arxiv_id
stringlengths
10
10
published
stringlengths
20
20
titles
stringlengths
9
243
authors
listlengths
1
389
abstract
stringlengths
96
3.09k
categories
listlengths
1
10
selected
bool
2 classes
2306.00675
2023-06-01T13:49:55Z
RHFedMTL: Resource-Aware Hierarchical Federated Multi-Task Learning
[ "Xingfu Yi", "Rongpeng Li", "Chenghui Peng", "Fei Wang", "Jianjun Wu", "Zhifeng Zhao" ]
The rapid development of artificial intelligence (AI) over massive applications including Internet-of-things on cellular network raises the concern of technical challenges such as privacy, heterogeneity and resource efficiency. Federated learning is an effective way to enable AI over massive distributed nodes with security. However, conventional works mostly focus on learning a single global model for a unique task across the network, and are generally less competent to handle multi-task learning (MTL) scenarios with stragglers at the expense of acceptable computation and communication cost. Meanwhile, it is challenging to ensure the privacy while maintain a coupled multi-task learning across multiple base stations (BSs) and terminals. In this paper, inspired by the natural cloud-BS-terminal hierarchy of cellular works, we provide a viable resource-aware hierarchical federated MTL (RHFedMTL) solution to meet the heterogeneity of tasks, by solving different tasks within the BSs and aggregating the multi-task result in the cloud without compromising the privacy. Specifically, a primal-dual method has been leveraged to effectively transform the coupled MTL into some local optimization sub-problems within BSs. Furthermore, compared with existing methods to reduce resource cost by simply changing the aggregation frequency, we dive into the intricate relationship between resource consumption and learning accuracy, and develop a resource-aware learning strategy for local terminals and BSs to meet the resource budget. Extensive simulation results demonstrate the effectiveness and superiority of RHFedMTL in terms of improving the learning accuracy and boosting the convergence rate.
[ "cs.NI", "cs.LG" ]
false
2306.00687
2023-06-01T13:59:32Z
Adversarial Robustness in Unsupervised Machine Learning: A Systematic Review
[ "Mathias Lundteigen Mohus", "Jinyue Li" ]
As the adoption of machine learning models increases, ensuring robust models against adversarial attacks is increasingly important. With unsupervised machine learning gaining more attention, ensuring it is robust against attacks is vital. This paper conducts a systematic literature review on the robustness of unsupervised learning, collecting 86 papers. Our results show that most research focuses on privacy attacks, which have effective defenses; however, many attacks lack effective and general defensive measures. Based on the results, we formulate a model on the properties of an attack on unsupervised learning, contributing to future research by providing a model to use.
[ "cs.LG", "cs.CR", "I.2.0" ]
false
2306.00700
2023-06-01T14:09:52Z
Spreads in Effective Learning Rates: The Perils of Batch Normalization During Early Training
[ "Christian H. X. Ali Mehmeti-Göpel", "Michael Wand" ]
Excursions in gradient magnitude pose a persistent challenge when training deep networks. In this paper, we study the early training phases of deep normalized ReLU networks, accounting for the induced scale invariance by examining effective learning rates (LRs). Starting with the well-known fact that batch normalization (BN) leads to exponentially exploding gradients at initialization, we develop an ODE-based model to describe early training dynamics. Our model predicts that in the gradient flow, effective LRs will eventually equalize, aligning with empirical findings on warm-up training. Using large LRs is analogous to applying an explicit solver to a stiff non-linear ODE, causing overshooting and vanishing gradients in lower layers after the first step. Achieving overall balance demands careful tuning of LRs, depth, and (optionally) momentum. Our model predicts the formation of spreads in effective LRs, consistent with empirical measurements. Moreover, we observe that large spreads in effective LRs result in training issues concerning accuracy, indicating the importance of controlling these dynamics. To further support a causal relationship, we implement a simple scheduling scheme prescribing uniform effective LRs across layers and confirm accuracy benefits.
[ "cs.LG", "cs.AI" ]
false
2306.00707
2023-06-01T14:16:43Z
Renormalized Graph Neural Networks
[ "Francesco Caso", "Giovanni Trappolini", "Andrea Bacciu", "Pietro Liò", "Fabrizio Silvestri" ]
Graph Neural Networks (GNNs) have become essential for studying complex data, particularly when represented as graphs. Their value is underpinned by their ability to reflect the intricacies of numerous areas, ranging from social to biological networks. GNNs can grapple with non-linear behaviors, emerging patterns, and complex connections; these are also typical characteristics of complex systems. The renormalization group (RG) theory has emerged as the language for studying complex systems. It is recognized as the preferred lens through which to study complex systems, offering a framework that can untangle their intricate dynamics. Despite the clear benefits of integrating RG theory with GNNs, no existing methods have ventured into this promising territory. This paper proposes a new approach that applies RG theory to devise a novel graph rewiring to improve GNNs' performance on graph-related tasks. We support our proposal with extensive experiments on standard benchmarks and baselines. The results demonstrate the effectiveness of our method and its potential to remedy the current limitations of GNNs. Finally, this paper marks the beginning of a new research direction. This path combines the theoretical foundations of RG, the magnifying glass of complex systems, with the structural capabilities of GNNs. By doing so, we aim to enhance the potential of GNNs in modeling and unraveling the complexities inherent in diverse systems.
[ "cs.LG", "physics.data-an" ]
false
2306.00760
2023-06-01T14:54:42Z
Efficient Failure Pattern Identification of Predictive Algorithms
[ "Bao Nguyen", "Viet Anh Nguyen" ]
Given a (machine learning) classifier and a collection of unlabeled data, how can we efficiently identify misclassification patterns presented in this dataset? To address this problem, we propose a human-machine collaborative framework that consists of a team of human annotators and a sequential recommendation algorithm. The recommendation algorithm is conceptualized as a stochastic sampler that, in each round, queries the annotators a subset of samples for their true labels and obtains the feedback information on whether the samples are misclassified. The sampling mechanism needs to balance between discovering new patterns of misclassification (exploration) and confirming the potential patterns of classification (exploitation). We construct a determinantal point process, whose intensity balances the exploration-exploitation trade-off through the weighted update of the posterior at each round to form the generator of the stochastic sampler. The numerical results empirically demonstrate the competitive performance of our framework on multiple datasets at various signal-to-noise ratios.
[ "cs.LG", "cs.AI" ]
false
2306.00778
2023-06-01T15:08:22Z
An End-to-End Time Series Model for Simultaneous Imputation and Forecast
[ "Trang H. Tran", "Lam M. Nguyen", "Kyongmin Yeo", "Nam Nguyen", "Dzung Phan", "Roman Vaculin", "Jayant Kalagnanam" ]
Time series forecasting using historical data has been an interesting and challenging topic, especially when the data is corrupted by missing values. In many industrial problem, it is important to learn the inference function between the auxiliary observations and target variables as it provides additional knowledge when the data is not fully observed. We develop an end-to-end time series model that aims to learn the such inference relation and make a multiple-step ahead forecast. Our framework trains jointly two neural networks, one to learn the feature-wise correlations and the other for the modeling of temporal behaviors. Our model is capable of simultaneously imputing the missing entries and making a multiple-step ahead prediction. The experiments show good overall performance of our framework over existing methods in both imputation and forecasting tasks.
[ "cs.LG", "stat.ML" ]
false
2306.00785
2023-06-01T15:16:36Z
Data Interpolants -- That's What Discriminators in Higher-order Gradient-regularized GANs Are
[ "Siddarth Asokan", "Chandra Sekhar Seelamantula" ]
We consider the problem of optimizing the discriminator in generative adversarial networks (GANs) subject to higher-order gradient regularization. We show analytically, via the least-squares (LSGAN) and Wasserstein (WGAN) GAN variants, that the discriminator optimization problem is one of interpolation in $n$-dimensions. The optimal discriminator, derived using variational Calculus, turns out to be the solution to a partial differential equation involving the iterated Laplacian or the polyharmonic operator. The solution is implementable in closed-form via polyharmonic radial basis function (RBF) interpolation. In view of the polyharmonic connection, we refer to the corresponding GANs as Poly-LSGAN and Poly-WGAN. Through experimental validation on multivariate Gaussians, we show that implementing the optimal RBF discriminator in closed-form, with penalty orders $m \approx\lceil \frac{n}{2} \rceil $, results in superior performance, compared to training GAN with arbitrarily chosen discriminator architectures. We employ the Poly-WGAN discriminator to model the latent space distribution of the data with encoder-decoder-based GAN flavors such as Wasserstein autoencoders.
[ "stat.ML", "cs.LG" ]
false
2306.00861
2023-06-01T16:19:37Z
Non-stationary Reinforcement Learning under General Function Approximation
[ "Songtao Feng", "Ming Yin", "Ruiquan Huang", "Yu-Xiang Wang", "Jing Yang", "Yingbin Liang" ]
General function approximation is a powerful tool to handle large state and action spaces in a broad range of reinforcement learning (RL) scenarios. However, theoretical understanding of non-stationary MDPs with general function approximation is still limited. In this paper, we make the first such an attempt. We first propose a new complexity metric called dynamic Bellman Eluder (DBE) dimension for non-stationary MDPs, which subsumes majority of existing tractable RL problems in static MDPs as well as non-stationary MDPs. Based on the proposed complexity metric, we propose a novel confidence-set based model-free algorithm called SW-OPEA, which features a sliding window mechanism and a new confidence set design for non-stationary MDPs. We then establish an upper bound on the dynamic regret for the proposed algorithm, and show that SW-OPEA is provably efficient as long as the variation budget is not significantly large. We further demonstrate via examples of non-stationary linear and tabular MDPs that our algorithm performs better in small variation budget scenario than the existing UCB-type algorithms. To the best of our knowledge, this is the first dynamic regret analysis in non-stationary MDPs with general function approximation.
[ "cs.LG", "stat.ML" ]
false
2306.00867
2023-06-01T16:24:40Z
IQL-TD-MPC: Implicit Q-Learning for Hierarchical Model Predictive Control
[ "Rohan Chitnis", "Yingchen Xu", "Bobak Hashemi", "Lucas Lehnert", "Urun Dogan", "Zheqing Zhu", "Olivier Delalleau" ]
Model-based reinforcement learning (RL) has shown great promise due to its sample efficiency, but still struggles with long-horizon sparse-reward tasks, especially in offline settings where the agent learns from a fixed dataset. We hypothesize that model-based RL agents struggle in these environments due to a lack of long-term planning capabilities, and that planning in a temporally abstract model of the environment can alleviate this issue. In this paper, we make two key contributions: 1) we introduce an offline model-based RL algorithm, IQL-TD-MPC, that extends the state-of-the-art Temporal Difference Learning for Model Predictive Control (TD-MPC) with Implicit Q-Learning (IQL); 2) we propose to use IQL-TD-MPC as a Manager in a hierarchical setting with any off-the-shelf offline RL algorithm as a Worker. More specifically, we pre-train a temporally abstract IQL-TD-MPC Manager to predict "intent embeddings", which roughly correspond to subgoals, via planning. We empirically show that augmenting state representations with intent embeddings generated by an IQL-TD-MPC manager significantly improves off-the-shelf offline RL agents' performance on some of the most challenging D4RL benchmark tasks. For instance, the offline RL algorithms AWAC, TD3-BC, DT, and CQL all get zero or near-zero normalized evaluation scores on the medium and large antmaze tasks, while our modification gives an average score over 40.
[ "cs.LG", "cs.AI" ]
false
2306.00879
2023-06-01T16:39:50Z
Domain Generalization for Domain-Linked Classes
[ "Kimathi Kaai", "Saad Hossain", "Sirisha Rambhatla" ]
Domain generalization (DG) focuses on transferring domain-invariant knowledge from multiple source domains (available at train time) to an, a priori, unseen target domain(s). This requires a class to be expressed in multiple domains for the learning algorithm to break the spurious correlations between domain and class. However, in the real-world, classes may often be domain-linked, i.e. expressed only in a specific domain, which leads to extremely poor generalization performance for these classes. In this work, we aim to learn generalizable representations for these domain-linked classes by transferring domain-invariant knowledge from classes expressed in multiple source domains (domain-shared classes). To this end, we introduce this task to the community and propose a Fair and cONtrastive feature-space regularization algorithm for Domain-linked DG, FOND. Rigorous and reproducible experiments with baselines across popular DG tasks demonstrate our method and its variants' ability to accomplish state-of-the-art DG results for domain-linked classes. We also provide practical insights on data conditions that increase domain-linked class generalizability to tackle real-world data scarcity.
[ "cs.LG", "cs.AI" ]
false
2306.00920
2023-06-01T17:21:10Z
Better Private Linear Regression Through Better Private Feature Selection
[ "Travis Dick", "Jennifer Gillenwater", "Matthew Joseph" ]
Existing work on differentially private linear regression typically assumes that end users can precisely set data bounds or algorithmic hyperparameters. End users often struggle to meet these requirements without directly examining the data (and violating privacy). Recent work has attempted to develop solutions that shift these burdens from users to algorithms, but they struggle to provide utility as the feature dimension grows. This work extends these algorithms to higher-dimensional problems by introducing a differentially private feature selection method based on Kendall rank correlation. We prove a utility guarantee for the setting where features are normally distributed and conduct experiments across 25 datasets. We find that adding this private feature selection step before regression significantly broadens the applicability of ``plug-and-play'' private linear regression algorithms at little additional cost to privacy, computation, or decision-making by the end user.
[ "cs.LG", "cs.CR" ]
false
2306.01029
2023-06-01T14:40:56Z
SPINEX: Similarity-based Predictions and Explainable Neighbors Exploration for Regression and Classification Tasks in Machine Learning
[ "M. Z. Naser", "M. K. albashiti", "A. Z. Naser" ]
The field of machine learning (ML) has witnessed significant advancements in recent years. However, many existing algorithms lack interpretability and struggle with high-dimensional and imbalanced data. This paper proposes SPINEX, a novel similarity-based interpretable neighbor exploration algorithm designed to address these limitations. This algorithm combines ensemble learning and feature interaction analysis to achieve accurate predictions and meaningful insights by quantifying each feature's contribution to predictions and identifying interactions between features, thereby enhancing the interpretability of the algorithm. To evaluate the performance of SPINEX, extensive experiments on 59 synthetic and real datasets were conducted for both regression and classification tasks. The results demonstrate that SPINEX achieves comparative performance and, in some scenarios, may outperform commonly adopted ML algorithms. The same findings demonstrate the effectiveness and competitiveness of SPINEX, making it a promising approach for various real-world applications.
[ "cs.LG", "stat.AP" ]
false
2306.01032
2023-06-01T15:57:11Z
Chaos persists in large-scale multi-agent learning despite adaptive learning rates
[ "Emmanouil-Vasileios Vlatakis-Gkaragkounis", "Lampros Flokas", "Georgios Piliouras" ]
Multi-agent learning is intrinsically harder, more unstable and unpredictable than single agent optimization. For this reason, numerous specialized heuristics and techniques have been designed towards the goal of achieving convergence to equilibria in self-play. One such celebrated approach is the use of dynamically adaptive learning rates. Although such techniques are known to allow for improved convergence guarantees in small games, it has been much harder to analyze them in more relevant settings with large populations of agents. These settings are particularly hard as recent work has established that learning with fixed rates will become chaotic given large enough populations.In this work, we show that chaos persists in large population congestion games despite using adaptive learning rates even for the ubiquitous Multiplicative Weight Updates algorithm, even in the presence of only two strategies. At a technical level, due to the non-autonomous nature of the system, our approach goes beyond conventional period-three techniques Li-Yorke by studying fundamental properties of the dynamics including invariant sets, volume expansion and turbulent sets. We complement our theoretical insights with experiments showcasing that slight variations to system parameters lead to a wide variety of unpredictable behaviors.
[ "cs.LG", "math.OC" ]
false
2306.01108
2023-06-01T19:49:43Z
Towards Learning Discrete Representations via Self-Supervision for Wearables-Based Human Activity Recognition
[ "Harish Haresamudram", "Irfan Essa", "Thomas Ploetz" ]
Human activity recognition (HAR) in wearable computing is typically based on direct processing of sensor data. Sensor readings are translated into representations, either derived through dedicated preprocessing, or integrated into end-to-end learning. Independent of their origin, for the vast majority of contemporary HAR, those representations are typically continuous in nature. That has not always been the case. In the early days of HAR, discretization approaches have been explored - primarily motivated by the desire to minimize computational requirements, but also with a view on applications beyond mere recognition, such as, activity discovery, fingerprinting, or large-scale search. Those traditional discretization approaches, however, suffer from substantial loss in precision and resolution in the resulting representations with detrimental effects on downstream tasks. Times have changed and in this paper we propose a return to discretized representations. We adopt and apply recent advancements in Vector Quantization (VQ) to wearables applications, which enables us to directly learn a mapping between short spans of sensor data and a codebook of vectors, resulting in recognition performance that is generally on par with their contemporary, continuous counterparts - sometimes surpassing them. Therefore, this work presents a proof-of-concept for demonstrating how effective discrete representations can be derived, enabling applications beyond mere activity classification but also opening up the field to advanced tools for the analysis of symbolic sequences, as they are known, for example, from domains such as natural language processing. Based on an extensive experimental evaluation on a suite of wearables-based benchmark HAR tasks, we demonstrate the potential of our learned discretization scheme and discuss how discretized sensor data analysis can lead to substantial changes in HAR.
[ "cs.LG", "eess.SP" ]
false
2306.01123
2023-06-01T20:19:41Z
A Neural RDE-based model for solving path-dependent PDEs
[ "Bowen Fang", "Hao Ni", "Yue Wu" ]
The concept of the path-dependent partial differential equation (PPDE) was first introduced in the context of path-dependent derivatives in financial markets. Its semilinear form was later identified as a non-Markovian backward stochastic differential equation (BSDE). Compared to the classical PDE, the solution of a PPDE involves an infinite-dimensional spatial variable, making it challenging to approximate, if not impossible. In this paper, we propose a neural rough differential equation (NRDE)-based model to learn PPDEs, which effectively encodes the path information through the log-signature feature while capturing the fundamental dynamics. The proposed continuous-time model for the PPDE solution offers the benefits of efficient memory usage and the ability to scale with dimensionality. Several numerical experiments, provided to validate the performance of the proposed model in comparison to the strong baseline in the literature, are used to demonstrate its effectiveness.
[ "cs.LG", "math.PR", "68T07, 60L90, 60H30" ]
false
2306.01157
2023-06-01T21:27:22Z
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding
[ "Alizée Pace", "Hugo Yèche", "Bernhard Schölkopf", "Gunnar Rätsch", "Guy Tennenholtz" ]
A prominent challenge of offline reinforcement learning (RL) is the issue of hidden confounding: unobserved variables may influence both the actions taken by the agent and the observed outcomes. Hidden confounding can compromise the validity of any causal conclusion drawn from data and presents a major obstacle to effective offline RL. In the present paper, we tackle the problem of hidden confounding in the nonidentifiable setting. We propose a definition of uncertainty due to hidden confounding bias, termed delphic uncertainty, which uses variation over world models compatible with the observations, and differentiate it from the well-known epistemic and aleatoric uncertainties. We derive a practical method for estimating the three types of uncertainties, and construct a pessimistic offline RL algorithm to account for them. Our method does not assume identifiability of the unobserved confounders, and attempts to reduce the amount of confounding bias. We demonstrate through extensive experiments and ablations the efficacy of our approach on a sepsis management benchmark, as well as on electronic health records. Our results suggest that nonidentifiable hidden confounding bias can be mitigated to improve offline RL solutions in practice.
[ "cs.LG", "cs.AI" ]
false
2306.01191
2023-06-01T23:10:15Z
Conformal Prediction with Partially Labeled Data
[ "Alireza Javanmardi", "Yusuf Sale", "Paul Hofman", "Eyke Hüllermeier" ]
While the predictions produced by conformal prediction are set-valued, the data used for training and calibration is supposed to be precise. In the setting of superset learning or learning from partial labels, a variant of weakly supervised learning, it is exactly the other way around: training data is possibly imprecise (set-valued), but the model induced from this data yields precise predictions. In this paper, we combine the two settings by making conformal prediction amenable to set-valued training data. We propose a generalization of the conformal prediction procedure that can be applied to set-valued training and calibration data. We prove the validity of the proposed method and present experimental studies in which it compares favorably to natural baselines.
[ "cs.LG", "stat.ML" ]
false
2306.04646
2023-06-01T19:35:13Z
Improve State-Level Wheat Yield Forecasts in Kazakhstan on GEOGLAM's EO Data by Leveraging A Simple Spatial-Aware Technique
[ "Anh Nhat Nhu", "Ritvik Sahajpal", "Christina Justice", "Inbal Becker-Reshef" ]
Accurate yield forecasting is essential for making informed policies and long-term decisions for food security. Earth Observation (EO) data and machine learning algorithms play a key role in providing a comprehensive and timely view of crop conditions from field to national scales. However, machine learning algorithms' prediction accuracy is often harmed by spatial heterogeneity caused by exogenous factors not reflected in remote sensing data, such as differences in crop management strategies. In this paper, we propose and investigate a simple technique called state-wise additive bias to explicitly address the cross-region yield heterogeneity in Kazakhstan. Compared to baseline machine learning models (Random Forest, CatBoost, XGBoost), our method reduces the overall RMSE by 8.9\% and the highest state-wise RMSE by 28.37\%. The effectiveness of state-wise additive bias indicates machine learning's performance can be significantly improved by explicitly addressing the spatial heterogeneity, motivating future work on spatial-aware machine learning algorithms for yield forecasts as well as for general geospatial forecasting problems.
[ "cs.LG", "cs.CY" ]
false
2306.16951
2023-06-01T12:23:14Z
Applying language models to algebraic topology: generating simplicial cycles using multi-labeling in Wu's formula
[ "Kirill Brilliantov", "Fedor Pavutnitskiy", "Dmitry Pasechnyuk", "German Magai" ]
Computing homotopy groups of spheres has long been a fundamental objective in algebraic topology. Various theoretical and algorithmic approaches have been developed to tackle this problem. In this paper we take a step towards the goal of comprehending the group-theoretic structure of the generators of these homotopy groups by leveraging the power of machine learning. Specifically, in the simplicial group setting of Wu's formula, we reformulate the problem of generating simplicial cycles as a problem of sampling from the intersection of algorithmic datasets related to Dyck languages. We present and evaluate language modelling approaches that employ multi-label information for input sequences, along with the necessary group-theoretic toolkit and non-neural baselines.
[ "math.AT", "cs.LG" ]
false
2307.08649
2023-06-01T01:36:51Z
Joint Latent Topic Discovery and Expectation Modeling for Financial Markets
[ "Lili Wang", "Chenghan Huang", "Chongyang Gao", "Weicheng Ma", "Soroush Vosoughi" ]
In the pursuit of accurate and scalable quantitative methods for financial market analysis, the focus has shifted from individual stock models to those capturing interrelations between companies and their stocks. However, current relational stock methods are limited by their reliance on predefined stock relationships and the exclusive consideration of immediate effects. To address these limitations, we present a groundbreaking framework for financial market analysis. This approach, to our knowledge, is the first to jointly model investor expectations and automatically mine latent stock relationships. Comprehensive experiments conducted on China's CSI 300, one of the world's largest markets, demonstrate that our model consistently achieves an annual return exceeding 10%. This performance surpasses existing benchmarks, setting a new state-of-the-art standard in stock return prediction and multiyear trading simulations (i.e., backtesting).
[ "q-fin.ST", "cs.LG" ]
false
2306.00258
2023-06-01T00:32:59Z
Towards Foundation Models for Scientific Machine Learning: Characterizing Scaling and Transfer Behavior
[ "Shashank Subramanian", "Peter Harrington", "Kurt Keutzer", "Wahid Bhimji", "Dmitriy Morozov", "Michael Mahoney", "Amir Gholami" ]
Pre-trained machine learning (ML) models have shown great performance for a wide range of applications, in particular in natural language processing (NLP) and computer vision (CV). Here, we study how pre-training could be used for scientific machine learning (SciML) applications, specifically in the context of transfer learning. We study the transfer behavior of these models as (i) the pre-trained model size is scaled, (ii) the downstream training dataset size is scaled, (iii) the physics parameters are systematically pushed out of distribution, and (iv) how a single model pre-trained on a mixture of different physics problems can be adapted to various downstream applications. We find that-when fine-tuned appropriately-transfer learning can help reach desired accuracy levels with orders of magnitude fewer downstream examples (across different tasks that can even be out-of-distribution) than training from scratch, with consistent behavior across a wide range of downstream examples. We also find that fine-tuning these models yields more performance gains as model size increases, compared to training from scratch on new downstream tasks. These results hold for a broad range of PDE learning tasks. All in all, our results demonstrate the potential of the "pre-train and fine-tune" paradigm for SciML problems, demonstrating a path towards building SciML foundation models. We open-source our code for reproducibility.
[ "cs.LG", "cs.NA", "math.NA" ]
false
2306.00280
2023-06-01T01:52:03Z
Towards Bias Correction of FedAvg over Nonuniform and Time-Varying Communications
[ "Ming Xiang", "Stratis Ioannidis", "Edmund Yeh", "Carlee Joe-Wong", "Lili Su" ]
Federated learning (FL) is a decentralized learning framework wherein a parameter server (PS) and a collection of clients collaboratively train a model via minimizing a global objective. Communication bandwidth is a scarce resource; in each round, the PS aggregates the updates from a subset of clients only. In this paper, we focus on non-convex minimization that is vulnerable to non-uniform and time-varying communication failures between the PS and the clients. Specifically, in each round $t$, the link between the PS and client $i$ is active with probability $p_i^t$, which is $\textit{unknown}$ to both the PS and the clients. This arises when the channel conditions are heterogeneous across clients and are changing over time. We show that when the $p_i^t$'s are not uniform, $\textit{Federated Average}$ (FedAvg) -- the most widely adopted FL algorithm -- fails to minimize the global objective. Observing this, we propose $\textit{Federated Postponed Broadcast}$ (FedPBC) which is a simple variant of FedAvg. It differs from FedAvg in that the PS postpones broadcasting the global model till the end of each round. We show that FedPBC converges to a stationary point of the original objective. The introduced staleness is mild and there is no noticeable slowdown. Both theoretical analysis and numerical results are provided. On the technical front, postponing the global model broadcasts enables implicit gossiping among the clients with active links at round $t$. Despite $p_i^t$'s are time-varying, we are able to bound the perturbation of the global model dynamics via the techniques of controlling the gossip-type information mixing errors.
[ "cs.LG", "cs.DC", "stat.ML" ]
false
2306.00281
2023-06-01T01:53:10Z
Transfer Learning for Underrepresented Music Generation
[ "Anahita Doosti", "Matthew Guzdial" ]
This paper investigates a combinational creativity approach to transfer learning to improve the performance of deep neural network-based models for music generation on out-of-distribution (OOD) genres. We identify Iranian folk music as an example of such an OOD genre for MusicVAE, a large generative music model. We find that a combinational creativity transfer learning approach can efficiently adapt MusicVAE to an Iranian folk music dataset, indicating potential for generating underrepresented music genres in the future.
[ "cs.LG", "cs.SD", "eess.AS" ]
false
2306.00284
2023-06-01T02:04:09Z
Case Study-Based Approach of Quantum Machine Learning in Cybersecurity: Quantum Support Vector Machine for Malware Classification and Protection
[ "Mst Shapna Akter", "Hossain Shahriar", "Sheikh Iqbal Ahamed", "Kishor Datta Gupta", "Muhammad Rahman", "Atef Mohamed", "Mohammad Rahman", "Akond Rahman", "Fan Wu" ]
Quantum machine learning (QML) is an emerging field of research that leverages quantum computing to improve the classical machine learning approach to solve complex real world problems. QML has the potential to address cybersecurity related challenges. Considering the novelty and complex architecture of QML, resources are not yet explicitly available that can pave cybersecurity learners to instill efficient knowledge of this emerging technology. In this research, we design and develop QML-based ten learning modules covering various cybersecurity topics by adopting student centering case-study based learning approach. We apply one subtopic of QML on a cybersecurity topic comprised of pre-lab, lab, and post-lab activities towards providing learners with hands-on QML experiences in solving real-world security problems. In order to engage and motivate students in a learning environment that encourages all students to learn, pre-lab offers a brief introduction to both the QML subtopic and cybersecurity problem. In this paper, we utilize quantum support vector machine (QSVM) for malware classification and protection where we use open source Pennylane QML framework on the drebin215 dataset. We demonstrate our QSVM model and achieve an accuracy of 95% in malware classification and protection. We will develop all the modules and introduce them to the cybersecurity community in the coming days.
[ "cs.CR", "cs.LG", "quant-ph" ]
false
2306.00342
2023-06-01T04:47:17Z
Combining Explicit and Implicit Regularization for Efficient Learning in Deep Networks
[ "Dan Zhao" ]
Works on implicit regularization have studied gradient trajectories during the optimization process to explain why deep networks favor certain kinds of solutions over others. In deep linear networks, it has been shown that gradient descent implicitly regularizes toward low-rank solutions on matrix completion/factorization tasks. Adding depth not only improves performance on these tasks but also acts as an accelerative pre-conditioning that further enhances this bias towards low-rankedness. Inspired by this, we propose an explicit penalty to mirror this implicit bias which only takes effect with certain adaptive gradient optimizers (e.g. Adam). This combination can enable a degenerate single-layer network to achieve low-rank approximations with generalization error comparable to deep linear networks, making depth no longer necessary for learning. The single-layer network also performs competitively or out-performs various approaches for matrix completion over a range of parameter and data regimes despite its simplicity. Together with an optimizer's inductive bias, our findings suggest that explicit regularization can play a role in designing different, desirable forms of regularization and that a more nuanced understanding of this interplay may be necessary.
[ "cs.LG", "cs.AI", "cs.NE", "stat.ML" ]
false
2306.00356
2023-06-01T05:33:41Z
Regularizing Towards Soft Equivariance Under Mixed Symmetries
[ "Hyunsu Kim", "Hyungi Lee", "Hongseok Yang", "Juho Lee" ]
Datasets often have their intrinsic symmetries, and particular deep-learning models called equivariant or invariant models have been developed to exploit these symmetries. However, if some or all of these symmetries are only approximate, which frequently happens in practice, these models may be suboptimal due to the architectural restrictions imposed on them. We tackle this issue of approximate symmetries in a setup where symmetries are mixed, i.e., they are symmetries of not single but multiple different types and the degree of approximation varies across these types. Instead of proposing a new architectural restriction as in most of the previous approaches, we present a regularizer-based method for building a model for a dataset with mixed approximate symmetries. The key component of our method is what we call equivariance regularizer for a given type of symmetries, which measures how much a model is equivariant with respect to the symmetries of the type. Our method is trained with these regularizers, one per each symmetry type, and the strength of the regularizers is automatically tuned during training, leading to the discovery of the approximation levels of some candidate symmetry types without explicit supervision. Using synthetic function approximation and motion forecasting tasks, we demonstrate that our method achieves better accuracy than prior approaches while discovering the approximate symmetry levels correctly.
[ "cs.LG", "cs.AI", "stat.ML" ]
false
2306.00367
2023-06-01T05:57:40Z
On the Equivalence of Consistency-Type Models: Consistency Models, Consistent Diffusion Models, and Fokker-Planck Regularization
[ "Chieh-Hsin Lai", "Yuhta Takida", "Toshimitsu Uesaka", "Naoki Murata", "Yuki Mitsufuji", "Stefano Ermon" ]
The emergence of various notions of ``consistency'' in diffusion models has garnered considerable attention and helped achieve improved sample quality, likelihood estimation, and accelerated sampling. Although similar concepts have been proposed in the literature, the precise relationships among them remain unclear. In this study, we establish theoretical connections between three recent ``consistency'' notions designed to enhance diffusion models for distinct objectives. Our insights offer the potential for a more comprehensive and encompassing framework for consistency-type models.
[ "cs.LG", "cs.AI", "math.ST", "stat.TH" ]
false
2306.00406
2023-06-01T07:12:00Z
Faster Robust Tensor Power Method for Arbitrary Order
[ "Yichuan Deng", "Zhao Song", "Junze Yin" ]
Tensor decomposition is a fundamental method used in various areas to deal with high-dimensional data. \emph{Tensor power method} (TPM) is one of the widely-used techniques in the decomposition of tensors. This paper presents a novel tensor power method for decomposing arbitrary order tensors, which overcomes limitations of existing approaches that are often restricted to lower-order (less than $3$) tensors or require strong assumptions about the underlying data structure. We apply sketching method, and we are able to achieve the running time of $\widetilde{O}(n^{p-1})$, on the power $p$ and dimension $n$ tensor. We provide a detailed analysis for any $p$-th order tensor, which is never given in previous works.
[ "cs.LG", "cs.NA", "math.NA" ]
false
2306.00485
2023-06-01T09:37:43Z
Causal Estimation of User Learning in Personalized Systems
[ "Evan Munro", "David Jones", "Jennifer Brennan", "Roland Nelet", "Vahab Mirrokni", "Jean Pouget-Abadie" ]
In online platforms, the impact of a treatment on an observed outcome may change over time as 1) users learn about the intervention, and 2) the system personalization, such as individualized recommendations, change over time. We introduce a non-parametric causal model of user actions in a personalized system. We show that the Cookie-Cookie-Day (CCD) experiment, designed for the measurement of the user learning effect, is biased when there is personalization. We derive new experimental designs that intervene in the personalization system to generate the variation necessary to separately identify the causal effect mediated through user learning and personalization. Making parametric assumptions allows for the estimation of long-term causal effects based on medium-term experiments. In simulations, we show that our new designs successfully recover the dynamic causal effects of interest.
[ "stat.ME", "cs.LG", "econ.EM" ]
false
2306.00528
2023-06-01T10:28:49Z
Neuronal Cell Type Classification using Deep Learning
[ "Ofek Ophir", "Orit Shefi", "Ofir Lindenbaum" ]
The brain is likely the most complex organ, given the variety of functions it controls, the number of cells it comprises, and their corresponding diversity. Studying and identifying neurons, the brain's primary building blocks, is a crucial milestone and essential for understanding brain function in health and disease. Recent developments in machine learning have provided advanced abilities for classifying neurons. However, these methods remain black boxes with no explainability and reasoning. This paper aims to provide a robust and explainable deep-learning framework to classify neurons based on their electrophysiological activity. Our analysis is performed on data provided by the Allen Cell Types database containing a survey of biological features derived from single-cell recordings of mice and humans. First, we classify neuronal cell types of mice data to identify excitatory and inhibitory neurons. Then, neurons are categorized to their broad types in humans using domain adaptation from mice data. Lastly, neurons are classified into sub-types based on transgenic mouse lines using deep neural networks in an explainable fashion. We show state-of-the-art results in a dendrite-type classification of excitatory vs. inhibitory neurons and transgenic mouse lines classification. The model is also inherently interpretable, revealing the correlations between neuronal types and their electrophysiological properties.
[ "cs.LG", "eess.SP", "q-bio.NC" ]
false
2306.00563
2023-06-01T11:22:04Z
Machine Learning and Kalman Filtering for Nanomechanical Mass Spectrometry
[ "Mete Erdogan", "Nuri Berke Baytekin", "Serhat Emre Coban", "Alper Demir" ]
Nanomechanical resonant sensors are used in mass spectrometry via detection of resonance frequency jumps. There is a fundamental trade-off between detection speed and accuracy. Temporal and size resolution are limited by the resonator characteristics and noise. A Kalman filtering technique, augmented with maximum-likelihood estimation, was recently proposed as a Pareto optimal solution. We present enhancements and robust realizations for this technique, including a confidence boosted thresholding approach as well as machine learning for event detection. We describe learning techniques that are based on neural networks and boosted decision trees for temporal location and event size estimation. In the pure learning based approach that discards the Kalman filter, the raw data from the sensor are used in training a model for both location and size prediction. In the alternative approach that augments a Kalman filter, the event likelihood history is used in a binary classifier for event occurrence. Locations and sizes are predicted using maximum-likelihood, followed by a Kalman filter that continually improves the size estimate. We present detailed comparisons of the learning based schemes and the confidence boosted thresholding approach, and demonstrate robust performance for a practical realization.
[ "physics.ins-det", "cs.LG", "physics.app-ph" ]
false
2306.00578
2023-06-01T11:49:43Z
Does Black-box Attribute Inference Attacks on Graph Neural Networks Constitute Privacy Risk?
[ "Iyiola E. Olatunji", "Anmar Hizber", "Oliver Sihlovec", "Megha Khosla" ]
Graph neural networks (GNNs) have shown promising results on real-life datasets and applications, including healthcare, finance, and education. However, recent studies have shown that GNNs are highly vulnerable to attacks such as membership inference attack and link reconstruction attack. Surprisingly, attribute inference attacks has received little attention. In this paper, we initiate the first investigation into attribute inference attack where an attacker aims to infer the sensitive user attributes based on her public or non-sensitive attributes. We ask the question whether black-box attribute inference attack constitutes a significant privacy risk for graph-structured data and their corresponding GNN model. We take a systematic approach to launch the attacks by varying the adversarial knowledge and assumptions. Our findings reveal that when an attacker has black-box access to the target model, GNNs generally do not reveal significantly more information compared to missing value estimation techniques. Code is available.
[ "cs.LG", "cs.AI", "cs.CR" ]
false
2306.00624
2023-06-01T12:46:06Z
From Temporal to Contemporaneous Iterative Causal Discovery in the Presence of Latent Confounders
[ "Raanan Y. Rohekar", "Shami Nisimov", "Yaniv Gurwicz", "Gal Novik" ]
We present a constraint-based algorithm for learning causal structures from observational time-series data, in the presence of latent confounders. We assume a discrete-time, stationary structural vector autoregressive process, with both temporal and contemporaneous causal relations. One may ask if temporal and contemporaneous relations should be treated differently. The presented algorithm gradually refines a causal graph by learning long-term temporal relations before short-term ones, where contemporaneous relations are learned last. This ordering of causal relations to be learnt leads to a reduction in the required number of statistical tests. We validate this reduction empirically and demonstrate that it leads to higher accuracy for synthetic data and more plausible causal graphs for real-world data compared to state-of-the-art algorithms.
[ "cs.AI", "cs.LG", "stat.ML" ]
false
2306.00636
2023-06-01T13:00:13Z
Unfair Utilities and First Steps Towards Improving Them
[ "Frederik Hytting Jørgensen", "Sebastian Weichwald", "Jonas Peters" ]
Many fairness criteria constrain the policy or choice of predictors. In this work, we propose a different framework for thinking about fairness: Instead of constraining the policy or choice of predictors, we consider which utility a policy is optimizing for. We define value of information fairness and propose to not use utilities that do not satisfy this criterion. We describe how to modify a utility to satisfy this fairness criterion and discuss the consequences this might have on the corresponding optimal policies.
[ "stat.ML", "cs.CY", "cs.LG" ]
false
2306.00638
2023-06-01T13:01:13Z
Byzantine-Robust Clustered Federated Learning
[ "Zhixu Tao", "Kun Yang", "Sanjeev R. Kulkarni" ]
This paper focuses on the problem of adversarial attacks from Byzantine machines in a Federated Learning setting where non-Byzantine machines can be partitioned into disjoint clusters. In this setting, non-Byzantine machines in the same cluster have the same underlying data distribution, and different clusters of non-Byzantine machines have different learning tasks. Byzantine machines can adversarially attack any cluster and disturb the training process on clusters they attack. In the presence of Byzantine machines, the goal of our work is to identify cluster membership of non-Byzantine machines and optimize the models learned by each cluster. We adopt the Iterative Federated Clustering Algorithm (IFCA) framework of Ghosh et al. (2020) to alternatively estimate cluster membership and optimize models. In order to make this framework robust against adversarial attacks from Byzantine machines, we use coordinate-wise trimmed mean and coordinate-wise median aggregation methods used by Yin et al. (2018). Specifically, we propose a new Byzantine-Robust Iterative Federated Clustering Algorithm to improve on the results in Ghosh et al. (2019). We prove a convergence rate for this algorithm for strongly convex loss functions. We compare our convergence rate with the convergence rate of an existing algorithm, and we demonstrate the performance of our algorithm on simulated data.
[ "stat.ML", "cs.DC", "cs.LG" ]
false
2306.00651
2023-06-01T13:17:29Z
Learning Prescriptive ReLU Networks
[ "Wei Sun", "Asterios Tsiourvas" ]
We study the problem of learning optimal policy from a set of discrete treatment options using observational data. We propose a piecewise linear neural network model that can balance strong prescriptive performance and interpretability, which we refer to as the prescriptive ReLU network, or P-ReLU. We show analytically that this model (i) partitions the input space into disjoint polyhedra, where all instances that belong to the same partition receive the same treatment, and (ii) can be converted into an equivalent prescriptive tree with hyperplane splits for interpretability. We demonstrate the flexibility of the P-ReLU network as constraints can be easily incorporated with minor modifications to the architecture. Through experiments, we validate the superior prescriptive accuracy of P-ReLU against competing benchmarks. Lastly, we present examples of interpretable prescriptive trees extracted from trained P-ReLUs using a real-world dataset, for both the unconstrained and constrained scenarios.
[ "cs.LG", "stat.AP", "stat.ML" ]
false
2306.00689
2023-06-01T14:00:47Z
Stuttering Detection Using Speaker Representations and Self-supervised Contextual Embeddings
[ "Shakeel A. Sheikh", "Md Sahidullah", "Fabrice Hirsch", "Slim Ouni" ]
The adoption of advanced deep learning architectures in stuttering detection (SD) tasks is challenging due to the limited size of the available datasets. To this end, this work introduces the application of speech embeddings extracted from pre-trained deep learning models trained on large audio datasets for different tasks. In particular, we explore audio representations obtained using emphasized channel attention, propagation, and aggregation time delay neural network (ECAPA-TDNN) and Wav2Vec2.0 models trained on VoxCeleb and LibriSpeech datasets respectively. After extracting the embeddings, we benchmark with several traditional classifiers, such as the K-nearest neighbour (KNN), Gaussian naive Bayes, and neural network, for the SD tasks. In comparison to the standard SD systems trained only on the limited SEP-28k dataset, we obtain a relative improvement of 12.08%, 28.71%, 37.9% in terms of unweighted average recall (UAR) over the baselines. Finally, we have shown that combining two embeddings and concatenating multiple layers of Wav2Vec2.0 can further improve the UAR by up to 2.60% and 6.32% respectively.
[ "cs.SD", "cs.LG", "eess.AS" ]
false
2306.00750
2023-06-01T14:45:28Z
End-to-End Document Classification and Key Information Extraction using Assignment Optimization
[ "Ciaran Cooney", "Joana Cavadas", "Liam Madigan", "Bradley Savage", "Rachel Heyburn", "Mairead O'Cuinn" ]
We propose end-to-end document classification and key information extraction (KIE) for automating document processing in forms. Through accurate document classification we harness known information from templates to enhance KIE from forms. We use text and layout encoding with a cosine similarity measure to classify visually-similar documents. We then demonstrate a novel application of mixed integer programming by using assignment optimization to extract key information from documents. Our approach is validated on an in-house dataset of noisy scanned forms. The best performing document classification approach achieved 0.97 f1 score. A mean f1 score of 0.94 for the KIE task suggests there is significant potential in applying optimization techniques. Abation results show that the method relies on document preprocessing techniques to mitigate Type II errors and achieve optimal performance.
[ "cs.IR", "cs.AI", "cs.LG" ]
false
2306.00794
2023-06-01T15:25:14Z
SlothSpeech: Denial-of-service Attack Against Speech Recognition Models
[ "Mirazul Haque", "Rutvij Shah", "Simin Chen", "Berrak Şişman", "Cong Liu", "Wei Yang" ]
Deep Learning (DL) models have been popular nowadays to execute different speech-related tasks, including automatic speech recognition (ASR). As ASR is being used in different real-time scenarios, it is important that the ASR model remains efficient against minor perturbations to the input. Hence, evaluating efficiency robustness of the ASR model is the need of the hour. We show that popular ASR models like Speech2Text model and Whisper model have dynamic computation based on different inputs, causing dynamic efficiency. In this work, we propose SlothSpeech, a denial-of-service attack against ASR models, which exploits the dynamic behaviour of the model. SlothSpeech uses the probability distribution of the output text tokens to generate perturbations to the audio such that efficiency of the ASR model is decreased. We find that SlothSpeech generated inputs can increase the latency up to 40X times the latency induced by benign input.
[ "cs.SD", "cs.CR", "cs.LG", "eess.AS" ]
false
2306.00810
2023-06-01T15:37:47Z
Deep Operator Learning-based Surrogate Models with Uncertainty Quantification for Optimizing Internal Cooling Channel Rib Profiles
[ "Izzet Sahin", "Christian Moya", "Amirhossein Mollaali", "Guang Lin", "Guillermo Paniagua" ]
This paper designs surrogate models with uncertainty quantification capabilities to improve the thermal performance of rib-turbulated internal cooling channels effectively. To construct the surrogate, we use the deep operator network (DeepONet) framework, a novel class of neural networks designed to approximate mappings between infinite-dimensional spaces using relatively small datasets. The proposed DeepONet takes an arbitrary continuous rib geometry with control points as input and outputs continuous detailed information about the distribution of pressure and heat transfer around the profiled ribs. The datasets needed to train and test the proposed DeepONet framework were obtained by simulating a 2D rib-roughened internal cooling channel. To accomplish this, we continuously modified the input rib geometry by adjusting the control points according to a simple random distribution with constraints, rather than following a predefined path or sampling method. The studied channel has a hydraulic diameter, Dh, of 66.7 mm, and a length-to-hydraulic diameter ratio, L/Dh, of 10. The ratio of rib center height to hydraulic diameter (e/Dh), which was not changed during the rib profile update, was maintained at a constant value of 0.048. The ribs were placed in the channel with a pitch-to-height ratio (P/e) of 10. In addition, we provide the proposed surrogates with effective uncertainty quantification capabilities. This is achieved by converting the DeepONet framework into a Bayesian DeepONet (B-DeepONet). B-DeepONet samples from the posterior distribution of DeepONet parameters using the novel framework of stochastic gradient replica-exchange MCMC.
[ "physics.flu-dyn", "cs.LG", "cs.NA", "math.NA" ]
false
2306.00872
2023-06-01T16:32:53Z
Is novelty predictable?
[ "Clara Fannjiang", "Jennifer Listgarten" ]
Machine learning-based design has gained traction in the sciences, most notably in the design of small molecules, materials, and proteins, with societal implications spanning drug development and manufacturing, plastic degradation, and carbon sequestration. When designing objects to achieve novel property values with machine learning, one faces a fundamental challenge: how to push past the frontier of current knowledge, distilled from the training data into the model, in a manner that rationally controls the risk of failure. If one trusts learned models too much in extrapolation, one is likely to design rubbish. In contrast, if one does not extrapolate, one cannot find novelty. Herein, we ponder how one might strike a useful balance between these two extremes. We focus in particular on designing proteins with novel property values, although much of our discussion addresses machine learning-based design more broadly.
[ "cs.LG", "q-bio.BM", "q-bio.QM" ]
false
2306.00958
2023-06-01T17:52:23Z
LIV: Language-Image Representations and Rewards for Robotic Control
[ "Yecheng Jason Ma", "William Liang", "Vaidehi Som", "Vikash Kumar", "Amy Zhang", "Osbert Bastani", "Dinesh Jayaraman" ]
We present Language-Image Value learning (LIV), a unified objective for vision-language representation and reward learning from action-free videos with text annotations. Exploiting a novel connection between dual reinforcement learning and mutual information contrastive learning, the LIV objective trains a multi-modal representation that implicitly encodes a universal value function for tasks specified as language or image goals. We use LIV to pre-train the first control-centric vision-language representation from large human video datasets such as EpicKitchen. Given only a language or image goal, the pre-trained LIV model can assign dense rewards to each frame in videos of unseen robots or humans attempting that task in unseen environments. Further, when some target domain-specific data is available, the same objective can be used to fine-tune and improve LIV and even other pre-trained representations for robotic control and reward specification in that domain. In our experiments on several simulated and real-world robot environments, LIV models consistently outperform the best prior input state representations for imitation learning, as well as reward specification methods for policy synthesis. Our results validate the advantages of joint vision-language representation and reward learning within the unified, compact LIV framework.
[ "cs.RO", "cs.AI", "cs.LG" ]
false
2306.01012
2023-06-01T01:50:37Z
Graph-Level Embedding for Time-Evolving Graphs
[ "Lili Wang", "Chenghan Huang", "Weicheng Ma", "Xinyuan Cao", "Soroush Vosoughi" ]
Graph representation learning (also known as network embedding) has been extensively researched with varying levels of granularity, ranging from nodes to graphs. While most prior work in this area focuses on node-level representation, limited research has been conducted on graph-level embedding, particularly for dynamic or temporal networks. However, learning low-dimensional graph-level representations for dynamic networks is critical for various downstream graph retrieval tasks such as temporal graph similarity ranking, temporal graph isomorphism, and anomaly detection. In this paper, we present a novel method for temporal graph-level embedding that addresses this gap. Our approach involves constructing a multilayer graph and using a modified random walk with temporal backtracking to generate temporal contexts for the graph's nodes. We then train a "document-level" language model on these contexts to generate graph-level embeddings. We evaluate our proposed model on five publicly available datasets for the task of temporal graph similarity ranking, and our model outperforms baseline methods. Our experimental results demonstrate the effectiveness of our method in generating graph-level embeddings for dynamic networks.
[ "cs.LG", "cs.AI", "cs.SI" ]
false
2306.01027
2023-06-01T13:33:26Z
An FPGA Architecture for Online Learning using the Tsetlin Machine
[ "Samuel Prescott", "Adrian Wheeldon", "Rishad Shafik", "Tousif Rahman", "Alex Yakovlev", "Ole-Christoffer Granmo" ]
There is a need for machine learning models to evolve in unsupervised circumstances. New classifications may be introduced, unexpected faults may occur, or the initial dataset may be small compared to the data-points presented to the system during normal operation. Implementing such a system using neural networks involves significant mathematical complexity, which is a major issue in power-critical edge applications. This paper proposes a novel field-programmable gate-array infrastructure for online learning, implementing a low-complexity machine learning algorithm called the Tsetlin Machine. This infrastructure features a custom-designed architecture for run-time learning management, providing on-chip offline and online learning. Using this architecture, training can be carried out on-demand on the \ac{FPGA} with pre-classified data before inference takes place. Additionally, our architecture provisions online learning, where training can be interleaved with inference during operation. Tsetlin Machine (TM) training naturally descends to an optimum, with training also linked to a threshold hyper-parameter which is used to reduce the probability of issuing feedback as the TM becomes trained further. The proposed architecture is modular, allowing the data input source to be easily changed, whilst inbuilt cross-validation infrastructure allows for reliable and representative results during system testing. We present use cases for online learning using the proposed infrastructure and demonstrate the energy/performance/accuracy trade-offs.
[ "cs.LG", "cs.AI", "cs.AR" ]
false
2306.01089
2023-06-01T19:02:50Z
Semi-supervised Community Detection via Structural Similarity Metrics
[ "Yicong Jiang", "Tracy Ke" ]
Motivated by social network analysis and network-based recommendation systems, we study a semi-supervised community detection problem in which the objective is to estimate the community label of a new node using the network topology and partially observed community labels of existing nodes. The network is modeled using a degree-corrected stochastic block model, which allows for severe degree heterogeneity and potentially non-assortative communities. We propose an algorithm that computes a `structural similarity metric' between the new node and each of the $K$ communities by aggregating labeled and unlabeled data. The estimated label of the new node corresponds to the value of $k$ that maximizes this similarity metric. Our method is fast and numerically outperforms existing semi-supervised algorithms. Theoretically, we derive explicit bounds for the misclassification error and show the efficiency of our method by comparing it with an ideal classifier. Our findings highlight, to the best of our knowledge, the first semi-supervised community detection algorithm that offers theoretical guarantees.
[ "cs.SI", "cs.LG", "stat.ME", "stat.ML" ]
false
2306.01100
2023-06-01T19:23:38Z
ALO-VC: Any-to-any Low-latency One-shot Voice Conversion
[ "Bohan Wang", "Damien Ronssin", "Milos Cernak" ]
This paper presents ALO-VC, a non-parallel low-latency one-shot phonetic posteriorgrams (PPGs) based voice conversion method. ALO-VC enables any-to-any voice conversion using only one utterance from the target speaker, with only 47.5 ms future look-ahead. The proposed hybrid signal processing and machine learning pipeline combines a pre-trained speaker encoder, a pitch predictor to predict the converted speech's prosody, and positional encoding to convey the phoneme's location information. We introduce two system versions: ALO-VC-R, which uses a pre-trained d-vector speaker encoder, and ALO-VC-E, which improves performance using the ECAPA-TDNN speaker encoder. The experimental results demonstrate both ALO-VC-R and ALO-VC-E can achieve comparable performance to non-causal baseline systems on the VCTK dataset and two out-of-domain datasets. Furthermore, both proposed systems can be deployed on a single CPU core with 55 ms latency and 0.78 real-time factor. Our demo is available online.
[ "eess.AS", "cs.LG", "cs.SD" ]
false
2306.01122
2023-06-01T20:19:30Z
On the Convergence of Coordinate Ascent Variational Inference
[ "Anirban Bhattacharya", "Debdeep Pati", "Yun Yang" ]
As a computational alternative to Markov chain Monte Carlo approaches, variational inference (VI) is becoming more and more popular for approximating intractable posterior distributions in large-scale Bayesian models due to its comparable efficacy and superior efficiency. Several recent works provide theoretical justifications of VI by proving its statistical optimality for parameter estimation under various settings; meanwhile, formal analysis on the algorithmic convergence aspects of VI is still largely lacking. In this paper, we consider the common coordinate ascent variational inference (CAVI) algorithm for implementing the mean-field (MF) VI towards optimizing a Kullback--Leibler divergence objective functional over the space of all factorized distributions. Focusing on the two-block case, we analyze the convergence of CAVI by leveraging the extensive toolbox from functional analysis and optimization. We provide general conditions for certifying global or local exponential convergence of CAVI. Specifically, a new notion of generalized correlation for characterizing the interaction between the constituting blocks in influencing the VI objective functional is introduced, which according to the theory, quantifies the algorithmic contraction rate of two-block CAVI. As illustrations, we apply the developed theory to a number of examples, and derive explicit problem-dependent upper bounds on the algorithmic contraction rate.
[ "stat.ML", "cs.LG", "math.ST", "stat.TH" ]
false
2306.01143
2023-06-01T20:56:02Z
Federated Graph Learning for Low Probability of Detection in Wireless Ad-Hoc Networks
[ "Sivaram Krishnan", "Jihong Park", "Subhash Sagar", "Gregory Sherman", "Benjamin Campbell", "Jinho Choi" ]
Low probability of detection (LPD) has recently emerged as a means to enhance the privacy and security of wireless networks. Unlike existing wireless security techniques, LPD measures aim to conceal the entire existence of wireless communication instead of safeguarding the information transmitted from users. Motivated by LPD communication, in this paper, we study a privacy-preserving and distributed framework based on graph neural networks to minimise the detectability of a wireless ad-hoc network as a whole and predict an optimal communication region for each node in the wireless network, allowing them to communicate while remaining undetected from external actors. We also demonstrate the effectiveness of the proposed method in terms of two performance measures, i.e., mean absolute error and median absolute error.
[ "cs.LG", "cs.CR", "cs.NI" ]
false
2306.01174
2023-06-01T22:16:28Z
Neural Ideal Large Eddy Simulation: Modeling Turbulence with Neural Stochastic Differential Equations
[ "Anudhyan Boral", "Zhong Yi Wan", "Leonardo Zepeda-Núñez", "James Lottes", "Qing Wang", "Yi-fan Chen", "John Roberts Anderson", "Fei Sha" ]
We introduce a data-driven learning framework that assimilates two powerful ideas: ideal large eddy simulation (LES) from turbulence closure modeling and neural stochastic differential equations (SDE) for stochastic modeling. The ideal LES models the LES flow by treating each full-order trajectory as a random realization of the underlying dynamics, as such, the effect of small-scales is marginalized to obtain the deterministic evolution of the LES state. However, ideal LES is analytically intractable. In our work, we use a latent neural SDE to model the evolution of the stochastic process and an encoder-decoder pair for transforming between the latent space and the desired ideal flow field. This stands in sharp contrast to other types of neural parameterization of closure models where each trajectory is treated as a deterministic realization of the dynamics. We show the effectiveness of our approach (niLES - neural ideal LES) on a challenging chaotic dynamical system: Kolmogorov flow at a Reynolds number of 20,000. Compared to competing methods, our method can handle non-uniform geometries using unstructured meshes seamlessly. In particular, niLES leads to trajectories with more accurate statistics and enhances stability, particularly for long-horizon rollouts.
[ "cs.LG", "cs.NA", "math.NA" ]
false
2306.01196
2023-06-01T23:22:46Z
An Effective Meaningful Way to Evaluate Survival Models
[ "Shi-ang Qi", "Neeraj Kumar", "Mahtab Farrokh", "Weijie Sun", "Li-Hao Kuan", "Rajesh Ranganath", "Ricardo Henao", "Russell Greiner" ]
One straightforward metric to evaluate a survival prediction model is based on the Mean Absolute Error (MAE) -- the average of the absolute difference between the time predicted by the model and the true event time, over all subjects. Unfortunately, this is challenging because, in practice, the test set includes (right) censored individuals, meaning we do not know when a censored individual actually experienced the event. In this paper, we explore various metrics to estimate MAE for survival datasets that include (many) censored individuals. Moreover, we introduce a novel and effective approach for generating realistic semi-synthetic survival datasets to facilitate the evaluation of metrics. Our findings, based on the analysis of the semi-synthetic datasets, reveal that our proposed metric (MAE using pseudo-observations) is able to rank models accurately based on their performance, and often closely matches the true MAE -- in particular, is better than several alternative methods.
[ "cs.LG", "cs.AI", "stat.ML" ]
false
2306.01799
2023-06-01T15:42:50Z
Pairwise Ranking Losses of Click-Through Rates Prediction for Welfare Maximization in Ad Auctions
[ "Boxiang Lyu", "Zhe Feng", "Zachary Robertson", "Sanmi Koyejo" ]
We study the design of loss functions for click-through rates (CTR) to optimize (social) welfare in advertising auctions. Existing works either only focus on CTR predictions without consideration of business objectives (e.g., welfare) in auctions or assume that the distribution over the participants' expected cost-per-impression (eCPM) is known a priori, then use various additional assumptions on the parametric form of the distribution to derive loss functions for predicting CTRs. In this work, we bring back the welfare objectives of ad auctions into CTR predictions and propose a novel weighted rankloss to train the CTR model. Compared to existing literature, our approach provides a provable guarantee on welfare but without assumptions on the eCPMs' distribution while also avoiding the intractability of naively applying existing learning-to-rank methods. Further, we propose a theoretically justifiable technique for calibrating the losses using labels generated from a teacher network, only assuming that the teacher network has bounded $\ell_2$ generalization error. Finally, we demonstrate the advantages of the proposed loss on synthetic and real-world data.
[ "cs.GT", "cs.IR", "cs.LG" ]
false
2306.01802
2023-06-01T16:31:36Z
Linear Time GPs for Inferring Latent Trajectories from Neural Spike Trains
[ "Matthew Dowling", "Yuan Zhao", "Il Memming Park" ]
Latent Gaussian process (GP) models are widely used in neuroscience to uncover hidden state evolutions from sequential observations, mainly in neural activity recordings. While latent GP models provide a principled and powerful solution in theory, the intractable posterior in non-conjugate settings necessitates approximate inference schemes, which may lack scalability. In this work, we propose cvHM, a general inference framework for latent GP models leveraging Hida-Mat\'ern kernels and conjugate computation variational inference (CVI). With cvHM, we are able to perform variational inference of latent neural trajectories with linear time complexity for arbitrary likelihoods. The reparameterization of stationary kernels using Hida-Mat\'ern GPs helps us connect the latent variable models that encode prior assumptions through dynamical systems to those that encode trajectory assumptions through GPs. In contrast to previous work, we use bidirectional information filtering, leading to a more concise implementation. Furthermore, we employ the Whittle approximate likelihood to achieve highly efficient hyperparameter learning.
[ "q-bio.NC", "cs.LG", "stat.AP", "stat.ML" ]
false
2306.03941
2023-06-01T18:26:37Z
A scientometric analysis of the effect of COVID-19 on the spread of research outputs
[ "Gianpaolo Zammarchi", "Andrea Carta", "Silvia Columbu", "Luca Frigau", "Monica Musio" ]
The spread of the Sars-COV-2 pandemic in 2020 had a huge impact on the life course of all of us. This rapid spread has also caused an increase in the research production in topics related to COVID-19 with regard to different aspects. Italy has, unfortunately, been one of the first countries to be massively involved in the outbreak of the disease. In this paper we present an extensive scientometric analysis of the research production both at global (entire literature produced in the first 2 years after the beginning of the pandemic) and local level (COVID-19 literature produced by authors with an Italian affiliation). Our results showed that US and China are the most active countries in terms of number of publications and that the number of collaborations between institutions varies according to geographical distance. Moreover, we identified the medical-biological as the fields with the greatest growth in terms of literature production. Furthermore, we also better explored the relationship between the number of citations and variables obtained from the data set (e.g. number of authors per article). Using multiple correspondence analysis and quantile regression we shed light on the role of journal topics and impact factor, the type of article, the field of study and how these elements affect citations.
[ "cs.DL", "cs.LG", "physics.soc-ph" ]
false
2306.07981
2023-06-01T01:44:49Z
Feature Engineering-Based Detection of Buffer Overflow Vulnerability in Source Code Using Neural Networks
[ "Mst Shapna Akter", "Hossain Shahriar", "Juan Rodriguez Cardenas", "Sheikh Iqbal Ahamed", "Alfredo Cuzzocrea" ]
One of the most significant challenges in the field of software code auditing is the presence of vulnerabilities in software source code. Every year, more and more software flaws are discovered, either internally in proprietary code or publicly disclosed. These flaws are highly likely to be exploited and can lead to system compromise, data leakage, or denial of service. To create a large-scale machine learning system for function level vulnerability identification, we utilized a sizable dataset of C and C++ open-source code containing millions of functions with potential buffer overflow exploits. We have developed an efficient and scalable vulnerability detection method based on neural network models that learn features extracted from the source codes. The source code is first converted into an intermediate representation to remove unnecessary components and shorten dependencies. We maintain the semantic and syntactic information using state of the art word embedding algorithms such as GloVe and fastText. The embedded vectors are subsequently fed into neural networks such as LSTM, BiLSTM, LSTM Autoencoder, word2vec, BERT, and GPT2 to classify the possible vulnerabilities. We maintain the semantic and syntactic information using state of the art word embedding algorithms such as GloVe and fastText. The embedded vectors are subsequently fed into neural networks such as LSTM, BiLSTM, LSTM Autoencoder, word2vec, BERT, and GPT2 to classify the possible vulnerabilities. Furthermore, we have proposed a neural network model that can overcome issues associated with traditional neural networks. We have used evaluation metrics such as F1 score, precision, recall, accuracy, and total execution time to measure the performance. We have conducted a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information.
[ "cs.CR", "cs.LG", "cs.SE" ]
false
2306.17169
2023-06-01T04:11:22Z
Enterprise Disk Drive Scrubbing Based on Mondrian Conformal Predictors
[ "Rahul Vishwakarma", "Jinha Hwang", "Soundouss Messoudi", "Ava Hedayatipour" ]
Disk scrubbing is a process aimed at resolving read errors on disks by reading data from the disk. However, scrubbing the entire storage array at once can adversely impact system performance, particularly during periods of high input/output operations. Additionally, the continuous reading of data from disks when scrubbing can result in wear and tear, especially on larger capacity disks, due to the significant time and energy consumption involved. To address these issues, we propose a selective disk scrubbing method that enhances the overall reliability and power efficiency in data centers. Our method employs a Machine Learning model based on Mondrian Conformal prediction to identify specific disks for scrubbing, by proactively predicting the health status of each disk in the storage pool, forecasting n-days in advance, and using an open-source dataset. For disks predicted as non-healthy, we mark them for replacement without further action. For healthy drives, we create a set and quantify their relative health across the entire storage pool based on the predictor's confidence. This enables us to prioritize selective scrubbing for drives with established scrubbing frequency based on the scrub cycle. The method we propose provides an efficient and dependable solution for managing enterprise disk drives. By scrubbing just 22.7% of the total storage disks, we can achieve optimized energy consumption and reduce the carbon footprint of the data center.
[ "cs.DC", "cs.AI", "cs.LG" ]
false
2306.00352
2023-06-01T05:15:34Z
Improving Energy Conserving Descent for Machine Learning: Theory and Practice
[ "G. Bruno De Luca", "Alice Gatti", "Eva Silverstein" ]
We develop the theory of Energy Conserving Descent (ECD) and introduce ECDSep, a gradient-based optimization algorithm able to tackle convex and non-convex optimization problems. The method is based on the novel ECD framework of optimization as physical evolution of a suitable chaotic energy-conserving dynamical system, enabling analytic control of the distribution of results - dominated at low loss - even for generic high-dimensional problems with no symmetries. Compared to previous realizations of this idea, we exploit the theoretical control to improve both the dynamics and chaos-inducing elements, enhancing performance while simplifying the hyper-parameter tuning of the optimization algorithm targeted to different classes of problems. We empirically compare with popular optimization methods such as SGD, Adam and AdamW on a wide range of machine learning problems, finding competitive or improved performance compared to the best among them on each task. We identify limitations in our analysis pointing to possibilities for additional improvements.
[ "cs.LG", "astro-ph.IM", "hep-th", "math.OC", "stat.ML" ]
false
2306.00361
2023-06-01T05:41:31Z
Sharded Bayesian Additive Regression Trees
[ "Hengrui Luo", "Matthew T. Pratola" ]
In this paper we develop the randomized Sharded Bayesian Additive Regression Trees (SBT) model. We introduce a randomization auxiliary variable and a sharding tree to decide partitioning of data, and fit each partition component to a sub-model using Bayesian Additive Regression Tree (BART). By observing that the optimal design of a sharding tree can determine optimal sharding for sub-models on a product space, we introduce an intersection tree structure to completely specify both the sharding and modeling using only tree structures. In addition to experiments, we also derive the theoretical optimal weights for minimizing posterior contractions and prove the worst-case complexity of SBT.
[ "stat.ML", "cs.LG", "math.ST", "stat.ME", "stat.TH", "62F15, 62G08", "G.3" ]
false
2306.00614
2023-06-01T12:38:11Z
Adaptation and Optimization of Automatic Speech Recognition (ASR) for the Maritime Domain in the Field of VHF Communication
[ "Emin Cagatay Nakilcioglu", "Maximilian Reimann", "Ole John" ]
This paper introduces a multilingual automatic speech recognizer (ASR) for maritime radio communi-cation that automatically converts received VHF radio signals into text. The challenges of maritime radio communication are described at first, and the deep learning architecture of marFM consisting of audio processing techniques and machine learning algorithms is presented. Subsequently, maritime radio data of interest is analyzed and then used to evaluate the transcription performance of our ASR model for various maritime radio data.
[ "cs.SD", "cs.AI", "cs.HC", "cs.LG", "eess.AS" ]
false
2306.00629
2023-06-01T12:52:34Z
Identifiability and Generalizability in Constrained Inverse Reinforcement Learning
[ "Andreas Schlaginhaufen", "Maryam Kamgarpour" ]
Two main challenges in Reinforcement Learning (RL) are designing appropriate reward functions and ensuring the safety of the learned policy. To address these challenges, we present a theoretical framework for Inverse Reinforcement Learning (IRL) in constrained Markov decision processes. From a convex-analytic perspective, we extend prior results on reward identifiability and generalizability to both the constrained setting and a more general class of regularizations. In particular, we show that identifiability up to potential shaping (Cao et al., 2021) is a consequence of entropy regularization and may generally no longer hold for other regularizations or in the presence of safety constraints. We also show that to ensure generalizability to new transition laws and constraints, the true reward must be identified up to a constant. Additionally, we derive a finite sample guarantee for the suboptimality of the learned rewards, and validate our results in a gridworld environment.
[ "cs.LG", "cs.AI", "cs.SY", "eess.SY", "math.OC" ]
false
2306.00357
2023-06-01T05:36:22Z
Efficient and Robust Bayesian Selection of Hyperparameters in Dimension Reduction for Visualization
[ "Yin-Ting Liao", "Hengrui Luo", "Anna Ma" ]
We introduce an efficient and robust auto-tuning framework for hyperparameter selection in dimension reduction (DR) algorithms, focusing on large-scale datasets and arbitrary performance metrics. By leveraging Bayesian optimization (BO) with a surrogate model, our approach enables efficient hyperparameter selection with multi-objective trade-offs and allows us to perform data-driven sensitivity analysis. By incorporating normalization and subsampling, the proposed framework demonstrates versatility and efficiency, as shown in applications to visualization techniques such as t-SNE and UMAP. We evaluate our results on various synthetic and real-world datasets using multiple quality metrics, providing a robust and efficient solution for hyperparameter selection in DR algorithms.
[ "stat.ML", "cs.HC", "cs.LG", "math.PR", "math.ST", "stat.TH", "62F15, 68T09, 94A16" ]
false
2306.00833
2023-06-01T15:55:46Z
When Does Bottom-up Beat Top-down in Hierarchical Community Detection?
[ "Maximilien Dreveton", "Daichi Kuroda", "Matthias Grossglauser", "Patrick Thiran" ]
Hierarchical clustering of networks consists in finding a tree of communities, such that lower levels of the hierarchy reveal finer-grained community structures. There are two main classes of algorithms tackling this problem. Divisive ($\textit{top-down}$) algorithms recursively partition the nodes into two communities, until a stopping rule indicates that no further split is needed. In contrast, agglomerative ($\textit{bottom-up}$) algorithms first identify the smallest community structure and then repeatedly merge the communities using a $\textit{linkage}$ method. In this article, we establish theoretical guarantees for the recovery of the hierarchical tree and community structure of a Hierarchical Stochastic Block Model by a bottom-up algorithm. We also establish that this bottom-up algorithm attains the information-theoretic threshold for exact recovery at intermediate levels of the hierarchy. Notably, these recovery conditions are less restrictive compared to those existing for top-down algorithms. This shows that bottom-up algorithms extend the feasible region for achieving exact recovery at intermediate levels. Numerical experiments on both synthetic and real data sets confirm the superiority of bottom-up algorithms over top-down algorithms. We also observe that top-down algorithms can produce dendrograms with inversions. These findings contribute to a better understanding of hierarchical clustering techniques and their applications in network analysis.
[ "cs.SI", "cs.LG", "math.ST", "stat.ME", "stat.ML", "stat.TH" ]
false
2306.01229
2023-06-02T01:40:08Z
Exploring the Boundaries of Semi-Supervised Facial Expression Recognition: Learning from In-Distribution, Out-of-Distribution, and Unconstrained Data
[ "Shuvendu Roy", "Ali Etemad" ]
Deep learning-based methods have been the key driving force behind much of the recent success of facial expression recognition (FER) systems. However, the need for large amounts of labelled data remains a challenge. Semi-supervised learning offers a way to overcome this limitation, allowing models to learn from a small amount of labelled data along with a large unlabelled dataset. While semi-supervised learning has shown promise in FER, most current methods from general computer vision literature have not been explored in the context of FER. In this work, we present a comprehensive study on 11 of the most recent semi-supervised methods, in the context of FER, namely Pi-model, Pseudo-label, Mean Teacher, VAT, UDA, MixMatch, ReMixMatch, FlexMatch, CoMatch, and CCSSL. Our investigation covers semi-supervised learning from in-distribution, out-of-distribution, unconstrained, and very small unlabelled data. Our evaluation includes five FER datasets plus one large face dataset for unconstrained learning. Our results demonstrate that FixMatch consistently achieves better performance on in-distribution unlabelled data, while ReMixMatch stands out among all methods for out-of-distribution, unconstrained, and scarce unlabelled data scenarios. Another significant observation is that semi-supervised learning produces a reasonable improvement over supervised learning, regardless of whether in-distribution, out-of-distribution, or unconstrained data is utilized as the unlabelled set. We also conduct sensitivity analyses on critical hyper-parameters for the two best methods of each setting.
[ "cs.CV" ]
false
2306.01343
2023-06-02T08:16:21Z
Bilevel Fast Scene Adaptation for Low-Light Image Enhancement
[ "Long Ma", "Dian Jin", "Nan An", "Jinyuan Liu", "Xin Fan", "Risheng Liu" ]
Enhancing images in low-light scenes is a challenging but widely concerned task in the computer vision. The mainstream learning-based methods mainly acquire the enhanced model by learning the data distribution from the specific scenes, causing poor adaptability (even failure) when meeting real-world scenarios that have never been encountered before. The main obstacle lies in the modeling conundrum from distribution discrepancy across different scenes. To remedy this, we first explore relationships between diverse low-light scenes based on statistical analysis, i.e., the network parameters of the encoder trained in different data distributions are close. We introduce the bilevel paradigm to model the above latent correspondence from the perspective of hyperparameter optimization. A bilevel learning framework is constructed to endow the scene-irrelevant generality of the encoder towards diverse scenes (i.e., freezing the encoder in the adaptation and testing phases). Further, we define a reinforced bilevel learning framework to provide a meta-initialization for scene-specific decoder to further ameliorate visual quality. Moreover, to improve the practicability, we establish a Retinex-induced architecture with adaptive denoising and apply our built learning framework to acquire its parameters by using two training losses including supervised and unsupervised forms. Extensive experimental evaluations on multiple datasets verify our adaptability and competitive performance against existing state-of-the-art works. The code and datasets will be available at https://github.com/vis-opt-group/BL.
[ "cs.CV" ]
false
2306.01363
2023-06-02T08:37:38Z
Quantifying Sample Anonymity in Score-Based Generative Models with Adversarial Fingerprinting
[ "Mischa Dombrowski", "Bernhard Kainz" ]
Recent advances in score-based generative models have led to a huge spike in the development of downstream applications using generative models ranging from data augmentation over image and video generation to anomaly detection. Despite publicly available trained models, their potential to be used for privacy preserving data sharing has not been fully explored yet. Training diffusion models on private data and disseminating the models and weights rather than the raw dataset paves the way for innovative large-scale data-sharing strategies, particularly in healthcare, where safeguarding patients' personal health information is paramount. However, publishing such models without individual consent of, e.g., the patients from whom the data was acquired, necessitates guarantees that identifiable training samples will never be reproduced, thus protecting personal health data and satisfying the requirements of policymakers and regulatory bodies. This paper introduces a method for estimating the upper bound of the probability of reproducing identifiable training images during the sampling process. This is achieved by designing an adversarial approach that searches for anatomic fingerprints, such as medical devices or dermal art, which could potentially be employed to re-identify training images. Our method harnesses the learned score-based model to estimate the probability of the entire subspace of the score function that may be utilized for one-to-one reproduction of training samples. To validate our estimates, we generate anomalies containing a fingerprint and investigate whether generated samples from trained generative models can be uniquely mapped to the original training samples. Overall our results show that privacy-breaching images are reproduced at sampling time if the models were trained without care.
[ "cs.CV" ]
false
2306.01395
2023-06-02T09:44:45Z
Masked Autoencoder for Unsupervised Video Summarization
[ "Minho Shim", "Taeoh Kim", "Jinhyung Kim", "Dongyoon Wee" ]
Summarizing a video requires a diverse understanding of the video, ranging from recognizing scenes to evaluating how much each frame is essential enough to be selected as a summary. Self-supervised learning (SSL) is acknowledged for its robustness and flexibility to multiple downstream tasks, but the video SSL has not shown its value for dense understanding tasks like video summarization. We claim an unsupervised autoencoder with sufficient self-supervised learning does not need any extra downstream architecture design or fine-tuning weights to be utilized as a video summarization model. The proposed method to evaluate the importance score of each frame takes advantage of the reconstruction score of the autoencoder's decoder. We evaluate the method in major unsupervised video summarization benchmarks to show its effectiveness under various experimental settings.
[ "cs.CV" ]
false
2306.01398
2023-06-02T09:46:22Z
Evaluating The Robustness of Self-Supervised Representations to Background/Foreground Removal
[ "Xavier F. Cadet", "Ranya Aloufi", "Alain Miranville", "Sara Ahmadi-Abhari", "Hamed Haddadi" ]
Despite impressive empirical advances of SSL in solving various tasks, the problem of understanding and characterizing SSL representations learned from input data remains relatively under-explored. We provide a comparative analysis of how the representations produced by SSL models differ when masking parts of the input. Specifically, we considered state-of-the-art SSL pretrained models, such as DINOv2, MAE, and SwaV, and analyzed changes at the representation levels across 4 Image Classification datasets. First, we generate variations of the datasets by applying foreground and background segmentation. Then, we conduct statistical analysis using Canonical Correlation Analysis (CCA) and Centered Kernel Alignment (CKA) to evaluate the robustness of the representations learned in SSL models. Empirically, we show that not all models lead to representations that separate foreground, background, and complete images. Furthermore, we test different masking strategies by occluding the center regions of the images to address cases where foreground and background are difficult. For example, the DTD dataset that focuses on texture rather specific objects.
[ "cs.CV" ]
false
2306.01405
2023-06-02T09:52:04Z
Learning Signed Distance Functions from Noisy 3D Point Clouds via Noise to Noise Mapping
[ "Baorui Ma", "Yu-Shen Liu", "Zhizhong Han" ]
Learning signed distance functions (SDFs) from 3D point clouds is an important task in 3D computer vision. However, without ground truth signed distances, point normals or clean point clouds, current methods still struggle from learning SDFs from noisy point clouds. To overcome this challenge, we propose to learn SDFs via a noise to noise mapping, which does not require any clean point cloud or ground truth supervision for training. Our novelty lies in the noise to noise mapping which can infer a highly accurate SDF of a single object or scene from its multiple or even single noisy point cloud observations. Our novel learning manner is supported by modern Lidar systems which capture multiple noisy observations per second. We achieve this by a novel loss which enables statistical reasoning on point clouds and maintains geometric consistency although point clouds are irregular, unordered and have no point correspondence among noisy observations. Our evaluation under the widely used benchmarks demonstrates our superiority over the state-of-the-art methods in surface reconstruction, point cloud denoising and upsampling. Our code, data, and pre-trained models are available at https://github.com/mabaorui/Noise2NoiseMapping/
[ "cs.CV" ]
false
2306.01438
2023-06-02T10:57:41Z
Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object Detection
[ "Yingjie Wang", "Jiajun Deng", "Yao Li", "Jinshui Hu", "Cong Liu", "Yu Zhang", "Jianmin Ji", "Wanli Ouyang", "Yanyong Zhang" ]
LiDAR and Radar are two complementary sensing approaches in that LiDAR specializes in capturing an object's 3D shape while Radar provides longer detection ranges as well as velocity hints. Though seemingly natural, how to efficiently combine them for improved feature representation is still unclear. The main challenge arises from that Radar data are extremely sparse and lack height information. Therefore, directly integrating Radar features into LiDAR-centric detection networks is not optimal. In this work, we introduce a bi-directional LiDAR-Radar fusion framework, termed Bi-LRFusion, to tackle the challenges and improve 3D detection for dynamic objects. Technically, Bi-LRFusion involves two steps: first, it enriches Radar's local features by learning important details from the LiDAR branch to alleviate the problems caused by the absence of height information and extreme sparsity; second, it combines LiDAR features with the enhanced Radar features in a unified bird's-eye-view representation. We conduct extensive experiments on nuScenes and ORR datasets, and show that our Bi-LRFusion achieves state-of-the-art performance for detecting dynamic objects. Notably, Radar data in these two datasets have different formats, which demonstrates the generalizability of our method. Codes are available at https://github.com/JessieW0806/BiLRFusion.
[ "cs.CV" ]
false
2306.01449
2023-06-02T11:11:00Z
SASMU: boost the performance of generalized recognition model using synthetic face dataset
[ "Chia-Chun Chung", "Pei-Chun Chang", "Yong-Sheng Chen", "HaoYuan He", "Chinson Yeh" ]
Nowadays, deploying a robust face recognition product becomes easy with the development of face recognition techniques for decades. Not only profile image verification but also the state-of-the-art method can handle the in-the-wild image almost perfectly. However, the concern of privacy issues raise rapidly since mainstream research results are powered by tons of web-crawled data, which faces the privacy invasion issue. The community tries to escape this predicament completely by training the face recognition model with synthetic data but faces severe domain gap issues, which still need to access real images and identity labels to fine-tune the model. In this paper, we propose SASMU, a simple, novel, and effective method for face recognition using a synthetic dataset. Our proposed method consists of spatial data augmentation (SA) and spectrum mixup (SMU). We first analyze the existing synthetic datasets for developing a face recognition system. Then, we reveal that heavy data augmentation is helpful for boosting performance when using synthetic data. By analyzing the previous frequency mixup studies, we proposed a novel method for domain generalization. Extensive experimental results have demonstrated the effectiveness of SASMU, achieving state-of-the-art performance on several common benchmarks, such as LFW, AgeDB-30, CA-LFW, CFP-FP, and CP-LFW.
[ "cs.CV" ]
false
2306.01452
2023-06-02T11:19:50Z
dugMatting: Decomposed-Uncertainty-Guided Matting
[ "Jiawei Wu", "Changqing Zhang", "Zuoyong Li", "Huazhu Fu", "Xi Peng", "Joey Tianyi Zhou" ]
Cutting out an object and estimating its opacity mask, known as image matting, is a key task in image and video editing. Due to the highly ill-posed issue, additional inputs, typically user-defined trimaps or scribbles, are usually needed to reduce the uncertainty. Although effective, it is either time consuming or only suitable for experienced users who know where to place the strokes. In this work, we propose a decomposed-uncertainty-guided matting (dugMatting) algorithm, which explores the explicitly decomposed uncertainties to efficiently and effectively improve the results. Basing on the characteristic of these uncertainties, the epistemic uncertainty is reduced in the process of guiding interaction (which introduces prior knowledge), while the aleatoric uncertainty is reduced in modeling data distribution (which introduces statistics for both data and possible noise). The proposed matting framework relieves the requirement for users to determine the interaction areas by using simple and efficient labeling. Extensively quantitative and qualitative results validate that the proposed method significantly improves the original matting algorithms in terms of both efficiency and efficacy.
[ "cs.CV" ]
false
2306.01500
2023-06-02T12:49:22Z
A Feature Reuse Framework with Texture-adaptive Aggregation for Reference-based Super-Resolution
[ "Xiaoyong Mei", "Yi Yang", "Ming Li", "Changqin Huang", "Kai Zhang", "Pietro Lió" ]
Reference-based super-resolution (RefSR) has gained considerable success in the field of super-resolution with the addition of high-resolution reference images to reconstruct low-resolution (LR) inputs with more high-frequency details, thereby overcoming some limitations of single image super-resolution (SISR). Previous research in the field of RefSR has mostly focused on two crucial aspects. The first is accurate correspondence matching between the LR and the reference (Ref) image. The second is the effective transfer and aggregation of similar texture information from the Ref images. Nonetheless, an important detail of perceptual loss and adversarial loss has been underestimated, which has a certain adverse effect on texture transfer and reconstruction. In this study, we propose a feature reuse framework that guides the step-by-step texture reconstruction process through different stages, reducing the negative impacts of perceptual and adversarial loss. The feature reuse framework can be used for any RefSR model, and several RefSR approaches have improved their performance after being retrained using our framework. Additionally, we introduce a single image feature embedding module and a texture-adaptive aggregation module. The single image feature embedding module assists in reconstructing the features of the LR inputs itself and effectively lowers the possibility of including irrelevant textures. The texture-adaptive aggregation module dynamically perceives and aggregates texture information between the LR inputs and the Ref images using dynamic filters. This enhances the utilization of the reference texture while reducing reference misuse. The source code is available at https://github.com/Yi-Yang355/FRFSR.
[ "cs.CV" ]
false
2306.01596
2023-06-02T15:07:48Z
Two-View Geometry Scoring Without Correspondences
[ "Axel Barroso-Laguna", "Eric Brachmann", "Victor Adrian Prisacariu", "Gabriel J. Brostow", "Daniyar Turmukhambetov" ]
Camera pose estimation for two-view geometry traditionally relies on RANSAC. Normally, a multitude of image correspondences leads to a pool of proposed hypotheses, which are then scored to find a winning model. The inlier count is generally regarded as a reliable indicator of "consensus". We examine this scoring heuristic, and find that it favors disappointing models under certain circumstances. As a remedy, we propose the Fundamental Scoring Network (FSNet), which infers a score for a pair of overlapping images and any proposed fundamental matrix. It does not rely on sparse correspondences, but rather embodies a two-view geometry model through an epipolar attention mechanism that predicts the pose error of the two images. FSNet can be incorporated into traditional RANSAC loops. We evaluate FSNet on fundamental and essential matrix estimation on indoor and outdoor datasets, and establish that FSNet can successfully identify good poses for pairs of images with few or unreliable correspondences. Besides, we show that naively combining FSNet with MAGSAC++ scoring approach achieves state of the art results.
[ "cs.CV" ]
false
2306.01642
2023-06-02T16:06:42Z
Automatic Reconstruction of Semantic 3D Models from 2D Floor Plans
[ "Aleixo Cambeiro Barreiro", "Mariusz Trzeciakiewicz", "Anna Hilsmann", "Peter Eisert" ]
Digitalization of existing buildings and the creation of 3D BIM models for them has become crucial for many tasks. Of particular importance are floor plans, which contain information about building layouts and are vital for processes such as construction, maintenance or refurbishing. However, this data is not always available in digital form, especially for older buildings constructed before CAD tools were widely available, or lacks semantic information. The digitalization of such information usually requires manual work of an expert that must reconstruct the layouts by hand, which is a cumbersome and error-prone process. In this paper, we present a pipeline for reconstruction of vectorized 3D models from scanned 2D plans, aiming at increasing the efficiency of this process. The method presented achieves state-of-the-art results in the public dataset CubiCasa5k, and shows good generalization to different types of plans. Our vectorization approach is particularly effective, outperforming previous methods.
[ "cs.CV" ]
false
2306.01738
2023-06-02T17:59:48Z
OCBEV: Object-Centric BEV Transformer for Multi-View 3D Object Detection
[ "Zhangyang Qi", "Jiaqi Wang", "Xiaoyang Wu", "Hengshuang Zhao" ]
Multi-view 3D object detection is becoming popular in autonomous driving due to its high effectiveness and low cost. Most of the current state-of-the-art detectors follow the query-based bird's-eye-view (BEV) paradigm, which benefits from both BEV's strong perception power and end-to-end pipeline. Despite achieving substantial progress, existing works model objects via globally leveraging temporal and spatial information of BEV features, resulting in problems when handling the challenging complex and dynamic autonomous driving scenarios. In this paper, we proposed an Object-Centric query-BEV detector OCBEV, which can carve the temporal and spatial cues of moving targets more effectively. OCBEV comprises three designs: Object Aligned Temporal Fusion aligns the BEV feature based on ego-motion and estimated current locations of moving objects, leading to a precise instance-level feature fusion. Object Focused Multi-View Sampling samples more 3D features from an adaptive local height ranges of objects for each scene to enrich foreground information. Object Informed Query Enhancement replaces part of pre-defined decoder queries in common DETR-style decoders with positional features of objects on high-confidence locations, introducing more direct object positional priors. Extensive experimental evaluations are conducted on the challenging nuScenes dataset. Our approach achieves a state-of-the-art result, surpassing the traditional BEVFormer by 1.5 NDS points. Moreover, we have a faster convergence speed and only need half of the training iterations to get comparable performance, which further demonstrates its effectiveness.
[ "cs.CV" ]
false
2306.01900
2023-06-02T20:09:57Z
Conditional Generation from Unconditional Diffusion Models using Denoiser Representations
[ "Alexandros Graikos", "Srikar Yellapragada", "Dimitris Samaras" ]
Denoising diffusion models have gained popularity as a generative modeling technique for producing high-quality and diverse images. Applying these models to downstream tasks requires conditioning, which can take the form of text, class labels, or other forms of guidance. However, providing conditioning information to these models can be challenging, particularly when annotations are scarce or imprecise. In this paper, we propose adapting pre-trained unconditional diffusion models to new conditions using the learned internal representations of the denoiser network. We demonstrate the effectiveness of our approach on various conditional generation tasks, including attribute-conditioned generation and mask-conditioned generation. Additionally, we show that augmenting the Tiny ImageNet training set with synthetic images generated by our approach improves the classification accuracy of ResNet baselines by up to 8%. Our approach provides a powerful and flexible way to adapt diffusion models to new conditions and generate high-quality augmented data for various conditional generation tasks.
[ "cs.CV" ]
false
2306.01902
2023-06-02T20:19:19Z
Unlearnable Examples for Diffusion Models: Protect Data from Unauthorized Exploitation
[ "Zhengyue Zhao", "Jinhao Duan", "Xing Hu", "Kaidi Xu", "Chenan Wang", "Rui Zhang", "Zidong Du", "Qi Guo", "Yunji Chen" ]
Diffusion models have demonstrated remarkable performance in image generation tasks, paving the way for powerful AIGC applications. However, these widely-used generative models can also raise security and privacy concerns, such as copyright infringement, and sensitive data leakage. To tackle these issues, we propose a method, Unlearnable Diffusion Perturbation, to safeguard images from unauthorized exploitation. Our approach involves designing an algorithm to generate sample-wise perturbation noise for each image to be protected. This imperceptible protective noise makes the data almost unlearnable for diffusion models, i.e., diffusion models trained or fine-tuned on the protected data cannot generate high-quality and diverse images related to the protected training data. Theoretically, we frame this as a max-min optimization problem and introduce EUDP, a noise scheduler-based method to enhance the effectiveness of the protective noise. We evaluate our methods on both Denoising Diffusion Probabilistic Model and Latent Diffusion Models, demonstrating that training diffusion models on the protected data lead to a significant reduction in the quality of the generated images. Especially, the experimental results on Stable Diffusion demonstrate that our method effectively safeguards images from being used to train Diffusion Models in various tasks, such as training specific objects and styles. This achievement holds significant importance in real-world scenarios, as it contributes to the protection of privacy and copyright against AI-generated content.
[ "cs.CV" ]
false
2306.01929
2023-06-02T22:05:52Z
Recent Advances of Local Mechanisms in Computer Vision: A Survey and Outlook of Recent Work
[ "Qiangchang Wang", "Yilong Yin" ]
Inspired by the fact that human brains can emphasize discriminative parts of the input and suppress irrelevant ones, substantial local mechanisms have been designed to boost the development of computer vision. They can not only focus on target parts to learn discriminative local representations, but also process information selectively to improve the efficiency. In terms of application scenarios and paradigms, local mechanisms have different characteristics. In this survey, we provide a systematic review of local mechanisms for various computer vision tasks and approaches, including fine-grained visual recognition, person re-identification, few-/zero-shot learning, multi-modal learning, self-supervised learning, Vision Transformers, and so on. Categorization of local mechanisms in each field is summarized. Then, advantages and disadvantages for every category are analyzed deeply, leaving room for exploration. Finally, future research directions about local mechanisms have also been discussed that may benefit future works. To the best our knowledge, this is the first survey about local mechanisms on computer vision. We hope that this survey can shed light on future research in the computer vision field.
[ "cs.CV" ]
false
2306.01210
2023-06-02T00:08:38Z
A new method using deep transfer learning on ECG to predict the response to cardiac resynchronization therapy
[ "Zhuo He", "Hongjin Si", "Xinwei Zhang", "Qing-Hui Chen", "Jiangang Zou", "Weihua Zhou" ]
Background: Cardiac resynchronization therapy (CRT) has emerged as an effective treatment for heart failure patients with electrical dyssynchrony. However, accurately predicting which patients will respond to CRT remains a challenge. This study explores the application of deep transfer learning techniques to train a predictive model for CRT response. Methods: In this study, the short-time Fourier transform (STFT) technique was employed to transform ECG signals into two-dimensional images. A transfer learning approach was then applied on the MIT-BIT ECG database to pre-train a convolutional neural network (CNN) model. The model was fine-tuned to extract relevant features from the ECG images, and then tested on our dataset of CRT patients to predict their response. Results: Seventy-one CRT patients were enrolled in this study. The transfer learning model achieved an accuracy of 72% in distinguishing responders from non-responders in the local dataset. Furthermore, the model showed good sensitivity (0.78) and specificity (0.79) in identifying CRT responders. The performance of our model outperformed clinic guidelines and traditional machine learning approaches. Conclusion: The utilization of ECG images as input and leveraging the power of transfer learning allows for improved accuracy in identifying CRT responders. This approach offers potential for enhancing patient selection and improving outcomes of CRT.
[ "eess.SP", "cs.CV" ]
false
2306.01232
2023-06-02T01:46:31Z
Deep Reinforcement Learning Framework for Thoracic Diseases Classification via Prior Knowledge Guidance
[ "Weizhi Nie", "Chen Zhang", "Dan Song", "Lina Zhao", "Yunpeng Bai", "Keliang Xie", "Anan Liu" ]
The chest X-ray is often utilized for diagnosing common thoracic diseases. In recent years, many approaches have been proposed to handle the problem of automatic diagnosis based on chest X-rays. However, the scarcity of labeled data for related diseases still poses a huge challenge to an accurate diagnosis. In this paper, we focus on the thorax disease diagnostic problem and propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents and the model parameters can also be continuously updated as the data increases, like a person's learning process. Especially, 1) prior knowledge can be learned from the pre-trained model based on old data or other domains' similar data, which can effectively reduce the dependence on target domain data, and 2) the framework of reinforcement learning can make the diagnostic agent as exploratory as a human being and improve the accuracy of diagnosis through continuous exploration. The method can also effectively solve the model learning problem in the case of few-shot data and improve the generalization ability of the model. Finally, our approach's performance was demonstrated using the well-known NIH ChestX-ray 14 and CheXpert datasets, and we achieved competitive results. The source code can be found here: \url{https://github.com/NeaseZ/MARL}.
[ "eess.IV", "cs.CV" ]
false
2306.01316
2023-06-02T07:29:36Z
Independent Modular Networks
[ "Hamed Damirchi", "Forest Agostinelli", "Pooyan Jamshidi" ]
Monolithic neural networks that make use of a single set of weights to learn useful representations for downstream tasks explicitly dismiss the compositional nature of data generation processes. This characteristic exists in data where every instance can be regarded as the combination of an identity concept, such as the shape of an object, combined with modifying concepts, such as orientation, color, and size. The dismissal of compositionality is especially detrimental in robotics, where state estimation relies heavily on the compositional nature of physical mechanisms (e.g., rotations and transformations) to model interactions. To accommodate this data characteristic, modular networks have been proposed. However, a lack of structure in each module's role, and modular network-specific issues such as module collapse have restricted their usability. We propose a modular network architecture that accommodates the mentioned decompositional concept by proposing a unique structure that splits the modules into predetermined roles. Additionally, we provide regularizations that improve the resiliency of the modular network to the problem of module collapse while improving the decomposition accuracy of the model.
[ "cs.CV", "cs.LG" ]
false
2306.01364
2023-06-02T08:38:02Z
Towards Robust GAN-generated Image Detection: a Multi-view Completion Representation
[ "Chi Liu", "Tianqing Zhu", "Sheng Shen", "Wanlei Zhou" ]
GAN-generated image detection now becomes the first line of defense against the malicious uses of machine-synthesized image manipulations such as deepfakes. Although some existing detectors work well in detecting clean, known GAN samples, their success is largely attributable to overfitting unstable features such as frequency artifacts, which will cause failures when facing unknown GANs or perturbation attacks. To overcome the issue, we propose a robust detection framework based on a novel multi-view image completion representation. The framework first learns various view-to-image tasks to model the diverse distributions of genuine images. Frequency-irrelevant features can be represented from the distributional discrepancies characterized by the completion models, which are stable, generalized, and robust for detecting unknown fake patterns. Then, a multi-view classification is devised with elaborated intra- and inter-view learning strategies to enhance view-specific feature representation and cross-view feature aggregation, respectively. We evaluated the generalization ability of our framework across six popular GANs at different resolutions and its robustness against a broad range of perturbation attacks. The results confirm our method's improved effectiveness, generalization, and robustness over various baselines.
[ "cs.CR", "cs.CV" ]
false
2306.01523
2023-06-02T13:24:37Z
Transformer-based Multi-Modal Learning for Multi Label Remote Sensing Image Classification
[ "David Hoffmann", "Kai Norman Clasen", "Begüm Demir" ]
In this paper, we introduce a novel Synchronized Class Token Fusion (SCT Fusion) architecture in the framework of multi-modal multi-label classification (MLC) of remote sensing (RS) images. The proposed architecture leverages modality-specific attention-based transformer encoders to process varying input modalities, while exchanging information across modalities by synchronizing the special class tokens after each transformer encoder block. The synchronization involves fusing the class tokens with a trainable fusion transformation, resulting in a synchronized class token that contains information from all modalities. As the fusion transformation is trainable, it allows to reach an accurate representation of the shared features among different modalities. Experimental results show the effectiveness of the proposed architecture over single-modality architectures and an early fusion multi-modal architecture when evaluated on a multi-modal MLC dataset. The code of the proposed architecture is publicly available at https://git.tu-berlin.de/rsim/sct-fusion.
[ "cs.CV", "cs.LG" ]
false
2306.01526
2023-06-02T13:26:23Z
Group channel pruning and spatial attention distilling for object detection
[ "Yun Chu", "Pu Li", "Yong Bai", "Zhuhua Hu", "Yongqing Chen", "Jiafeng Lu" ]
Due to the over-parameterization of neural networks, many model compression methods based on pruning and quantization have emerged. They are remarkable in reducing the size, parameter number, and computational complexity of the model. However, most of the models compressed by such methods need the support of special hardware and software, which increases the deployment cost. Moreover, these methods are mainly used in classification tasks, and rarely directly used in detection tasks. To address these issues, for the object detection network we introduce a three-stage model compression method: dynamic sparse training, group channel pruning, and spatial attention distilling. Firstly, to select out the unimportant channels in the network and maintain a good balance between sparsity and accuracy, we put forward a dynamic sparse training method, which introduces a variable sparse rate, and the sparse rate will change with the training process of the network. Secondly, to reduce the effect of pruning on network accuracy, we propose a novel pruning method called group channel pruning. In particular, we divide the network into multiple groups according to the scales of the feature layer and the similarity of module structure in the network, and then we use different pruning thresholds to prune the channels in each group. Finally, to recover the accuracy of the pruned network, we use an improved knowledge distillation method for the pruned network. Especially, we extract spatial attention information from the feature maps of specific scales in each group as knowledge for distillation. In the experiments, we use YOLOv4 as the object detection network and PASCAL VOC as the training dataset. Our method reduces the parameters of the model by 64.7 % and the calculation by 34.9%.
[ "cs.CV", "cs.AI" ]
false
2306.01562
2023-06-02T14:17:37Z
An Attentive-based Generative Model for Medical Image Synthesis
[ "Jiayuan Wang", "Q. M. Jonathan Wu", "Farhad Pourpanah" ]
Magnetic resonance (MR) and computer tomography (CT) imaging are valuable tools for diagnosing diseases and planning treatment. However, limitations such as radiation exposure and cost can restrict access to certain imaging modalities. To address this issue, medical image synthesis can generate one modality from another, but many existing models struggle with high-quality image synthesis when multiple slices are present in the dataset. This study proposes an attention-based dual contrast generative model, called ADC-cycleGAN, which can synthesize medical images from unpaired data with multiple slices. The model integrates a dual contrast loss term with the CycleGAN loss to ensure that the synthesized images are distinguishable from the source domain. Additionally, an attention mechanism is incorporated into the generators to extract informative features from both channel and spatial domains. To improve performance when dealing with multiple slices, the $K$-means algorithm is used to cluster the dataset into $K$ groups, and each group is used to train a separate ADC-cycleGAN. Experimental results demonstrate that the proposed ADC-cycleGAN model produces comparable samples to other state-of-the-art generative models, achieving the highest PSNR and SSIM values of 19.04385 and 0.68551, respectively. We publish the code at https://github.com/JiayuanWang-JW/ADC-cycleGAN.
[ "eess.IV", "cs.CV" ]
false
2306.01630
2023-06-02T15:49:26Z
A Conditional Normalizing Flow for Accelerated Multi-Coil MR Imaging
[ "Jeffrey Wen", "Rizwan Ahmad", "Philip Schniter" ]
Accelerated magnetic resonance (MR) imaging attempts to reduce acquisition time by collecting data below the Nyquist rate. As an ill-posed inverse problem, many plausible solutions exist, yet the majority of deep learning approaches generate only a single solution. We instead focus on sampling from the posterior distribution, which provides more comprehensive information for downstream inference tasks. To do this, we design a novel conditional normalizing flow (CNF) that infers the signal component in the measurement operator's nullspace, which is later combined with measured data to form complete images. Using fastMRI brain and knee data, we demonstrate fast inference and accuracy that surpasses recent posterior sampling techniques for MRI. Code is available at https://github.com/jwen307/mri_cnf/
[ "eess.IV", "cs.CV" ]
false
2306.01656
2023-06-02T16:24:34Z
Backchannel Detection and Agreement Estimation from Video with Transformer Networks
[ "Ahmed Amer", "Chirag Bhuvaneshwara", "Gowtham K. Addluri", "Mohammed M. Shaik", "Vedant Bonde", "Philipp Müller" ]
Listeners use short interjections, so-called backchannels, to signify attention or express agreement. The automatic analysis of this behavior is of key importance for human conversation analysis and interactive conversational agents. Current state-of-the-art approaches for backchannel analysis from visual behavior make use of two types of features: features based on body pose and features based on facial behavior. At the same time, transformer neural networks have been established as an effective means to fuse input from different data sources, but they have not yet been applied to backchannel analysis. In this work, we conduct a comprehensive evaluation of multi-modal transformer architectures for automatic backchannel analysis based on pose and facial information. We address both the detection of backchannels as well as the task of estimating the agreement expressed in a backchannel. In evaluations on the MultiMediate'22 backchannel detection challenge, we reach 66.4% accuracy with a one-layer transformer architecture, outperforming the previous state of the art. With a two-layer transformer architecture, we furthermore set a new state of the art (0.0604 MSE) on the task of estimating the amount of agreement expressed in a backchannel.
[ "cs.CV", "cs.HC" ]
false
2306.01828
2023-06-02T17:45:44Z
Unifying (Machine) Vision via Counterfactual World Modeling
[ "Daniel M. Bear", "Kevin Feigelis", "Honglin Chen", "Wanhee Lee", "Rahul Venkatesh", "Klemen Kotar", "Alex Durango", "Daniel L. K. Yamins" ]
Leading approaches in machine vision employ different architectures for different tasks, trained on costly task-specific labeled datasets. This complexity has held back progress in areas, such as robotics, where robust task-general perception remains a bottleneck. In contrast, "foundation models" of natural language have shown how large pre-trained neural networks can provide zero-shot solutions to a broad spectrum of apparently distinct tasks. Here we introduce Counterfactual World Modeling (CWM), a framework for constructing a visual foundation model: a unified, unsupervised network that can be prompted to perform a wide variety of visual computations. CWM has two key components, which resolve the core issues that have hindered application of the foundation model concept to vision. The first is structured masking, a generalization of masked prediction methods that encourages a prediction model to capture the low-dimensional structure in visual data. The model thereby factors the key physical components of a scene and exposes an interface to them via small sets of visual tokens. This in turn enables CWM's second main idea -- counterfactual prompting -- the observation that many apparently distinct visual representations can be computed, in a zero-shot manner, by comparing the prediction model's output on real inputs versus slightly modified ("counterfactual") inputs. We show that CWM generates high-quality readouts on real-world images and videos for a diversity of tasks, including estimation of keypoints, optical flow, occlusions, object segments, and relative depth. Taken together, our results show that CWM is a promising path to unifying the manifold strands of machine vision in a conceptually simple foundation.
[ "cs.CV", "cs.AI", "I.2.10; I.4.8" ]
false
2306.01853
2023-06-02T18:16:21Z
Multi-Contrast Computed Tomography Atlas of Healthy Pancreas
[ "Yinchi Zhou", "Ho Hin Lee", "Yucheng Tang", "Xin Yu", "Qi Yang", "Shunxing Bao", "Jeffrey M. Spraggins", "Yuankai Huo", "Bennett A. Landman" ]
With the substantial diversity in population demographics, such as differences in age and body composition, the volumetric morphology of pancreas varies greatly, resulting in distinctive variations in shape and appearance. Such variations increase the difficulty at generalizing population-wide pancreas features. A volumetric spatial reference is needed to adapt the morphological variability for organ-specific analysis. Here, we proposed a high-resolution computed tomography (CT) atlas framework specifically optimized for the pancreas organ across multi-contrast CT. We introduce a deep learning-based pre-processing technique to extract the abdominal region of interests (ROIs) and leverage a hierarchical registration pipeline to align the pancreas anatomy across populations. Briefly, DEEDs affine and non-rigid registration are performed to transfer patient abdominal volumes to a fixed high-resolution atlas template. To generate and evaluate the pancreas atlas template, multi-contrast modality CT scans of 443 subjects (without reported history of pancreatic disease, age: 15-50 years old) are processed. Comparing with different registration state-of-the-art tools, the combination of DEEDs affine and non-rigid registration achieves the best performance for the pancreas label transfer across all contrast phases. We further perform external evaluation with another research cohort of 100 de-identified portal venous scans with 13 organs labeled, having the best label transfer performance of 0.504 Dice score in unsupervised setting. The qualitative representation (e.g., average mapping) of each phase creates a clear boundary of pancreas and its distinctive contrast appearance. The deformation surface renderings across scales (e.g., small to large volume) further illustrate the generalizability of the proposed atlas template.
[ "eess.IV", "cs.CV" ]
false
2306.01893
2023-06-02T19:58:14Z
Hierarchical Quadratic Random Forest Classifier
[ "Faezeh Fallah" ]
In this paper, we proposed a hierarchical quadratic random forest classifier for classifying multiresolution samples extracted from multichannel data. This forest incorporated a penalized multivariate linear discriminant in each of its decision nodes and processed squared features to realize quadratic decision boundaries in the original feature space. The penalized discriminant was based on a multiclass sparse discriminant analysis and the penalization was based on a group Lasso regularizer which was an intermediate between the Lasso and the ridge regularizer. The classification probabilities estimated by this forest and the features learned by its decision nodes could be used standalone or foster graph-based classifiers.
[ "cs.LG", "cs.CV" ]
false
2306.01936
2023-06-02T22:29:58Z
Sub-Meter Tree Height Mapping of California using Aerial Images and LiDAR-Informed U-Net Model
[ "Fabien H Wagner", "Sophia Roberts", "Alison L Ritz", "Griffin Carter", "Ricardo Dalagnol", "Samuel Favrichon", "Mayumi CM Hirye", "Martin Brandt", "Philipe Ciais", "Sassan Saatchi" ]
Tree canopy height is one of the most important indicators of forest biomass, productivity, and species diversity, but it is challenging to measure accurately from the ground and from space. Here, we used a U-Net model adapted for regression to map the canopy height of all trees in the state of California with very high-resolution aerial imagery (60 cm) from the USDA-NAIP program. The U-Net model was trained using canopy height models computed from aerial LiDAR data as a reference, along with corresponding RGB-NIR NAIP images collected in 2020. We evaluated the performance of the deep-learning model using 42 independent 1 km$^2$ sites across various forest types and landscape variations in California. Our predictions of tree heights exhibited a mean error of 2.9 m and showed relatively low systematic bias across the entire range of tree heights present in California. In 2020, trees taller than 5 m covered ~ 19.3% of California. Our model successfully estimated canopy heights up to 50 m without saturation, outperforming existing canopy height products from global models. The approach we used allowed for the reconstruction of the three-dimensional structure of individual trees as observed from nadir-looking optical airborne imagery, suggesting a relatively robust estimation and mapping capability, even in the presence of image distortion. These findings demonstrate the potential of large-scale mapping and monitoring of tree height, as well as potential biomass estimation, using NAIP imagery.
[ "cs.CV", "eess.IV", "92-08", "I.4.9; I.5.4" ]
false
2306.01938
2023-06-02T22:39:33Z
Self-supervised Interest Point Detection and Description for Fisheye and Perspective Images
[ "Marcela Mera-Trujillo", "Shivang Patel", "Yu Gu", "Gianfranco Doretto" ]
Keypoint detection and matching is a fundamental task in many computer vision problems, from shape reconstruction, to structure from motion, to AR/VR applications and robotics. It is a well-studied problem with remarkable successes such as SIFT, and more recent deep learning approaches. While great robustness is exhibited by these techniques with respect to noise, illumination variation, and rigid motion transformations, less attention has been placed on image distortion sensitivity. In this work, we focus on the case when this is caused by the geometry of the cameras used for image acquisition, and consider the keypoint detection and matching problem between the hybrid scenario of a fisheye and a projective image. We build on a state-of-the-art approach and derive a self-supervised procedure that enables training an interest point detector and descriptor network. We also collected two new datasets for additional training and testing in this unexplored scenario, and we demonstrate that current approaches are suboptimal because they are designed to work in traditional projective conditions, while the proposed approach turns out to be the most effective.
[ "cs.CV", "cs.RO" ]
false
2306.01209
2023-06-02T00:00:09Z
Counting Crowds in Bad Weather
[ "Zhi-Kai Huang", "Wei-Ting Chen", "Yuan-Chun Chiang", "Sy-Yen Kuo", "Ming-Hsuan Yang" ]
Crowd counting has recently attracted significant attention in the field of computer vision due to its wide applications to image understanding. Numerous methods have been proposed and achieved state-of-the-art performance for real-world tasks. However, existing approaches do not perform well under adverse weather such as haze, rain, and snow since the visual appearances of crowds in such scenes are drastically different from those images in clear weather of typical datasets. In this paper, we propose a method for robust crowd counting in adverse weather scenarios. Instead of using a two-stage approach that involves image restoration and crowd counting modules, our model learns effective features and adaptive queries to account for large appearance variations. With these weather queries, the proposed model can learn the weather information according to the degradation of the input image and optimize with the crowd counting module simultaneously. Experimental results show that the proposed algorithm is effective in counting crowds under different weather types on benchmark datasets. The source code and trained models will be made available to the public.
[ "cs.CV", "cs.AI", "eess.IV" ]
false
2306.01268
2023-06-02T05:04:27Z
DeepScribe: Localization and Classification of Elamite Cuneiform Signs Via Deep Learning
[ "Edward C. Williams", "Grace Su", "Sandra R. Schloen", "Miller C. Prosser", "Susanne Paulus", "Sanjay Krishnan" ]
Twenty-five hundred years ago, the paperwork of the Achaemenid Empire was recorded on clay tablets. In 1933, archaeologists from the University of Chicago's Oriental Institute (OI) found tens of thousands of these tablets and fragments during the excavation of Persepolis. Many of these tablets have been painstakingly photographed and annotated by expert cuneiformists, and now provide a rich dataset consisting of over 5,000 annotated tablet images and 100,000 cuneiform sign bounding boxes. We leverage this dataset to develop DeepScribe, a modular computer vision pipeline capable of localizing cuneiform signs and providing suggestions for the identity of each sign. We investigate the difficulty of learning subtasks relevant to cuneiform tablet transcription on ground-truth data, finding that a RetinaNet object detector can achieve a localization mAP of 0.78 and a ResNet classifier can achieve a top-5 sign classification accuracy of 0.89. The end-to-end pipeline achieves a top-5 classification accuracy of 0.80. As part of the classification module, DeepScribe groups cuneiform signs into morphological clusters. We consider how this automatic clustering approach differs from the organization of standard, printed sign lists and what we may learn from it. These components, trained individually, are sufficient to produce a system that can analyze photos of cuneiform tablets from the Achaemenid period and provide useful transliteration suggestions to researchers. We evaluate the model's end-to-end performance on locating and classifying signs, providing a roadmap to a linguistically-aware transliteration system, then consider the model's potential utility when applied to other periods of cuneiform writing.
[ "cs.CV", "cs.DL", "cs.IR" ]
false
2306.01295
2023-06-02T06:41:24Z
Egocentric Planning for Scalable Embodied Task Achievement
[ "Xiaotian Liu", "Hector Palacios", "Christian Muise" ]
Embodied agents face significant challenges when tasked with performing actions in diverse environments, particularly in generalizing across object types and executing suitable actions to accomplish tasks. Furthermore, agents should exhibit robustness, minimizing the execution of illegal actions. In this work, we present Egocentric Planning, an innovative approach that combines symbolic planning and Object-oriented POMDPs to solve tasks in complex environments, harnessing existing models for visual perception and natural language processing. We evaluated our approach in ALFRED, a simulated environment designed for domestic tasks, and demonstrated its high scalability, achieving an impressive 36.07% unseen success rate in the ALFRED benchmark and winning the ALFRED challenge at CVPR Embodied AI workshop. Our method requires reliable perception and the specification or learning of a symbolic description of the preconditions and effects of the agent's actions, as well as what object types reveal information about others. It is capable of naturally scaling to solve new tasks beyond ALFRED, as long as they can be solved using the available skills. This work offers a solid baseline for studying end-to-end and hybrid methods that aim to generalize to new tasks, including recent approaches relying on LLMs, but often struggle to scale to long sequences of actions or produce robust plans for novel tasks.
[ "cs.AI", "cs.CV", "cs.LG", "cs.RO" ]
false
2306.01322
2023-06-02T07:44:00Z
Privacy Distillation: Reducing Re-identification Risk of Multimodal Diffusion Models
[ "Virginia Fernandez", "Pedro Sanchez", "Walter Hugo Lopez Pinaya", "Grzegorz Jacenków", "Sotirios A. Tsaftaris", "Jorge Cardoso" ]
Knowledge distillation in neural networks refers to compressing a large model or dataset into a smaller version of itself. We introduce Privacy Distillation, a framework that allows a text-to-image generative model to teach another model without exposing it to identifiable data. Here, we are interested in the privacy issue faced by a data provider who wishes to share their data via a multimodal generative model. A question that immediately arises is ``How can a data provider ensure that the generative model is not leaking identifiable information about a patient?''. Our solution consists of (1) training a first diffusion model on real data (2) generating a synthetic dataset using this model and filtering it to exclude images with a re-identifiability risk (3) training a second diffusion model on the filtered synthetic data only. We showcase that datasets sampled from models trained with privacy distillation can effectively reduce re-identification risk whilst maintaining downstream performance.
[ "cs.LG", "cs.CR", "cs.CV" ]
false
2306.01421
2023-06-02T10:22:33Z
Convergence analysis of equilibrium methods for inverse problems
[ "Daniel Obmann", "Markus Haltmeier" ]
Recently, the use of deep equilibrium methods has emerged as a new approach for solving imaging and other ill-posed inverse problems. While learned components may be a key factor in the good performance of these methods in practice, a theoretical justification from a regularization point of view is still lacking. In this paper, we address this issue by providing stability and convergence results for the class of equilibrium methods. In addition, we derive convergence rates and stability estimates in the symmetric Bregman distance. We strengthen our results for regularization operators with contractive residuals. Furthermore, we use the presented analysis to gain insight into the practical behavior of these methods, including a lower bound on the performance of the regularized solutions. In addition, we show that the convergence analysis leads to the design of a new type of loss function which has several advantages over previous ones. Numerical simulations are used to support our findings.
[ "math.NA", "cs.CV", "cs.NA" ]
false
2306.01574
2023-06-02T14:38:58Z
Probabilistic Concept Bottleneck Models
[ "Eunji Kim", "Dahuin Jung", "Sangha Park", "Siwon Kim", "Sungroh Yoon" ]
Interpretable models are designed to make decisions in a human-interpretable manner. Representatively, Concept Bottleneck Models (CBM) follow a two-step process of concept prediction and class prediction based on the predicted concepts. CBM provides explanations with high-level concepts derived from concept predictions; thus, reliable concept predictions are important for trustworthiness. In this study, we address the ambiguity issue that can harm reliability. While the existence of a concept can often be ambiguous in the data, CBM predicts concepts deterministically without considering this ambiguity. To provide a reliable interpretation against this ambiguity, we propose Probabilistic Concept Bottleneck Models (ProbCBM). By leveraging probabilistic concept embeddings, ProbCBM models uncertainty in concept prediction and provides explanations based on the concept and its corresponding uncertainty. This uncertainty enhances the reliability of the explanations. Furthermore, as class uncertainty is derived from concept uncertainty in ProbCBM, we can explain class uncertainty by means of concept uncertainty. Code is publicly available at https://github.com/ejkim47/prob-cbm.
[ "cs.LG", "cs.AI", "cs.CV" ]
false
2306.01623
2023-06-02T15:37:43Z
HomE: Homography-Equivariant Video Representation Learning
[ "Anirudh Sriram", "Adrien Gaidon", "Jiajun Wu", "Juan Carlos Niebles", "Li Fei-Fei", "Ehsan Adeli" ]
Recent advances in self-supervised representation learning have enabled more efficient and robust model performance without relying on extensive labeled data. However, most works are still focused on images, with few working on videos and even fewer on multi-view videos, where more powerful inductive biases can be leveraged for self-supervision. In this work, we propose a novel method for representation learning of multi-view videos, where we explicitly model the representation space to maintain Homography Equivariance (HomE). Our method learns an implicit mapping between different views, culminating in a representation space that maintains the homography relationship between neighboring views. We evaluate our HomE representation via action recognition and pedestrian intent prediction as downstream tasks. On action classification, our method obtains 96.4% 3-fold accuracy on the UCF101 dataset, better than most state-of-the-art self-supervised learning methods. Similarly, on the STIP dataset, we outperform the state-of-the-art by 6% for pedestrian intent prediction one second into the future while also obtaining an accuracy of 91.2% for pedestrian action (cross vs. not-cross) classification. Code is available at https://github.com/anirudhs123/HomE.
[ "cs.CV", "cs.AI", "cs.LG" ]
false
2306.01654
2023-06-02T16:24:07Z
GANs Settle Scores!
[ "Siddarth Asokan", "Nishanth Shetty", "Aadithya Srikanth", "Chandra Sekhar Seelamantula" ]
Generative adversarial networks (GANs) comprise a generator, trained to learn the underlying distribution of the desired data, and a discriminator, trained to distinguish real samples from those output by the generator. A majority of GAN literature focuses on understanding the optimality of the discriminator through integral probability metric (IPM) or divergence based analysis. In this paper, we propose a unified approach to analyzing the generator optimization through variational approach. In $f$-divergence-minimizing GANs, we show that the optimal generator is the one that matches the score of its output distribution with that of the data distribution, while in IPM GANs, we show that this optimal generator matches score-like functions, involving the flow-field of the kernel associated with a chosen IPM constraint space. Further, the IPM-GAN optimization can be seen as one of smoothed score-matching, where the scores of the data and the generator distributions are convolved with the kernel associated with the constraint. The proposed approach serves to unify score-based training and existing GAN flavors, leveraging results from normalizing flows, while also providing explanations for empirical phenomena such as the stability of non-saturating GAN losses. Based on these results, we propose novel alternatives to $f$-GAN and IPM-GAN training based on score and flow matching, and discriminator-guided Langevin sampling.
[ "cs.LG", "cs.CV", "stat.ML" ]
false
2306.01706
2023-06-02T17:28:52Z
Is Generative Modeling-based Stylization Necessary for Domain Adaptation in Regression Tasks?
[ "Jinman Park", "Francois Barnard", "Saad Hossain", "Sirisha Rambhatla", "Paul Fieguth" ]
Unsupervised domain adaptation (UDA) aims to bridge the gap between source and target domains in the absence of target domain labels using two main techniques: input-level alignment (such as generative modeling and stylization) and feature-level alignment (which matches the distribution of the feature maps, e.g. gradient reversal layers). Motivated from the success of generative modeling for image classification, stylization-based methods were recently proposed for regression tasks, such as pose estimation. However, use of input-level alignment via generative modeling and stylization incur additional overhead and computational complexity which limit their use in real-world DA tasks. To investigate the role of input-level alignment for DA, we ask the following question: Is generative modeling-based stylization necessary for visual domain adaptation in regression? Surprisingly, we find that input-alignment has little effect on regression tasks as compared to classification. Based on these insights, we develop a non-parametric feature-level domain alignment method -- Implicit Stylization (ImSty) -- which results in consistent improvements over SOTA regression task, without the need for computationally intensive stylization and generative modeling. Our work conducts a critical evaluation of the role of generative modeling and stylization, at a time when these are also gaining popularity for domain generalization.
[ "cs.CV", "cs.AI", "cs.LG" ]
false