and visualizing models equivariance, closely capturing model robustness, as well as to allow researchers quickly investigating interesting or unexpected model behaviors. NERO evaluation is consist of a task-agnostic interactive interface and a set of visualizations, called NERO plots, which reveals the equivariance property of the model. Case studies on how NERO evaluation can be applied to multiple research areas, including 2D digit recognition, object detection, particle image velocimetry (PIV), and 3D point cloud classification, demonstrate that NERO evaluation can quickly illustrate different model equivariance, and effectively explain model behaviors through interactive visualizations of the model outputs. In addition, we propose consensus, an alternative to ground truths, to be used in NERO evaluation so that model equivariance can still be evaluated with new, unlabeled datasets.
[ "cs.LG" ]
false
2306.00035
2023-05-31T08:33:23Z
ROSARL: Reward-Only Safe Reinforcement Learning
[ "Geraud Nangue Tasse", "Tamlin Love", "Mark Nemecek", "Steven James", "Benjamin Rosman" ]
An important problem in reinforcement learning is designing agents that learn to solve tasks safely in an environment. A common solution is for a human expert to define either a penalty in the reward function or a cost to be minimised when reaching unsafe states. However, this is non-trivial, since too small a penalty may lead to agents that reach unsafe states, while too large a penalty increases the time to convergence. Additionally, the difficulty in designing reward or cost functions can increase with the complexity of the problem. Hence, for a given environment with a given set of unsafe states, we are interested in finding the upper bound of rewards at unsafe states whose optimal policies minimise the probability of reaching those unsafe states, irrespective of task rewards. We refer to this exact upper bound as the "Minmax penalty", and show that it can be obtained by taking into account both the controllability and diameter of an environment. We provide a simple practical model-free algorithm for an agent to learn this Minmax penalty while learning the task policy, and demonstrate that using it leads to agents that learn safe policies in high-dimensional continuous control environments.
[ "cs.LG" ]
false
2306.00152
2023-05-31T19:50:11Z
Learning the Right Layers: a Data-Driven Layer-Aggregation Strategy for Semi-Supervised Learning on Multilayer Graphs
[ "Sara Venturini", "Andrea Cristofari", "Francesco Rinaldi", "Francesco Tudisco" ]
Clustering (or community detection) on multilayer graphs poses several additional complications with respect to standard graphs as different layers may be characterized by different structures and types of information. One of the major challenges is to establish the extent to which each layer contributes to the cluster assignment in order to effectively take advantage of the multilayer structure and improve upon the classification obtained using the individual layers or their union. However, making an informed a-priori assessment about the clustering information content of the layers can be very complicated. In this work, we assume a semi-supervised learning setting, where the class of a small percentage of nodes is initially provided, and we propose a parameter-free Laplacian-regularized model that learns an optimal nonlinear combination of the different layers from the available input labels. The learning algorithm is based on a Frank-Wolfe optimization scheme with inexact gradient, combined with a modified Label Propagation iteration. We provide a detailed convergence analysis of the algorithm and extensive experiments on synthetic and real-world datasets, showing that the proposed method compares favourably with a variety of baselines and outperforms each individual layer when used in isolation.
[ "cs.LG" ]
false
2306.00172
2023-05-31T20:41:42Z
Learning for Edge-Weighted Online Bipartite Matching with Robustness Guarantees
[ "Pengfei Li", "Jianyi Yang", "Shaolei Ren" ]
Many problems, such as online ad display, can be formulated as online bipartite matching. The crucial challenge lies in the nature of sequentially-revealed online item information, based on which we make irreversible matching decisions at each step. While numerous expert online algorithms have been proposed with bounded worst-case competitive ratios, they may not offer satisfactory performance in average cases. On the other hand, reinforcement learning (RL) has been applied to improve the average performance, but it lacks robustness and can perform arbitrarily poorly. In this paper, we propose a novel RL-based approach to edge-weighted online bipartite matching with robustness guarantees (LOMAR), achieving both good average-case and worst-case performance. The key novelty of LOMAR is a new online switching operation which, based on a judicious condition to hedge against future uncertainties, decides whether to follow the expert's decision or the RL decision for each online item. We prove that for any $\rho\in[0,1]$, LOMAR is $\rho$-competitive against any given expert online algorithm. To improve the average performance, we train the RL policy by explicitly considering the online switching operation. Finally, we run empirical experiments to demonstrate the advantages of LOMAR compared to existing baselines. Our code is available at: https://github.com/Ren-Research/LOMAR
[ "cs.LG" ]
false
2305.19476
2023-05-31T01:09:28Z
Accelerating Reinforcement Learning with Value-Conditional State Entropy Exploration
[ "Dongyoung Kim", "Jinwoo Shin", "Pieter Abbeel", "Younggyo Seo" ]
A promising technique for exploration is to maximize the entropy of visited state distribution, i.e., state entropy, by encouraging uniform coverage of visited state space. While it has been effective for an unsupervised setup, it tends to struggle in a supervised setup with a task reward, where an agent prefers to visit high-value states to exploit the task reward. Such a preference can cause an imbalance between the distributions of high-value states and low-value states, which biases exploration towards low-value state regions as a result of the state entropy increasing when the distribution becomes more uniform. This issue is exacerbated when high-value states are narrowly distributed within the state space, making it difficult for the agent to complete the tasks. In this paper, we present a novel exploration technique that maximizes the value-conditional state entropy, which separately estimates the state entropies that are conditioned on the value estimates of each state, then maximizes their average. By only considering the visited states with similar value estimates for computing the intrinsic bonus, our method prevents the distribution of low-value states from affecting exploration around high-value states, and vice versa. We demonstrate that the proposed alternative to the state entropy baseline significantly accelerates various reinforcement learning algorithms across a variety of tasks within MiniGrid, DeepMind Control Suite, and Meta-World benchmarks. Source code is available at https://sites.google.com/view/rl-vcse.
[ "cs.LG", "cs.AI" ]
false
2305.19499
2023-05-31T02:16:53Z
Deep into The Domain Shift: Transfer Learning through Dependence Regularization
[ "Shumin Ma", "Zhiri Yuan", "Qi Wu", "Yiyan Huang", "Xixu Hu", "Cheuk Hang Leung", "Dongdong Wang", "Zhixiang Huang" ]
Classical Domain Adaptation methods acquire transferability by regularizing the overall distributional discrepancies between features in the source domain (labeled) and features in the target domain (unlabeled). They often do not differentiate whether the domain differences come from the marginals or the dependence structures. In many business and financial applications, the labeling function usually has different sensitivities to the changes in the marginals versus changes in the dependence structures. Measuring the overall distributional differences will not be discriminative enough in acquiring transferability. Without the needed structural resolution, the learned transfer is less optimal. This paper proposes a new domain adaptation approach in which one can measure the differences in the internal dependence structure separately from those in the marginals. By optimizing the relative weights among them, the new regularization strategy greatly relaxes the rigidness of the existing approaches. It allows a learning machine to pay special attention to places where the differences matter the most. Experiments on three real-world datasets show that the improvements are quite notable and robust compared to various benchmark domain adaptation models.
[ "cs.LG", "q-fin.CP" ]
false
2305.19531
2023-05-31T03:36:50Z
Multi-Epoch Learning for Deep Click-Through Rate Prediction Models
[ "Zhaocheng Liu", "Zhongxiang Fan", "Jian Liang", "Dongying Kong", "Han Li" ]
The one-epoch overfitting phenomenon has been widely observed in industrial Click-Through Rate (CTR) applications, where the model performance experiences a significant degradation at the beginning of the second epoch. Recent advances try to understand the underlying factors behind this phenomenon through extensive experiments. However, it is still unknown whether a multi-epoch training paradigm could achieve better results, as the best performance is usually achieved by one-epoch training. In this paper, we hypothesize that the emergence of this phenomenon may be attributed to the susceptibility of the embedding layer to overfitting, which can stem from the high-dimensional sparsity of data. To maintain feature sparsity while simultaneously avoiding overfitting of embeddings, we propose a novel Multi-Epoch learning with Data Augmentation (MEDA), which can be directly applied to most deep CTR models. MEDA achieves data augmentation by reinitializing the embedding layer in each epoch, thereby avoiding embedding overfitting and simultaneously improving convergence. To our best knowledge, MEDA is the first multi-epoch training paradigm designed for deep CTR prediction models. We conduct extensive experiments on several public datasets, and the effectiveness of our proposed MEDA is fully verified. Notably, the results show that MEDA can significantly outperform the conventional one-epoch training. Besides, MEDA has exhibited significant benefits in a real-world scene on Kuaishou.
[ "cs.IR", "cs.LG" ]
false
2305.19570
2023-05-31T05:39:52Z
Online Label Shift: Optimal Dynamic Regret meets Practical Algorithms
[ "Dheeraj Baby", "Saurabh Garg", "Tzu-Ching Yen", "Sivaraman Balakrishnan", "Zachary Chase Lipton", "Yu-Xiang Wang" ]
This paper focuses on supervised and unsupervised online label shift, where the class marginals $Q(y)$ varies but the class-conditionals $Q(x|y)$ remain invariant. In the unsupervised setting, our goal is to adapt a learner, trained on some offline labeled data, to changing label distributions given unlabeled online data. In the supervised setting, we must both learn a classifier and adapt to the dynamically evolving class marginals given only labeled online data. We develop novel algorithms that reduce the adaptation problem to online regression and guarantee optimal dynamic regret without any prior knowledge of the extent of drift in the label distribution. Our solution is based on bootstrapping the estimates of \emph{online regression oracles} that track the drifting proportions. Experiments across numerous simulated and real-world online label shift scenarios demonstrate the superior performance of our proposed approaches, often achieving 1-3\% improvement in accuracy while being sample and computationally efficient. Code is publicly available at https://github.com/acmi-lab/OnlineLabelShift.
[ "stat.ML", "cs.LG" ]
false
2305.19593
2023-05-31T06:31:42Z
Exploring the Vulnerabilities of Machine Learning and Quantum Machine Learning to Adversarial Attacks using a Malware Dataset: A Comparative Analysis
[ "Mst Shapna Akter", "Hossain Shahriar", "Iysa Iqbal", "MD Hossain", "M. A. Karim", "Victor Clincy", "Razvan Voicu" ]
The burgeoning fields of machine learning (ML) and quantum machine learning (QML) have shown remarkable potential in tackling complex problems across various domains. However, their susceptibility to adversarial attacks raises concerns when deploying these systems in security sensitive applications. In this study, we present a comparative analysis of the vulnerability of ML and QML models, specifically conventional neural networks (NN) and quantum neural networks (QNN), to adversarial attacks using a malware dataset. We utilize a software supply chain attack dataset known as ClaMP and develop two distinct models for QNN and NN, employing Pennylane for quantum implementations and TensorFlow and Keras for traditional implementations. Our methodology involves crafting adversarial samples by introducing random noise to a small portion of the dataset and evaluating the impact on the models performance using accuracy, precision, recall, and F1 score metrics. Based on our observations, both ML and QML models exhibit vulnerability to adversarial attacks. While the QNNs accuracy decreases more significantly compared to the NN after the attack, it demonstrates better performance in terms of precision and recall, indicating higher resilience in detecting true positives under adversarial conditions. We also find that adversarial samples crafted for one model type can impair the performance of the other, highlighting the need for robust defense mechanisms. Our study serves as a foundation for future research focused on enhancing the security and resilience of ML and QML models, particularly QNN, given its recent advancements. A more extensive range of experiments will be conducted to better understand the performance and robustness of both models in the face of adversarial attacks.
[ "cs.LG", "quant-ph" ]
false
2305.19617
2023-05-31T07:36:11Z
MSMix:An Interpolation-Based Text Data Augmentation Method Manifold Swap Mixup
[ "Mao Ye", "Haitao Wang", "Zheqian Chen" ]
To solve the problem of poor performance of deep neural network models due to insufficient data, a simple yet effective interpolation-based data augmentation method is proposed: MSMix (Manifold Swap Mixup). This method feeds two different samples to the same deep neural network model, and then randomly select a specific layer and partially replace hidden features at that layer of one of the samples by the counterpart of the other. The mixed hidden features are fed to the model and go through the rest of the network. Two different selection strategies are also proposed to obtain richer hidden representation. Experiments are conducted on three Chinese intention recognition datasets, and the results show that the MSMix method achieves better results than other methods in both full-sample and small-sample configurations.
[ "cs.LG", "cs.AI" ]
false
2305.19640
2023-05-31T08:13:14Z
Optimal Estimates for Pairwise Learning with Deep ReLU Networks
[ "Junyu Zhou", "Shuo Huang", "Han Feng", "Ding-Xuan Zhou" ]
Pairwise learning refers to learning tasks where a loss takes a pair of samples into consideration. In this paper, we study pairwise learning with deep ReLU networks and estimate the excess generalization error. For a general loss satisfying some mild conditions, a sharp bound for the estimation error of order $O((V\log(n) /n)^{1/(2-\beta)})$ is established. In particular, with the pairwise least squares loss, we derive a nearly optimal bound of the excess generalization error which achieves the minimax lower bound up to a logrithmic term when the true predictor satisfies some smoothness regularities.
[ "stat.ML", "cs.LG" ]
false
2305.19674
2023-05-31T09:15:39Z
Online-to-PAC Conversions: Generalization Bounds via Regret Analysis
[ "Gábor Lugosi", "Gergely Neu" ]
We present a new framework for deriving bounds on the generalization bound of statistical learning algorithms from the perspective of online learning. Specifically, we construct an online learning game called the "generalization game", where an online learner is trying to compete with a fixed statistical learning algorithm in predicting the sequence of generalization gaps on a training set of i.i.d. data points. We establish a connection between the online and statistical learning setting by showing that the existence of an online learning algorithm with bounded regret in this game implies a bound on the generalization error of the statistical learning algorithm, up to a martingale concentration term that is independent of the complexity of the statistical learning method. This technique allows us to recover several standard generalization bounds including a range of PAC-Bayesian and information-theoretic guarantees, as well as generalizations thereof.
[ "stat.ML", "cs.LG" ]
false
2305.19691
2023-05-31T09:35:03Z
Constant or logarithmic regret in asynchronous multiplayer bandits
[ "Hugo Richard", "Etienne Boursier", "Vianney Perchet" ]
Multiplayer bandits have recently been extensively studied because of their application to cognitive radio networks. While the literature mostly considers synchronous players, radio networks (e.g. for IoT) tend to have asynchronous devices. This motivates the harder, asynchronous multiplayer bandits problem, which was first tackled with an explore-then-commit (ETC) algorithm (see Dakdouk, 2022), with a regret upper-bound in $\mathcal{O}(T^{\frac{2}{3}})$. Before even considering decentralization, understanding the centralized case was still a challenge as it was unknown whether getting a regret smaller than $\Omega(T^{\frac{2}{3}})$ was possible. We answer positively this question, as a natural extension of UCB exhibits a $\mathcal{O}(\sqrt{T\log(T)})$ minimax regret. More importantly, we introduce Cautious Greedy, a centralized algorithm that yields constant instance-dependent regret if the optimal policy assigns at least one player on each arm (a situation that is proved to occur when arm means are close enough). Otherwise, its regret increases as the sum of $\log(T)$ over some sub-optimality gaps. We provide lower bounds showing that Cautious Greedy is optimal in the data-dependent terms. Therefore, we set up a strong baseline for asynchronous multiplayer bandits and suggest that learning the optimal policy in this problem might be easier than thought, at least with centralization.
[ "cs.LG", "stat.ML" ]
false
2305.19727
2023-05-31T10:39:51Z
Unbalanced Low-rank Optimal Transport Solvers
[ "Meyer Scetbon", "Michal Klein", "Giovanni Palla", "Marco Cuturi" ]
The relevance of optimal transport methods to machine learning has long been hindered by two salient limitations. First, the $O(n^3)$ computational cost of standard sample-based solvers (when used on batches of $n$ samples) is prohibitive. Second, the mass conservation constraint makes OT solvers too rigid in practice: because they must match \textit{all} points from both measures, their output can be heavily influenced by outliers. A flurry of recent works in OT has addressed these computational and modelling limitations, but has resulted in two separate strains of methods: While the computational outlook was much improved by entropic regularization, more recent $O(n)$ linear-time \textit{low-rank} solvers hold the promise to scale up OT further. On the other hand, modelling rigidities have been eased owing to unbalanced variants of OT, that rely on penalization terms to promote, rather than impose, mass conservation. The goal of this paper is to merge these two strains, to achieve the promise of \textit{both} versatile/scalable unbalanced/low-rank OT solvers. We propose custom algorithms to implement these extensions for the linear OT problem and its Fused-Gromov-Wasserstein generalization, and demonstrate their practical relevance to challenging spatial transcriptomics matching problems.
[ "cs.LG", "math.OC" ]
false
2305.19744
2023-05-31T11:10:29Z
Neural Markov Jump Processes
[ "Patrick Seifner", "Ramses J. Sanchez" ]
Markov jump processes are continuous-time stochastic processes with a wide range of applications in both natural and social sciences. Despite their widespread use, inference in these models is highly non-trivial and typically proceeds via either Monte Carlo or expectation-maximization methods. In this work we introduce an alternative, variational inference algorithm for Markov jump processes which relies on neural ordinary differential equations, and is trainable via back-propagation. Our methodology learns neural, continuous-time representations of the observed data, that are used to approximate the initial distribution and time-dependent transition probability rates of the posterior Markov jump process. The time-independent rates of the prior process are in contrast trained akin to generative adversarial networks. We test our approach on synthetic data sampled from ground-truth Markov jump processes, experimental switching ion channel data and molecular dynamics simulations. Source code to reproduce our experiments is available online.
[ "cs.LG", "stat.ML" ]
false
2305.19802
2023-05-31T12:41:20Z
Neuro-Causal Factor Analysis
[ "Alex Markham", "Mingyu Liu", "Bryon Aragam", "Liam Solus" ]
Factor analysis (FA) is a statistical tool for studying how observed variables with some mutual dependences can be expressed as functions of mutually independent unobserved factors, and it is widely applied throughout the psychological, biological, and physical sciences. We revisit this classic method from the comparatively new perspective given by advancements in causal discovery and deep learning, introducing a framework for Neuro-Causal Factor Analysis (NCFA). Our approach is fully nonparametric: it identifies factors via latent causal discovery methods and then uses a variational autoencoder (VAE) that is constrained to abide by the Markov factorization of the distribution with respect to the learned graph. We evaluate NCFA on real and synthetic data sets, finding that it performs comparably to standard VAEs on data reconstruction tasks but with the advantages of sparser architecture, lower model complexity, and causal interpretability. Unlike traditional FA methods, our proposed NCFA method allows learning and reasoning about the latent factors underlying observed data from a justifiably causal perspective, even when the relations between factors and measurements are highly nonlinear.
[ "stat.ML", "cs.LG" ]
false
2305.19804
2023-05-31T12:45:55Z
Distance Rank Score: Unsupervised filter method for feature selection on imbalanced dataset
[ "Katarina Firdova", "Céline Labart", "Arthur Martel" ]
This paper presents a new filter method for unsupervised feature selection. This method is particularly effective on imbalanced multi-class dataset, as in case of clusters of different anomaly types. Existing methods usually involve the variance of the features, which is not suitable when the different types of observations are not represented equally. Our method, based on Spearman's Rank Correlation between distances on the observations and on feature values, avoids this drawback. The performance of the method is measured on several clustering problems and is compared with existing filter methods suitable for unsupervised data.
[ "stat.ML", "cs.LG" ]
false
2305.19831
2023-05-31T13:16:07Z
An Empirical Study of Federated Learning on IoT-Edge Devices: Resource Allocation and Heterogeneity
[ "Kok-Seng Wong", "Manh Nguyen-Duc", "Khiem Le-Huy", "Long Ho-Tuan", "Cuong Do-Danh", "Danh Le-Phuoc" ]
Nowadays, billions of phones, IoT and edge devices around the world generate data continuously, enabling many Machine Learning (ML)-based products and applications. However, due to increasing privacy concerns and regulations, these data tend to reside on devices (clients) instead of being centralized for performing traditional ML model training. Federated Learning (FL) is a distributed approach in which a single server and multiple clients collaboratively build an ML model without moving data away from clients. Whereas existing studies on FL have their own experimental evaluations, most experiments were conducted using a simulation setting or a small-scale testbed. This might limit the understanding of FL implementation in realistic environments. In this empirical study, we systematically conduct extensive experiments on a large network of IoT and edge devices (called IoT-Edge devices) to present FL real-world characteristics, including learning performance and operation (computation and communication) costs. Moreover, we mainly concentrate on heterogeneous scenarios, which is the most challenging issue of FL. By investigating the feasibility of on-device implementation, our study provides valuable insights for researchers and practitioners, promoting the practicality of FL and assisting in improving the current design of real FL systems.
[ "cs.LG", "cs.DC" ]
false
2305.19837
2023-05-31T13:25:26Z
EAMDrift: An interpretable self retrain model for time series
[ "Gonçalo Mateus", "Cláudia Soares", "João Leitão", "António Rodrigues" ]
The use of machine learning for time series prediction has become increasingly popular across various industries thanks to the availability of time series data and advancements in machine learning algorithms. However, traditional methods for time series forecasting rely on pre-optimized models that are ill-equipped to handle unpredictable patterns in data. In this paper, we present EAMDrift, a novel method that combines forecasts from multiple individual predictors by weighting each prediction according to a performance metric. EAMDrift is designed to automatically adapt to out-of-distribution patterns in data and identify the most appropriate models to use at each moment through interpretable mechanisms, which include an automatic retraining process. Specifically, we encode different concepts with different models, each functioning as an observer of specific behaviors. The activation of the overall model then identifies which subset of the concept observers is identifying concepts in the data. This activation is interpretable and based on learned rules, allowing to study of input variables relations. Our study on real-world datasets shows that EAMDrift outperforms individual baseline models by 20% and achieves comparable accuracy results to non-interpretable ensemble models. These findings demonstrate the efficacy of EAMDrift for time-series prediction and highlight the importance of interpretability in machine learning models.
[ "stat.ML", "cs.LG" ]
false
2305.19864
2023-05-31T13:57:56Z
Designing Closed-Loop Models for Task Allocation
[ "Vijay Keswani", "L. Elisa Celis", "Krishnaram Kenthapadi", "Matthew Lease" ]
Automatically assigning tasks to people is challenging because human performance can vary across tasks for many reasons. This challenge is further compounded in real-life settings in which no oracle exists to assess the quality of human decisions and task assignments made. Instead, we find ourselves in a "closed" decision-making loop in which the same fallible human decisions we rely on in practice must also be used to guide task allocation. How can imperfect and potentially biased human decisions train an accurate allocation model? Our key insight is to exploit weak prior information on human-task similarity to bootstrap model training. We show that the use of such a weak prior can improve task allocation accuracy, even when human decision-makers are fallible and biased. We present both theoretical analysis and empirical evaluation over synthetic data and a social media toxicity detection task. Results demonstrate the efficacy of our approach.
[ "cs.HC", "cs.LG" ]
false
2305.19901
2023-05-31T14:32:26Z
Adaptive Conformal Regression with Jackknife+ Rescaled Scores
[ "Nicolas Deutschmann", "Mattia Rigotti", "Maria Rodriguez Martinez" ]
Conformal regression provides prediction intervals with global coverage guarantees, but often fails to capture local error distributions, leading to non-homogeneous coverage. We address this with a new adaptive method based on rescaling conformal scores with an estimate of local score distribution, inspired by the Jackknife+ method, which enables the use of calibration data in conformal scores without breaking calibration-test exchangeability. Our approach ensures formal global coverage guarantees and is supported by new theoretical results on local coverage, including an a posteriori bound on any calibration score. The strength of our approach lies in achieving local coverage without sacrificing calibration set size, improving the applicability of conformal prediction intervals in various settings. As a result, our method provides prediction intervals that outperform previous methods, particularly in the low-data regime, making it especially relevant for real-world applications such as healthcare and biomedical domains where uncertainty needs to be quantified accurately despite low sample data.
[ "cs.LG", "stat.ML" ]
false
2305.19923
2023-05-31T15:01:38Z
MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL
[ "Fei Ni", "Jianye Hao", "Yao Mu", "Yifu Yuan", "Yan Zheng", "Bin Wang", "Zhixuan Liang" ]
Recently, diffusion model shines as a promising backbone for the sequence modeling paradigm in offline reinforcement learning(RL). However, these works mostly lack the generalization ability across tasks with reward or dynamics change. To tackle this challenge, in this paper we propose a task-oriented conditioned diffusion planner for offline meta-RL(MetaDiffuser), which considers the generalization problem as conditional trajectory generation task with contextual representation. The key is to learn a context conditioned diffusion model which can generate task-oriented trajectories for planning across diverse tasks. To enhance the dynamics consistency of the generated trajectories while encouraging trajectories to achieve high returns, we further design a dual-guided module in the sampling process of the diffusion model. The proposed framework enjoys the robustness to the quality of collected warm-start data from the testing task and the flexibility to incorporate with different task representation method. The experiment results on MuJoCo benchmarks show that MetaDiffuser outperforms other strong offline meta-RL baselines, demonstrating the outstanding conditional generation ability of diffusion architecture.
[ "cs.LG", "cs.AI" ]
false
2305.19982
2023-05-31T16:06:50Z
Adam Accumulation to Reduce Memory Footprints of both Activations and Gradients for Large-scale DNN Training
[ "Yijia Zhang", "Yibo Han", "Shijie Cao", "Guohao Dai", "Youshan Miao", "Ting Cao", "Fan Yang", "Ningyi Xu" ]
Running out of GPU memory has become a main bottleneck for large-scale DNN training. How to reduce the memory footprint during training has received intensive research attention. We find that previous gradient accumulation reduces activation memory but fails to be compatible with gradient memory reduction due to a contradiction between preserving gradients and releasing gradients. To address this issue, we propose a novel optimizer accumulation method for Adam, named Adam Accumulation (AdamA), which enables reducing both activation and gradient memory. Specifically, AdamA directly integrates gradients into optimizer states and accumulates optimizer states over micro-batches, so that gradients can be released immediately after use. We mathematically and experimentally demonstrate AdamA yields the same convergence properties as Adam. Evaluated on transformer-based models, AdamA achieves up to 23% memory reduction compared to gradient accumulation with less than 2% degradation in training throughput. Notably, AdamA can work together with memory reduction methods for optimizer states to fit 1.26x~3.14x larger models over PyTorch and DeepSpeed baseline on GPUs with different memory capacities.
[ "cs.LG", "cs.AI" ]
false
2305.19992
2023-05-31T16:13:46Z
A Nested Matrix-Tensor Model for Noisy Multi-view Clustering
[ "Mohamed El Amine Seddik", "Mastane Achab", "Henrique Goulart", "Merouane Debbah" ]
In this paper, we propose a nested matrix-tensor model which extends the spiked rank-one tensor model of order three. This model is particularly motivated by a multi-view clustering problem in which multiple noisy observations of each data point are acquired, with potentially non-uniform variances along the views. In this case, data can be naturally represented by an order-three tensor where the views are stacked. Given such a tensor, we consider the estimation of the hidden clusters via performing a best rank-one tensor approximation. In order to study the theoretical performance of this approach, we characterize the behavior of this best rank-one approximation in terms of the alignments of the obtained component vectors with the hidden model parameter vectors, in the large-dimensional regime. In particular, we show that our theoretical results allow us to anticipate the exact accuracy of the proposed clustering approach. Furthermore, numerical experiments indicate that leveraging our tensor-based approach yields better accuracy compared to a naive unfolding-based algorithm which ignores the underlying low-rank tensor structure. Our analysis unveils unexpected and non-trivial phase transition phenomena depending on the model parameters, ``interpolating'' between the typical behavior observed for the spiked matrix and tensor models.
[ "stat.ML", "cs.LG" ]
false
2305.20011
2023-05-31T16:34:58Z
Constrained Causal Bayesian Optimization
[ "Virginia Aglietti", "Alan Malek", "Ira Ktena", "Silvia Chiappa" ]
We propose constrained causal Bayesian optimization (cCBO), an approach for finding interventions in a known causal graph that optimize a target variable under some constraints. cCBO first reduces the search space by exploiting the graph structure and, if available, an observational dataset; and then solves the restricted optimization problem by modelling target and constraint quantities using Gaussian processes and by sequentially selecting interventions via a constrained expected improvement acquisition function. We propose different surrogate models that enable to integrate observational and interventional data while capturing correlation among effects with increasing levels of sophistication. We evaluate cCBO on artificial and real-world causal graphs showing successful trade off between fast convergence and percentage of feasible interventions.
[ "stat.ML", "cs.LG" ]
false
2305.20028
2023-05-31T17:00:00Z
A Study of Bayesian Neural Network Surrogates for Bayesian Optimization
[ "Yucen Lily Li", "Tim G. J. Rudner", "Andrew Gordon Wilson" ]
Bayesian optimization is a highly efficient approach to optimizing objective functions which are expensive to query. These objectives are typically represented by Gaussian process (GP) surrogate models which are easy to optimize and support exact inference. While standard GP surrogates have been well-established in Bayesian optimization, Bayesian neural networks (BNNs) have recently become practical function approximators, with many benefits over standard GPs such as the ability to naturally handle non-stationarity and learn representations for high-dimensional data. In this paper, we study BNNs as alternatives to standard GP surrogates for optimization. We consider a variety of approximate inference procedures for finite-width BNNs, including high-quality Hamiltonian Monte Carlo, low-cost stochastic MCMC, and heuristics such as deep ensembles. We also consider infinite-width BNNs and partially stochastic models such as deep kernel learning. We evaluate this collection of surrogate models on diverse problems with varying dimensionality, number of objectives, non-stationarity, and discrete and continuous inputs. We find: (i) the ranking of methods is highly problem dependent, suggesting the need for tailored inductive biases; (ii) HMC is the most successful approximate inference procedure for fully stochastic BNNs; (iii) full stochasticity may be unnecessary as deep kernel learning is relatively competitive; (iv) infinite-width BNNs are particularly promising, especially in high dimensions.
[ "cs.LG", "stat.ML" ]
false
2305.20043
2023-05-31T17:14:20Z
Deception by Omission: Using Adversarial Missingness to Poison Causal Structure Learning
[ "Deniz Koyuncu", "Alex Gittens", "Bülent Yener", "Moti Yung" ]
Inference of causal structures from observational data is a key component of causal machine learning; in practice, this data may be incompletely observed. Prior work has demonstrated that adversarial perturbations of completely observed training data may be used to force the learning of inaccurate causal structural models (SCMs). However, when the data can be audited for correctness (e.g., it is crytographically signed by its source), this adversarial mechanism is invalidated. This work introduces a novel attack methodology wherein the adversary deceptively omits a portion of the true training data to bias the learned causal structures in a desired manner. Theoretically sound attack mechanisms are derived for the case of arbitrary SCMs, and a sample-efficient learning-based heuristic is given for Gaussian SCMs. Experimental validation of these approaches on real and synthetic data sets demonstrates the effectiveness of adversarial missingness attacks at deceiving popular causal structure learning algorithms.
[ "cs.LG", "stat.ML" ]
false
2305.20056
2023-05-31T17:29:24Z
Rare Life Event Detection via Mobile Sensing Using Multi-Task Learning
[ "Arvind Pillai", "Subigya Nepal", "Andrew Campbell" ]
Rare life events significantly impact mental health, and their detection in behavioral studies is a crucial step towards health-based interventions. We envision that mobile sensing data can be used to detect these anomalies. However, the human-centered nature of the problem, combined with the infrequency and uniqueness of these events makes it challenging for unsupervised machine learning methods. In this paper, we first investigate granger-causality between life events and human behavior using sensing data. Next, we propose a multi-task framework with an unsupervised autoencoder to capture irregular behavior, and an auxiliary sequence predictor that identifies transitions in workplace performance to contextualize events. We perform experiments using data from a mobile sensing study comprising N=126 information workers from multiple industries, spanning 10106 days with 198 rare events (<2%). Through personalized inference, we detect the exact day of a rare event with an F1 of 0.34, demonstrating that our method outperforms several baselines. Finally, we discuss the implications of our work from the context of real-world deployment.
[ "cs.LG", "cs.HC" ]
false
2305.20068
2023-05-31T17:43:56Z
TOFG: A Unified and Fine-Grained Environment Representation in Autonomous Driving
[ "Zihao Wen", "Yifan Zhang", "Xinhong Chen", "Jianping Wang" ]
In autonomous driving, an accurate understanding of environment, e.g., the vehicle-to-vehicle and vehicle-to-lane interactions, plays a critical role in many driving tasks such as trajectory prediction and motion planning. Environment information comes from high-definition (HD) map and historical trajectories of vehicles. Due to the heterogeneity of the map data and trajectory data, many data-driven models for trajectory prediction and motion planning extract vehicle-to-vehicle and vehicle-to-lane interactions in a separate and sequential manner. However, such a manner may capture biased interpretation of interactions, causing lower prediction and planning accuracy. Moreover, separate extraction leads to a complicated model structure and hence the overall efficiency and scalability are sacrificed. To address the above issues, we propose an environment representation, Temporal Occupancy Flow Graph (TOFG). Specifically, the occupancy flow-based representation unifies the map information and vehicle trajectories into a homogeneous data format and enables a consistent prediction. The temporal dependencies among vehicles can help capture the change of occupancy flow timely to further promote model performance. To demonstrate that TOFG is capable of simplifying the model architecture, we incorporate TOFG with a simple graph attention (GAT) based neural network and propose TOFG-GAT, which can be used for both trajectory prediction and motion planning. Experiment results show that TOFG-GAT achieves better or competitive performance than all the SOTA baselines with less training time.
[ "cs.RO", "cs.LG" ]
false
2305.20072
2023-05-31T17:46:14Z
Alternating Minimization for Regression with Tropical Rational Functions
[ "Alex Dunbar", "Lars Ruthotto" ]
We propose an alternating minimization heuristic for regression over the space of tropical rational functions with fixed exponents. The method alternates between fitting the numerator and denominator terms via tropical polynomial regression, which is known to admit a closed form solution. We demonstrate the behavior of the alternating minimization method experimentally. Experiments demonstrate that the heuristic provides a reasonable approximation of the input data. Our work is motivated by applications to ReLU neural networks, a popular class of network architectures in the machine learning community which are closely related to tropical rational functions.
[ "math.OC", "cs.LG", "90C24, 14T90, 62J02" ]
false
2306.00026
2023-05-31T02:21:11Z
Efficient Stochastic Approximation of Minimax Excess Risk Optimization
[ "Lijun Zhang", "Wei-Wei Tu" ]
While traditional distributionally robust optimization (DRO) aims to minimize the maximal risk over a set of distributions, Agarwal and Zhang (2022) recently proposed a variant that replaces risk with excess risk. Compared to DRO, the new formulation -- minimax excess risk optimization (MERO) has the advantage of suppressing the effect of heterogeneous noise in different distributions. However, the choice of excess risk leads to a very challenging minimax optimization problem, and currently there exists only an inefficient algorithm for empirical MERO. In this paper, we develop efficient stochastic approximation approaches which directly target MERO. Specifically, we leverage techniques from stochastic convex optimization to estimate the minimal risk of every distribution, and solve MERO as a stochastic convex-concave optimization (SCCO) problem with biased gradients. The presence of bias makes existing theoretical guarantees of SCCO inapplicable, and fortunately, we demonstrate that the bias, caused by the estimation error of the minimal risk, is under-control. Thus, MERO can still be optimized with a nearly optimal convergence rate. Moreover, we investigate a practical scenario where the quantity of samples drawn from each distribution may differ, and propose a stochastic approach that delivers distribution-dependent convergence rates.
[ "math.OC", "cs.LG" ]
false
2306.00096
2023-05-31T18:15:09Z
Pareto Front Identification with Regret Minimization
[ "Wonyoung Kim", "Garud Iyengar", "Assaf Zeevi" ]
We consider Pareto front identification for linear bandits (PFILin) where the goal is to identify a set of arms whose reward vectors are not dominated by any of the others when the mean reward vector is a linear function of the context. PFILin includes the best arm identification problem and multi-objective active learning as special cases. The sample complexity of our proposed algorithm is $\tilde{O}(d/\Delta^2)$, where $d$ is the dimension of contexts and $\Delta$ is a measure of problem complexity. Our sample complexity is optimal up to a logarithmic factor. A novel feature of our algorithm is that it uses the contexts of all actions. In addition to efficiently identifying the Pareto front, our algorithm also guarantees $\tilde{O}(\sqrt{d/t})$ bound for instantaneous Pareto regret when the number of samples is larger than $\Omega(d\log dL)$ for $L$ dimensional vector rewards. By using the contexts of all arms, our proposed algorithm simultaneously provides efficient Pareto front identification and regret minimization. Numerical experiments demonstrate that the proposed algorithm successfully identifies the Pareto front while minimizing the regret.
[ "stat.ML", "cs.LG" ]
false