language
stringclasses 6
values | original_string
stringlengths 25
887k
| text
stringlengths 25
887k
|
---|---|---|
Python | def stop(self):
"""Used for Ascend, stop profiling."""
if self._has_started:
self._has_started = False
else:
msg = "The profiler has not start, so can not stop."
logger.error(msg)
raise RuntimeError(msg)
self._ascend_profiler.stop()
self._stop_time = int(time.time() * 10000000)
logger.info("Profiling: stop time: %d", self._stop_time) | def stop(self):
"""Used for Ascend, stop profiling."""
if self._has_started:
self._has_started = False
else:
msg = "The profiler has not start, so can not stop."
logger.error(msg)
raise RuntimeError(msg)
self._ascend_profiler.stop()
self._stop_time = int(time.time() * 10000000)
logger.info("Profiling: stop time: %d", self._stop_time) |
Python | def _gpu_analyse(self):
"""Collect and analyse gpu performance data"""
self._dev_id = context.get_context("device_id")
if GlobalComm.WORLD_COMM_GROUP == "nccl_world_group":
self._dev_id = str(get_rank())
self._gpu_profiler.stop()
timeline_generator = self._generate_timeline()
# parse minddata pipeline operator and queue for GPU
try:
pipeline_parser = MinddataPipelineParser(self._output_path, self._dev_id, self._output_path)
logger.info("Profiling: analyzing the minddata pipeline operator and queue for GPU.")
pipeline_parser.parse()
except ProfilerException as err:
logger.warning(err.message)
# Analyze minddata information
try:
md_analyzer = MinddataProfilingAnalyzer(self._output_path, self._dev_id, self._output_path)
logger.info("Profiling: analyzing the minddata information.")
md_analyzer.analyze()
except ProfilerException as err:
logger.warning(err.message)
# analyse step trace info
try:
logger.info("Profiling: analyzing the step trace info.")
self._analyse_step_trace(
is_training_mode_flag=timeline_generator.check_op_name('Gradients'),
is_gpu_kernel_async_launch_flag=timeline_generator.is_gpu_kernel_async_launch()
)
except ProfilerException as err:
logger.warning(err.message)
logger.warning(
'\nMemory Usage is not supported on GPU currently.\n'
'Please running on Ascend if you would like to see memory analysis, '
'otherwise, this warning can be ignored.'
) | def _gpu_analyse(self):
"""Collect and analyse gpu performance data"""
self._dev_id = context.get_context("device_id")
if GlobalComm.WORLD_COMM_GROUP == "nccl_world_group":
self._dev_id = str(get_rank())
self._gpu_profiler.stop()
timeline_generator = self._generate_timeline()
# parse minddata pipeline operator and queue for GPU
try:
pipeline_parser = MinddataPipelineParser(self._output_path, self._dev_id, self._output_path)
logger.info("Profiling: analyzing the minddata pipeline operator and queue for GPU.")
pipeline_parser.parse()
except ProfilerException as err:
logger.warning(err.message)
# Analyze minddata information
try:
md_analyzer = MinddataProfilingAnalyzer(self._output_path, self._dev_id, self._output_path)
logger.info("Profiling: analyzing the minddata information.")
md_analyzer.analyze()
except ProfilerException as err:
logger.warning(err.message)
# analyse step trace info
try:
logger.info("Profiling: analyzing the step trace info.")
self._analyse_step_trace(
is_training_mode_flag=timeline_generator.check_op_name('Gradients'),
is_gpu_kernel_async_launch_flag=timeline_generator.is_gpu_kernel_async_launch()
)
except ProfilerException as err:
logger.warning(err.message)
logger.warning(
'\nMemory Usage is not supported on GPU currently.\n'
'Please running on Ascend if you would like to see memory analysis, '
'otherwise, this warning can be ignored.'
) |
Python | def _analyse_step_trace(self, source_path=None, framework_parser=None, is_training_mode_flag=True,
is_gpu_kernel_async_launch_flag=False):
"""
Analyse step trace data and save the result.
Args:
source_path (str): The directory that contains the step trace original data.
framework_parser (FrameworkParser): The framework parse instance.
is_training_mode_flag (bool): Whether in training mode or not.
"""
logger.info("Begin to parse step trace.")
# construct output path
dev_id = self._rank_id if self._device_target == "Ascend" else self._dev_id
step_trace_intermediate_file_path = os.path.join(
self._output_path,
f'step_trace_raw_{dev_id}_detail_time.csv'
)
point_info_file_path = os.path.join(
self._output_path,
f'step_trace_point_info_{dev_id}.json'
)
step_trace_intermediate_file_path = validate_and_normalize_path(step_trace_intermediate_file_path)
point_info_file_path = validate_and_normalize_path(point_info_file_path)
if self._device_target and self._device_target == 'GPU':
input_file_path = os.path.join(
self._output_path,
f'step_trace_profiling_{self._dev_id}.txt'
)
parser = GpuStepTraceParser(input_dir=input_file_path,
output_file_path=step_trace_intermediate_file_path,
is_training_mode=is_training_mode_flag,
is_gpu_kernel_async_launch=is_gpu_kernel_async_launch_flag)
parser.parse_and_save()
point_info = parser.record_point_info(input_file_path, point_info_file_path)
else:
# whether keep the first step
skip_first_step_flag = framework_parser.check_op_name(INIT_OP_NAME)
point_info = framework_parser.point_info
# recognize inference or training mode
is_training_mode_flag = framework_parser.check_op_name("Gradients")
# parser the step trace files and save the result to disk
source_path = validate_and_normalize_path(source_path)
parser = AscendStepTraceParser(input_dir=source_path,
output_file_path=step_trace_intermediate_file_path,
job_id=self._job_id_env,
skip_first_step=skip_first_step_flag,
is_training_mode=is_training_mode_flag)
parser.update_tag_op_type_map(point_info)
parser.parse_and_save()
point_info = parser.record_point_info(point_info, point_info_file_path)
# print parser result
parser.show()
logger.info("Finish saving the intermediate result: %s", step_trace_intermediate_file_path)
logger.info("The point info is: %s", point_info)
return point_info, is_training_mode_flag | def _analyse_step_trace(self, source_path=None, framework_parser=None, is_training_mode_flag=True,
is_gpu_kernel_async_launch_flag=False):
"""
Analyse step trace data and save the result.
Args:
source_path (str): The directory that contains the step trace original data.
framework_parser (FrameworkParser): The framework parse instance.
is_training_mode_flag (bool): Whether in training mode or not.
"""
logger.info("Begin to parse step trace.")
# construct output path
dev_id = self._rank_id if self._device_target == "Ascend" else self._dev_id
step_trace_intermediate_file_path = os.path.join(
self._output_path,
f'step_trace_raw_{dev_id}_detail_time.csv'
)
point_info_file_path = os.path.join(
self._output_path,
f'step_trace_point_info_{dev_id}.json'
)
step_trace_intermediate_file_path = validate_and_normalize_path(step_trace_intermediate_file_path)
point_info_file_path = validate_and_normalize_path(point_info_file_path)
if self._device_target and self._device_target == 'GPU':
input_file_path = os.path.join(
self._output_path,
f'step_trace_profiling_{self._dev_id}.txt'
)
parser = GpuStepTraceParser(input_dir=input_file_path,
output_file_path=step_trace_intermediate_file_path,
is_training_mode=is_training_mode_flag,
is_gpu_kernel_async_launch=is_gpu_kernel_async_launch_flag)
parser.parse_and_save()
point_info = parser.record_point_info(input_file_path, point_info_file_path)
else:
# whether keep the first step
skip_first_step_flag = framework_parser.check_op_name(INIT_OP_NAME)
point_info = framework_parser.point_info
# recognize inference or training mode
is_training_mode_flag = framework_parser.check_op_name("Gradients")
# parser the step trace files and save the result to disk
source_path = validate_and_normalize_path(source_path)
parser = AscendStepTraceParser(input_dir=source_path,
output_file_path=step_trace_intermediate_file_path,
job_id=self._job_id_env,
skip_first_step=skip_first_step_flag,
is_training_mode=is_training_mode_flag)
parser.update_tag_op_type_map(point_info)
parser.parse_and_save()
point_info = parser.record_point_info(point_info, point_info_file_path)
# print parser result
parser.show()
logger.info("Finish saving the intermediate result: %s", step_trace_intermediate_file_path)
logger.info("The point info is: %s", point_info)
return point_info, is_training_mode_flag |
Python | def _analyse_timeline(self, aicpu_parser, optime_parser, source_path):
"""
Analyse and parse timeline info.
Args:
aicpu_parser (DataPreProcessParser): The parser instance for AI CPU operator
execution time calculation.
optime_parser (OPComputeTimeParserParser): The parser instance for AI Core
operator execution time calculation.
"""
timeline_analyser = AscendTimelineGenerator(self._output_path, self._dev_id, self._rank_id, self._rank_size)
# Get framework info
integrator = Integrator(self._output_path, self._rank_id)
aicore_detail_data = integrator.get_aicore_detail_data()
aicore_detail_data_size = len(aicore_detail_data)
col_names = ['op_name', 'op_type', 'avg_execution_time', 'subgraph',
'full_op_name', 'op_info']
framework_info = {
'col_name': col_names,
'object': aicore_detail_data,
'size': aicore_detail_data_size
}
all_reduce_info = integrator.query_for_all_reduce()
# Get timeline info
logger.info('Start writing timeline info...')
logger.info('Warm Prompt: It could take a few minutes if you are training '
'with a complex network or more than 10 steps.')
# Add info into timeline, such as AI CPU, AllReduce, framework info.
aicpu_info = aicpu_parser.query_aicpu_data()
min_cycle_counter = min(aicpu_parser.min_cycle_counter, optime_parser.min_cycle_counter)
timeline_analyser.init_timeline(all_reduce_info, framework_info, aicpu_info,
min_cycle_counter, source_path)
size_limit = 100 * 1024 * 1024 # 100MB
timeline_analyser.write_timeline(size_limit)
timeline_analyser.write_timeline_summary() | def _analyse_timeline(self, aicpu_parser, optime_parser, source_path):
"""
Analyse and parse timeline info.
Args:
aicpu_parser (DataPreProcessParser): The parser instance for AI CPU operator
execution time calculation.
optime_parser (OPComputeTimeParserParser): The parser instance for AI Core
operator execution time calculation.
"""
timeline_analyser = AscendTimelineGenerator(self._output_path, self._dev_id, self._rank_id, self._rank_size)
# Get framework info
integrator = Integrator(self._output_path, self._rank_id)
aicore_detail_data = integrator.get_aicore_detail_data()
aicore_detail_data_size = len(aicore_detail_data)
col_names = ['op_name', 'op_type', 'avg_execution_time', 'subgraph',
'full_op_name', 'op_info']
framework_info = {
'col_name': col_names,
'object': aicore_detail_data,
'size': aicore_detail_data_size
}
all_reduce_info = integrator.query_for_all_reduce()
# Get timeline info
logger.info('Start writing timeline info...')
logger.info('Warm Prompt: It could take a few minutes if you are training '
'with a complex network or more than 10 steps.')
# Add info into timeline, such as AI CPU, AllReduce, framework info.
aicpu_info = aicpu_parser.query_aicpu_data()
min_cycle_counter = min(aicpu_parser.min_cycle_counter, optime_parser.min_cycle_counter)
timeline_analyser.init_timeline(all_reduce_info, framework_info, aicpu_info,
min_cycle_counter, source_path)
size_limit = 100 * 1024 * 1024 # 100MB
timeline_analyser.write_timeline(size_limit)
timeline_analyser.write_timeline_summary() |
Python | def _generate_timeline(self):
"""Used for gpu, generate timeline info, write to json format file."""
try:
size_limit = 100 * 1024 * 1024 # 100MB
timeline_generator = GpuTimelineGenerator(self._output_path, self._dev_id)
timeline_generator.init_timeline()
timeline_generator.write_timeline(size_limit)
timeline_generator.write_timeline_summary()
return timeline_generator
except (ProfilerIOException, ProfilerFileNotFoundException, RuntimeError) as err:
logger.warning('Fail to write timeline data: %s', err)
raise RuntimeError('Fail to write timeline data.') | def _generate_timeline(self):
"""Used for gpu, generate timeline info, write to json format file."""
try:
size_limit = 100 * 1024 * 1024 # 100MB
timeline_generator = GpuTimelineGenerator(self._output_path, self._dev_id)
timeline_generator.init_timeline()
timeline_generator.write_timeline(size_limit)
timeline_generator.write_timeline_summary()
return timeline_generator
except (ProfilerIOException, ProfilerFileNotFoundException, RuntimeError) as err:
logger.warning('Fail to write timeline data: %s', err)
raise RuntimeError('Fail to write timeline data.') |
Python | def _get_profiling_job_id(self):
"""Get profiling job id, which was generated by ada service.
Returns:
str, profiling job id.
"""
job_id = ""
job_dirs = filter(lambda item: item.startswith('JOB') and os.path.isdir(os.path.join(self._output_path, item)),
os.listdir(self._output_path))
sorted_job_dirs = sorted(job_dirs, key=lambda x: os.path.getmtime(os.path.join(self._output_path, x)),
reverse=True)
for dir_name in sorted_job_dirs:
job_dir = os.path.join(self._output_path, dir_name)
host_start_file_path = get_file_path(job_dir, "host_start.log")
if host_start_file_path is None:
logger.warning("Find profiling job path %s, but host_start.log not exist, "
"profiler will ignore this job dir.", job_dir)
continue
training_device_id = host_start_file_path.split('.')[-1]
if self._dev_id != training_device_id:
logger.warning("Find profiling find job path %s, but not current training device id. "
"Current training device id %s, but job path device id: %s, "
"profiler will ignore this job dir.", job_dir, self._dev_id, training_device_id)
continue
job_start_time = self._parse_host_start_log(host_start_file_path)
if not job_start_time:
logger.warning("Find profiling job path %s, but fail to get job start info, "
"profiler will ignore this job dir.", job_start_time)
continue
if int(job_start_time) < self._start_time:
logger.warning("Find profiling job path %s, but start_time(%d) is earlier than this training "
"start_time(%d), profiler will ignore this job dir.",
job_dir, int(job_start_time), self._start_time)
job_id = dir_name
break
if not job_id:
msg = "Fail to get profiling job, output path is {}, " \
"please check whether job dir(name startswith JOB) in output path was generated, " \
"or may be the device id from job dir dismatch the " \
"device_id in current process.".format(self._output_path)
raise RuntimeError(msg)
return job_id | def _get_profiling_job_id(self):
"""Get profiling job id, which was generated by ada service.
Returns:
str, profiling job id.
"""
job_id = ""
job_dirs = filter(lambda item: item.startswith('JOB') and os.path.isdir(os.path.join(self._output_path, item)),
os.listdir(self._output_path))
sorted_job_dirs = sorted(job_dirs, key=lambda x: os.path.getmtime(os.path.join(self._output_path, x)),
reverse=True)
for dir_name in sorted_job_dirs:
job_dir = os.path.join(self._output_path, dir_name)
host_start_file_path = get_file_path(job_dir, "host_start.log")
if host_start_file_path is None:
logger.warning("Find profiling job path %s, but host_start.log not exist, "
"profiler will ignore this job dir.", job_dir)
continue
training_device_id = host_start_file_path.split('.')[-1]
if self._dev_id != training_device_id:
logger.warning("Find profiling find job path %s, but not current training device id. "
"Current training device id %s, but job path device id: %s, "
"profiler will ignore this job dir.", job_dir, self._dev_id, training_device_id)
continue
job_start_time = self._parse_host_start_log(host_start_file_path)
if not job_start_time:
logger.warning("Find profiling job path %s, but fail to get job start info, "
"profiler will ignore this job dir.", job_start_time)
continue
if int(job_start_time) < self._start_time:
logger.warning("Find profiling job path %s, but start_time(%d) is earlier than this training "
"start_time(%d), profiler will ignore this job dir.",
job_dir, int(job_start_time), self._start_time)
job_id = dir_name
break
if not job_id:
msg = "Fail to get profiling job, output path is {}, " \
"please check whether job dir(name startswith JOB) in output path was generated, " \
"or may be the device id from job dir dismatch the " \
"device_id in current process.".format(self._output_path)
raise RuntimeError(msg)
return job_id |
Python | def _parse_host_start_log(input_file):
"""
Parse host start log file, get the start time of the job.
Args:
input_file (str): The file path of the host start log file.
Returns:
str, job start time.
"""
job_start_time = ""
with open(input_file) as f:
for line in f.readlines():
if "clock_realtime" in line:
# 16 means the first digit of the timestamp, len(line)-3 means the last.
job_start_time = line[16:len(line) - 3]
return job_start_time | def _parse_host_start_log(input_file):
"""
Parse host start log file, get the start time of the job.
Args:
input_file (str): The file path of the host start log file.
Returns:
str, job start time.
"""
job_start_time = ""
with open(input_file) as f:
for line in f.readlines():
if "clock_realtime" in line:
# 16 means the first digit of the timestamp, len(line)-3 means the last.
job_start_time = line[16:len(line) - 3]
return job_start_time |
Python | def _query_op_type_info(self):
"""
Query AICORE operator type information.
Returns:
list[list], the AICORE operator type and execution time information.
"""
integrator = Integrator(self._output_path, self._rank_id)
return integrator.get_aicore_data() | def _query_op_type_info(self):
"""
Query AICORE operator type information.
Returns:
list[list], the AICORE operator type and execution time information.
"""
integrator = Integrator(self._output_path, self._rank_id)
return integrator.get_aicore_data() |
Python | def _query_op_detail_info(self, op_type_order):
"""
Query AICORE operator detail information.
Args:
op_type_order(list): The name of the op type in order.
Returns:
dict, the AICORE operator detail information.
"""
op_type_condition = {}
if self._filt_optype_names:
op_type_condition['not_in'] = self._filt_optype_names
filter_condition = {
'op_type': op_type_condition,
'is_display_detail': False,
}
integrator = Integrator(self._output_path, self._rank_id)
return integrator.query_and_sort_by_op_type(filter_condition, op_type_order) | def _query_op_detail_info(self, op_type_order):
"""
Query AICORE operator detail information.
Args:
op_type_order(list): The name of the op type in order.
Returns:
dict, the AICORE operator detail information.
"""
op_type_condition = {}
if self._filt_optype_names:
op_type_condition['not_in'] = self._filt_optype_names
filter_condition = {
'op_type': op_type_condition,
'is_display_detail': False,
}
integrator = Integrator(self._output_path, self._rank_id)
return integrator.query_and_sort_by_op_type(filter_condition, op_type_order) |
Python | def _get_devid_rankid_and_devtarget(self):
"""Get device id and rank id and target of this training."""
device_target = ""
dev_id = ""
rank_id = ""
try:
dev_id = str(context.get_context("device_id"))
device_target = context.get_context("device_target")
except ValueError as err:
logger.error("Profiling: fail to get context, %s", err)
if not dev_id or not dev_id.isdigit():
dev_id = os.getenv('DEVICE_ID')
if not dev_id or not dev_id.isdigit():
dev_id = "0"
logger.warning("Fail to get DEVICE_ID, use 0 instead.")
if device_target and device_target not in ["Ascend", "GPU", "CPU"]:
msg = "Profiling: unsupported backend: %s" % device_target
raise RuntimeError(msg)
rank_id = os.getenv("RANK_ID")
if not rank_id or not rank_id.isdigit():
rank_id = "0"
logger.info("Fail to get RANK_ID, use 0 instead.")
self._dev_id = dev_id
self._device_target = device_target
self._rank_id = rank_id | def _get_devid_rankid_and_devtarget(self):
"""Get device id and rank id and target of this training."""
device_target = ""
dev_id = ""
rank_id = ""
try:
dev_id = str(context.get_context("device_id"))
device_target = context.get_context("device_target")
except ValueError as err:
logger.error("Profiling: fail to get context, %s", err)
if not dev_id or not dev_id.isdigit():
dev_id = os.getenv('DEVICE_ID')
if not dev_id or not dev_id.isdigit():
dev_id = "0"
logger.warning("Fail to get DEVICE_ID, use 0 instead.")
if device_target and device_target not in ["Ascend", "GPU", "CPU"]:
msg = "Profiling: unsupported backend: %s" % device_target
raise RuntimeError(msg)
rank_id = os.getenv("RANK_ID")
if not rank_id or not rank_id.isdigit():
rank_id = "0"
logger.info("Fail to get RANK_ID, use 0 instead.")
self._dev_id = dev_id
self._device_target = device_target
self._rank_id = rank_id |
Python | def _get_output_path(self, kwargs):
"""Get output path of profiling data."""
if os.getenv("MS_DIAGNOSTIC_DATA_PATH") and kwargs.get("output_path") is not None:
logger.warning("Both parameter output_path and environment variable MS_DIAGNOSTIC_DATA_PATH"
" have values set, and the profiling data saving path is the value set "
"in parameter output_path")
if kwargs.get("output_path") is None:
if "output_path" in kwargs:
kwargs.pop("output_path")
# Environment variables are mainly set for the convenience of cloud profiler.
output_path = os.getenv("MS_DIAGNOSTIC_DATA_PATH")
if output_path:
self._output_path = validate_and_normalize_path(output_path)
else:
output_path = "data"
self._output_path = validate_and_normalize_path(output_path)
else:
output_path = kwargs.pop("output_path")
self._output_path = validate_and_normalize_path(output_path)
self._output_path = os.path.join(self._output_path, "profiler")
if not os.path.exists(self._output_path):
os.makedirs(self._output_path, exist_ok=True)
os.chmod(self._output_path, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR)
else:
logger.warning("The target dir already exists. "
"There may be some old profiling data, and they will be rewritten in the end.") | def _get_output_path(self, kwargs):
"""Get output path of profiling data."""
if os.getenv("MS_DIAGNOSTIC_DATA_PATH") and kwargs.get("output_path") is not None:
logger.warning("Both parameter output_path and environment variable MS_DIAGNOSTIC_DATA_PATH"
" have values set, and the profiling data saving path is the value set "
"in parameter output_path")
if kwargs.get("output_path") is None:
if "output_path" in kwargs:
kwargs.pop("output_path")
# Environment variables are mainly set for the convenience of cloud profiler.
output_path = os.getenv("MS_DIAGNOSTIC_DATA_PATH")
if output_path:
self._output_path = validate_and_normalize_path(output_path)
else:
output_path = "data"
self._output_path = validate_and_normalize_path(output_path)
else:
output_path = kwargs.pop("output_path")
self._output_path = validate_and_normalize_path(output_path)
self._output_path = os.path.join(self._output_path, "profiler")
if not os.path.exists(self._output_path):
os.makedirs(self._output_path, exist_ok=True)
os.chmod(self._output_path, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR)
else:
logger.warning("The target dir already exists. "
"There may be some old profiling data, and they will be rewritten in the end.") |
Python | def profile(network, profile_option):
"""
Get the number of trainable parameters in the training network.
Args:
network (Cell): The training network.
profile_option (ProfileOption): The profile option.
Returns:
dict, the key is the option name, the value is the result of option.
"""
result = dict()
if not profile_option:
raise ValueError("The parameter profile_option must pass a value using ProfileOption.")
if profile_option == ProfileOption.trainable_parameters:
if not isinstance(network, Cell):
msg = "Profiling: The network should be an object of nn.Cell"
raise ValueError(msg)
param_nums = len(network.parameters_dict())
result = {"trainable_parameters": param_nums}
else:
raise ValueError("Wrong options.")
return result | def profile(network, profile_option):
"""
Get the number of trainable parameters in the training network.
Args:
network (Cell): The training network.
profile_option (ProfileOption): The profile option.
Returns:
dict, the key is the option name, the value is the result of option.
"""
result = dict()
if not profile_option:
raise ValueError("The parameter profile_option must pass a value using ProfileOption.")
if profile_option == ProfileOption.trainable_parameters:
if not isinstance(network, Cell):
msg = "Profiling: The network should be an object of nn.Cell"
raise ValueError(msg)
param_nums = len(network.parameters_dict())
result = {"trainable_parameters": param_nums}
else:
raise ValueError("Wrong options.")
return result |
Python | def arnoldi_iteration(k, A, M, V, H):
""" Performs a single (the k'th) step of the Arnoldi process."""
v_ = V[..., k]
v = M(A(v_))
v, h = gram_schmidt(V, v)
eps_v = _eps(v)
_, v_norm_0 = _safe_normalize(v)
tol = eps_v * v_norm_0
unit_v, v_norm_1 = _safe_normalize(v, tol)
V[..., k + 1] = unit_v
h[k + 1] = v_norm_1
H[k, :] = h
breakdown = v_norm_1 == 0
return V, H, breakdown | def arnoldi_iteration(k, A, M, V, H):
""" Performs a single (the k'th) step of the Arnoldi process."""
v_ = V[..., k]
v = M(A(v_))
v, h = gram_schmidt(V, v)
eps_v = _eps(v)
_, v_norm_0 = _safe_normalize(v)
tol = eps_v * v_norm_0
unit_v, v_norm_1 = _safe_normalize(v, tol)
V[..., k + 1] = unit_v
h[k + 1] = v_norm_1
H[k, :] = h
breakdown = v_norm_1 == 0
return V, H, breakdown |
Python | def gmres_iter(A_mat_func, b, x0, r, r_norm, ptol, restart, M_mat_func):
"""
Single iteration for Gmres Algorithm with restart
"""
V = mnp.pad(r[..., None], ((0, 0),) * r.ndim + ((0, restart),))
dtype = mnp.result_type(b)
# use eye() to avoid constructing a singular matrix in case of early
# termination
R = mnp.eye(restart, restart + 1, dtype=dtype)
givens = mnp.zeros((restart, 2), dtype=dtype)
beta_vec = mnp.zeros((restart + 1), dtype=dtype)
beta_vec[0] = r_norm
k = 0
err = r_norm
while mnp.logical_and(mnp.less(k, restart), mnp.less(ptol, err)):
V, H, _ = arnoldi_iteration(k, A_mat_func, M_mat_func, V, R)
R[k, :], givens = givens_rotation(H[k, :], givens, k)
beta_vec = rotate_vectors(beta_vec, k, givens[k, 0], givens[k, 1])
err = mnp.absolute(beta_vec[k + 1])
k = k + 1
y = solve_triangular(R[:, :-1], beta_vec[:-1], trans='T', lower=True)
dx = mnp.dot(V[:, :-1], y)
x = x0 + dx
r = M_mat_func(b - A_mat_func(x))
r, r_norm = _safe_normalize(r)
return x, r, r_norm | def gmres_iter(A_mat_func, b, x0, r, r_norm, ptol, restart, M_mat_func):
"""
Single iteration for Gmres Algorithm with restart
"""
V = mnp.pad(r[..., None], ((0, 0),) * r.ndim + ((0, restart),))
dtype = mnp.result_type(b)
# use eye() to avoid constructing a singular matrix in case of early
# termination
R = mnp.eye(restart, restart + 1, dtype=dtype)
givens = mnp.zeros((restart, 2), dtype=dtype)
beta_vec = mnp.zeros((restart + 1), dtype=dtype)
beta_vec[0] = r_norm
k = 0
err = r_norm
while mnp.logical_and(mnp.less(k, restart), mnp.less(ptol, err)):
V, H, _ = arnoldi_iteration(k, A_mat_func, M_mat_func, V, R)
R[k, :], givens = givens_rotation(H[k, :], givens, k)
beta_vec = rotate_vectors(beta_vec, k, givens[k, 0], givens[k, 1])
err = mnp.absolute(beta_vec[k + 1])
k = k + 1
y = solve_triangular(R[:, :-1], beta_vec[:-1], trans='T', lower=True)
dx = mnp.dot(V[:, :-1], y)
x = x0 + dx
r = M_mat_func(b - A_mat_func(x))
r, r_norm = _safe_normalize(r)
return x, r, r_norm |
Python | def gmres(A, b, x0=None, *, tol=1e-5, atol=0.0, restart=20, maxiter=None,
M=None, solve_method='batched') -> (Tensor, int):
"""
GMRES solves the linear system A x = b for x, given A and b.
A is specified as a function performing A(vi) -> vf = A @ vi, and in principle
need not have any particular special properties, such as symmetry. However,
convergence is often slow for nearly symmetric operators.
Args:
A (Tensor or function): 2D Tensor or function that calculates the linear
map (matrix-vector product) ``Ax`` when called like ``A(x)``.
``A`` must return Tensor with the same structure and shape as its argument.
b (Tensor): Right hand side of the linear system representing a single vector.
Can be stored as a Tensor
Returns:
x (Tensor): The converged solution. Has the same structure as ``b``.
info (None): Placeholder for convergence information. In the future, MindSpore
will report the number of iterations when convergence is not achieved, like SciPy.
Other Parameters:
x0 (Tensor, optional): Starting guess for the solution. Must have the same structure
as ``b``. If this is unspecified, zeroes are used.
tol, atol (float, optional): Tolerances for convergence,
``norm(residual) <= max(tol*norm(b), atol)``. We do not implement SciPy's
"legacy" behavior, so MindSpore's tolerance will differ from SciPy unless you
explicitly pass ``atol`` to SciPy's ``gmres``.
restart (integer, optional): Size of the Krylov subspace ("number of iterations")
built between restarts. GMRES works by approximating the true solution x as its
projection into a Krylov space of this dimension - this parameter
therefore bounds the maximum accuracy achievable from any guess
solution. Larger values increase both number of iterations and iteration
cost, but may be necessary for convergence. The algorithm terminates
early if convergence is achieved before the full subspace is built.
Default is 20.
maxiter (integer): Maximum number of times to rebuild the size-``restart``
Krylov space starting from the solution found at the last iteration. If GMRES
halts or is very slow, decreasing this parameter may help.
Default is infinite.
M (Tensor or function): Preconditioner for A. The preconditioner should approximate the
inverse of A. Effective preconditioning dramatically improves the
rate of convergence, which implies that fewer iterations are needed
to reach a given error tolerance.
solve_method ('incremental' or 'batched'): The 'incremental' solve method
builds a QR decomposition for the Krylov subspace incrementally during
the GMRES process using Givens rotations.
This improves numerical stability and gives a free estimate of the
residual norm that allows for early termination within a single "restart".
In contrast, the 'batched' solve method solves the least squares problem
from scratch at the end of each GMRES iteration. It does not allow for
early termination, but has much less overhead on GPUs.
Supported Platforms:
``CPU`` ``GPU``
Examples:
>>> import numpy as onp
>>> from mindspore.common import Tensor
>>> from mindspore.numpy as mnp
>>> from mindspore.scipy.sparse.linalg import gmres
>>> A = Tensor(mnp.array([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=mnp.float32))
>>> b = Tensor(onp.array([2, 4, -1], dtype=mnp.float32))
>>> x, exitCode = gmres(A, b)
>>> print(exitCode) # 0 indicates successful convergence
0
>>> onp.allclose(mnp.dot(A,x).asnumpy(), b.asnumpy())
True
"""
if x0 is None:
x0 = mnp.zeros_like(b)
size = b.size
if maxiter is None:
maxiter = 10 * size # copied from scipy
if restart > size:
restart = size
x = x0
if solve_method == 'incremental':
if M is None:
def M_mat_func(x):
return x
elif not callable(M):
def M_mat_func(x):
return mnp.dot(M, x)
else:
M_mat_func = M
if not callable(A):
def A_mat_func(x):
return mnp.dot(A, x)
else:
A_mat_func = A
_, b_norm = _safe_normalize(b)
atol = mnp.maximum(tol * b_norm, atol)
Mb = M_mat_func(b)
_, Mb_norm = _safe_normalize(Mb)
ptol = Mb_norm * mnp.minimum(1.0, atol / b_norm)
# iterative gmres
r = M_mat_func(b - A_mat_func(x0))
r, r_norm = _safe_normalize(r)
k = 0
while k < maxiter and r_norm > atol:
x, r, r_norm = gmres_iter(
A_mat_func, b, x, r, r_norm, ptol, restart, M_mat_func)
k += 1
elif solve_method == 'batched':
if M is None:
def identity(x):
return x
M = identity
x = BatchedGmres(A, M)(b, x, tol, atol, restart, maxiter)
else:
raise ValueError("solve_method should be in ('incremental' or 'batched'), but got {}."
.format(solve_method))
_, x_norm = _safe_normalize(x)
info = mnp.where(mnp.isnan(x_norm), _INT_NEG_ONE, _INT_ZERO)
return x, info | def gmres(A, b, x0=None, *, tol=1e-5, atol=0.0, restart=20, maxiter=None,
M=None, solve_method='batched') -> (Tensor, int):
"""
GMRES solves the linear system A x = b for x, given A and b.
A is specified as a function performing A(vi) -> vf = A @ vi, and in principle
need not have any particular special properties, such as symmetry. However,
convergence is often slow for nearly symmetric operators.
Args:
A (Tensor or function): 2D Tensor or function that calculates the linear
map (matrix-vector product) ``Ax`` when called like ``A(x)``.
``A`` must return Tensor with the same structure and shape as its argument.
b (Tensor): Right hand side of the linear system representing a single vector.
Can be stored as a Tensor
Returns:
x (Tensor): The converged solution. Has the same structure as ``b``.
info (None): Placeholder for convergence information. In the future, MindSpore
will report the number of iterations when convergence is not achieved, like SciPy.
Other Parameters:
x0 (Tensor, optional): Starting guess for the solution. Must have the same structure
as ``b``. If this is unspecified, zeroes are used.
tol, atol (float, optional): Tolerances for convergence,
``norm(residual) <= max(tol*norm(b), atol)``. We do not implement SciPy's
"legacy" behavior, so MindSpore's tolerance will differ from SciPy unless you
explicitly pass ``atol`` to SciPy's ``gmres``.
restart (integer, optional): Size of the Krylov subspace ("number of iterations")
built between restarts. GMRES works by approximating the true solution x as its
projection into a Krylov space of this dimension - this parameter
therefore bounds the maximum accuracy achievable from any guess
solution. Larger values increase both number of iterations and iteration
cost, but may be necessary for convergence. The algorithm terminates
early if convergence is achieved before the full subspace is built.
Default is 20.
maxiter (integer): Maximum number of times to rebuild the size-``restart``
Krylov space starting from the solution found at the last iteration. If GMRES
halts or is very slow, decreasing this parameter may help.
Default is infinite.
M (Tensor or function): Preconditioner for A. The preconditioner should approximate the
inverse of A. Effective preconditioning dramatically improves the
rate of convergence, which implies that fewer iterations are needed
to reach a given error tolerance.
solve_method ('incremental' or 'batched'): The 'incremental' solve method
builds a QR decomposition for the Krylov subspace incrementally during
the GMRES process using Givens rotations.
This improves numerical stability and gives a free estimate of the
residual norm that allows for early termination within a single "restart".
In contrast, the 'batched' solve method solves the least squares problem
from scratch at the end of each GMRES iteration. It does not allow for
early termination, but has much less overhead on GPUs.
Supported Platforms:
``CPU`` ``GPU``
Examples:
>>> import numpy as onp
>>> from mindspore.common import Tensor
>>> from mindspore.numpy as mnp
>>> from mindspore.scipy.sparse.linalg import gmres
>>> A = Tensor(mnp.array([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=mnp.float32))
>>> b = Tensor(onp.array([2, 4, -1], dtype=mnp.float32))
>>> x, exitCode = gmres(A, b)
>>> print(exitCode) # 0 indicates successful convergence
0
>>> onp.allclose(mnp.dot(A,x).asnumpy(), b.asnumpy())
True
"""
if x0 is None:
x0 = mnp.zeros_like(b)
size = b.size
if maxiter is None:
maxiter = 10 * size # copied from scipy
if restart > size:
restart = size
x = x0
if solve_method == 'incremental':
if M is None:
def M_mat_func(x):
return x
elif not callable(M):
def M_mat_func(x):
return mnp.dot(M, x)
else:
M_mat_func = M
if not callable(A):
def A_mat_func(x):
return mnp.dot(A, x)
else:
A_mat_func = A
_, b_norm = _safe_normalize(b)
atol = mnp.maximum(tol * b_norm, atol)
Mb = M_mat_func(b)
_, Mb_norm = _safe_normalize(Mb)
ptol = Mb_norm * mnp.minimum(1.0, atol / b_norm)
# iterative gmres
r = M_mat_func(b - A_mat_func(x0))
r, r_norm = _safe_normalize(r)
k = 0
while k < maxiter and r_norm > atol:
x, r, r_norm = gmres_iter(
A_mat_func, b, x, r, r_norm, ptol, restart, M_mat_func)
k += 1
elif solve_method == 'batched':
if M is None:
def identity(x):
return x
M = identity
x = BatchedGmres(A, M)(b, x, tol, atol, restart, maxiter)
else:
raise ValueError("solve_method should be in ('incremental' or 'batched'), but got {}."
.format(solve_method))
_, x_norm = _safe_normalize(x)
info = mnp.where(mnp.isnan(x_norm), _INT_NEG_ONE, _INT_ZERO)
return x, info |
Python | def createObjects(self):
"""
You should override this and initialize all of your wpilib
objects here (and not in your components, for example). This
serves two purposes:
- It puts all of your motor/sensor initialization in the same
place, so that if you need to change a port/pin number it
makes it really easy to find it. Additionally, if you want
to create a simplified robot program to test a specific
thing, it makes it really easy to copy/paste it elsewhere
- It allows you to use the magic injection mechanism to share
variables between components
.. note:: Do not access your magic components in this function,
as their instances have not been created yet. Do not
create them either.
"""
raise NotImplementedError | def createObjects(self):
"""
You should override this and initialize all of your wpilib
objects here (and not in your components, for example). This
serves two purposes:
- It puts all of your motor/sensor initialization in the same
place, so that if you need to change a port/pin number it
makes it really easy to find it. Additionally, if you want
to create a simplified robot program to test a specific
thing, it makes it really easy to copy/paste it elsewhere
- It allows you to use the magic injection mechanism to share
variables between components
.. note:: Do not access your magic components in this function,
as their instances have not been created yet. Do not
create them either.
"""
raise NotImplementedError |
Python | def teleopPeriodic(self):
"""
Periodic code for teleop mode should go here.
Users should override this method for code which will be called
periodically at a regular rate while the robot is in teleop mode.
This code executes before the ``execute`` functions of all
components are called.
.. note:: If you want this function to be called in autonomous
mode, set ``use_teleop_in_autonomous`` to True in your
robot class.
"""
func = self.teleopPeriodic.__func__
if not hasattr(func, "firstRun"):
self.logger.warning(
"Default MagicRobot.teleopPeriodic() method... Override me!"
)
func.firstRun = False | def teleopPeriodic(self):
"""
Periodic code for teleop mode should go here.
Users should override this method for code which will be called
periodically at a regular rate while the robot is in teleop mode.
This code executes before the ``execute`` functions of all
components are called.
.. note:: If you want this function to be called in autonomous
mode, set ``use_teleop_in_autonomous`` to True in your
robot class.
"""
func = self.teleopPeriodic.__func__
if not hasattr(func, "firstRun"):
self.logger.warning(
"Default MagicRobot.teleopPeriodic() method... Override me!"
)
func.firstRun = False |
Python | def disabledInit(self):
"""
Initialization code for disabled mode may go here.
Users may override this method for initialization code which will be
called each time the robot enters disabled mode.
.. note:: The ``on_disable`` functions of all components are called
before this function is called.
"""
pass | def disabledInit(self):
"""
Initialization code for disabled mode may go here.
Users may override this method for initialization code which will be
called each time the robot enters disabled mode.
.. note:: The ``on_disable`` functions of all components are called
before this function is called.
"""
pass |
Python | def disabledPeriodic(self):
"""
Periodic code for disabled mode should go here.
Users should override this method for code which will be called
periodically at a regular rate while the robot is in disabled mode.
This code executes before the ``execute`` functions of all
components are called.
"""
func = self.disabledPeriodic.__func__
if not hasattr(func, "firstRun"):
self.logger.warning(
"Default MagicRobot.disabledPeriodic() method... Override me!"
)
func.firstRun = False | def disabledPeriodic(self):
"""
Periodic code for disabled mode should go here.
Users should override this method for code which will be called
periodically at a regular rate while the robot is in disabled mode.
This code executes before the ``execute`` functions of all
components are called.
"""
func = self.disabledPeriodic.__func__
if not hasattr(func, "firstRun"):
self.logger.warning(
"Default MagicRobot.disabledPeriodic() method... Override me!"
)
func.firstRun = False |
Python | def testInit(self):
"""Initialization code for test mode should go here.
Users should override this method for initialization code which will be
called each time the robot enters disabled mode.
"""
pass | def testInit(self):
"""Initialization code for test mode should go here.
Users should override this method for initialization code which will be
called each time the robot enters disabled mode.
"""
pass |
Python | def robotPeriodic(self):
"""
Periodic code for all modes should go here.
Users must override this method to utilize it
but it is not required.
This function gets called last in each mode.
You may use it for any code you need to run
during all modes of the robot (e.g NetworkTables updates)
The default implementation will update
SmartDashboard, LiveWindow and Shuffleboard.
"""
watchdog = self.watchdog
self.__sd_update()
watchdog.addEpoch("SmartDashboard")
self.__lv_update()
watchdog.addEpoch("LiveWindow")
self.__sf_update()
watchdog.addEpoch("Shuffleboard") | def robotPeriodic(self):
"""
Periodic code for all modes should go here.
Users must override this method to utilize it
but it is not required.
This function gets called last in each mode.
You may use it for any code you need to run
during all modes of the robot (e.g NetworkTables updates)
The default implementation will update
SmartDashboard, LiveWindow and Shuffleboard.
"""
watchdog = self.watchdog
self.__sd_update()
watchdog.addEpoch("SmartDashboard")
self.__lv_update()
watchdog.addEpoch("LiveWindow")
self.__sf_update()
watchdog.addEpoch("Shuffleboard") |
Python | def onException(self, forceReport=False):
"""
This function must *only* be called when an unexpected exception
has occurred that would otherwise crash the robot code. Use this
inside your :meth:`operatorActions` function.
If the FMS is attached (eg, during a real competition match),
this function will return without raising an error. However,
it will try to report one-off errors to the Driver Station so
that it will be recorded in the Driver Station Log Viewer.
Repeated errors may not get logged.
Example usage::
def teleopPeriodic(self):
try:
if self.joystick.getTrigger():
self.shooter.shoot()
except:
self.onException()
try:
if self.joystick.getRawButton(2):
self.ball_intake.run()
except:
self.onException()
# and so on...
:param forceReport: Always report the exception to the DS. Don't
set this to True
"""
# If the FMS is not attached, crash the robot program
if not self.ds.isFMSAttached():
raise
# Otherwise, if the FMS is attached then try to report the error via
# the driver station console. Maybe.
now = wpilib.Timer.getFPGATimestamp()
try:
if (
forceReport
or (now - self.__last_error_report) > self.error_report_interval
):
wpilib.DriverStation.reportError("Unexpected exception", True)
except:
pass # ok, can't do anything here
self.__last_error_report = now | def onException(self, forceReport=False):
"""
This function must *only* be called when an unexpected exception
has occurred that would otherwise crash the robot code. Use this
inside your :meth:`operatorActions` function.
If the FMS is attached (eg, during a real competition match),
this function will return without raising an error. However,
it will try to report one-off errors to the Driver Station so
that it will be recorded in the Driver Station Log Viewer.
Repeated errors may not get logged.
Example usage::
def teleopPeriodic(self):
try:
if self.joystick.getTrigger():
self.shooter.shoot()
except:
self.onException()
try:
if self.joystick.getRawButton(2):
self.ball_intake.run()
except:
self.onException()
# and so on...
:param forceReport: Always report the exception to the DS. Don't
set this to True
"""
# If the FMS is not attached, crash the robot program
if not self.ds.isFMSAttached():
raise
# Otherwise, if the FMS is attached then try to report the error via
# the driver station console. Maybe.
now = wpilib.Timer.getFPGATimestamp()
try:
if (
forceReport
or (now - self.__last_error_report) > self.error_report_interval
):
wpilib.DriverStation.reportError("Unexpected exception", True)
except:
pass # ok, can't do anything here
self.__last_error_report = now |
Python | def consumeExceptions(self, forceReport=False):
"""
This returns a context manager which will consume any uncaught
exceptions that might otherwise crash the robot.
Example usage::
def teleopPeriodic(self):
with self.consumeExceptions():
if self.joystick.getTrigger():
self.shooter.shoot()
with self.consumeExceptions():
if self.joystick.getRawButton(2):
self.ball_intake.run()
# and so on...
:param forceReport: Always report the exception to the DS. Don't
set this to True
.. seealso:: :meth:`onException` for more details
"""
try:
yield
except:
self.onException(forceReport=forceReport) | def consumeExceptions(self, forceReport=False):
"""
This returns a context manager which will consume any uncaught
exceptions that might otherwise crash the robot.
Example usage::
def teleopPeriodic(self):
with self.consumeExceptions():
if self.joystick.getTrigger():
self.shooter.shoot()
with self.consumeExceptions():
if self.joystick.getRawButton(2):
self.ball_intake.run()
# and so on...
:param forceReport: Always report the exception to the DS. Don't
set this to True
.. seealso:: :meth:`onException` for more details
"""
try:
yield
except:
self.onException(forceReport=forceReport) |
Python | def autonomous(self):
"""
MagicRobot will do The Right Thing and automatically load all
autonomous mode routines defined in the autonomous folder.
.. warning:: Internal API, don't override
"""
self.__nt_put_mode("auto")
self.__nt_put_is_ds_attached(self.ds.isDSAttached())
self._on_mode_enable_components()
auto_functions = (
self._execute_components,
self._update_feedback,
self.robotPeriodic,
)
if self.use_teleop_in_autonomous:
auto_functions = (self.teleopPeriodic,) + auto_functions
self._automodes.run(
self.control_loop_wait_time,
auto_functions,
self.onException,
watchdog=self.watchdog,
)
self._on_mode_disable_components() | def autonomous(self):
"""
MagicRobot will do The Right Thing and automatically load all
autonomous mode routines defined in the autonomous folder.
.. warning:: Internal API, don't override
"""
self.__nt_put_mode("auto")
self.__nt_put_is_ds_attached(self.ds.isDSAttached())
self._on_mode_enable_components()
auto_functions = (
self._execute_components,
self._update_feedback,
self.robotPeriodic,
)
if self.use_teleop_in_autonomous:
auto_functions = (self.teleopPeriodic,) + auto_functions
self._automodes.run(
self.control_loop_wait_time,
auto_functions,
self.onException,
watchdog=self.watchdog,
)
self._on_mode_disable_components() |
Python | def disabled(self):
"""
This function is called in disabled mode. You should not
override this function; rather, you should override the
:meth:`disabledPeriodic` function instead.
.. warning:: Internal API, don't override
"""
watchdog = self.watchdog
watchdog.reset()
self.__nt_put_mode("disabled")
ds_attached = None
self._on_mode_disable_components()
try:
self.disabledInit()
except:
self.onException(forceReport=True)
watchdog.addEpoch("disabledInit()")
with NotifierDelay(self.control_loop_wait_time) as delay:
while self.isDisabled():
if ds_attached != self.ds.isDSAttached():
ds_attached = not ds_attached
self.__nt_put_is_ds_attached(ds_attached)
hal.observeUserProgramDisabled()
try:
self.disabledPeriodic()
except:
self.onException()
watchdog.addEpoch("disabledPeriodic()")
self._update_feedback()
self.robotPeriodic()
watchdog.addEpoch("robotPeriodic()")
# watchdog.disable()
watchdog.printIfExpired()
delay.wait()
watchdog.reset() | def disabled(self):
"""
This function is called in disabled mode. You should not
override this function; rather, you should override the
:meth:`disabledPeriodic` function instead.
.. warning:: Internal API, don't override
"""
watchdog = self.watchdog
watchdog.reset()
self.__nt_put_mode("disabled")
ds_attached = None
self._on_mode_disable_components()
try:
self.disabledInit()
except:
self.onException(forceReport=True)
watchdog.addEpoch("disabledInit()")
with NotifierDelay(self.control_loop_wait_time) as delay:
while self.isDisabled():
if ds_attached != self.ds.isDSAttached():
ds_attached = not ds_attached
self.__nt_put_is_ds_attached(ds_attached)
hal.observeUserProgramDisabled()
try:
self.disabledPeriodic()
except:
self.onException()
watchdog.addEpoch("disabledPeriodic()")
self._update_feedback()
self.robotPeriodic()
watchdog.addEpoch("robotPeriodic()")
# watchdog.disable()
watchdog.printIfExpired()
delay.wait()
watchdog.reset() |
Python | def operatorControl(self):
"""
This function is called in teleoperated mode. You should not
override this function; rather, you should override the
:meth:`teleopPeriodics` function instead.
.. warning:: Internal API, don't override
"""
watchdog = self.watchdog
watchdog.reset()
self.__nt_put_mode("teleop")
# don't need to update this during teleop -- presumably will switch
# modes when ds is no longer attached
self.__nt_put_is_ds_attached(self.ds.isDSAttached())
# initialize things
self._on_mode_enable_components()
try:
self.teleopInit()
except:
self.onException(forceReport=True)
watchdog.addEpoch("teleopInit()")
observe = hal.observeUserProgramTeleop
with NotifierDelay(self.control_loop_wait_time) as delay:
while self.isOperatorControlEnabled():
observe()
try:
self.teleopPeriodic()
except:
self.onException()
watchdog.addEpoch("teleopPeriodic()")
self._execute_components()
self._update_feedback()
self.robotPeriodic()
watchdog.addEpoch("robotPeriodic()")
# watchdog.disable()
watchdog.printIfExpired()
delay.wait()
watchdog.reset()
self._on_mode_disable_components() | def operatorControl(self):
"""
This function is called in teleoperated mode. You should not
override this function; rather, you should override the
:meth:`teleopPeriodics` function instead.
.. warning:: Internal API, don't override
"""
watchdog = self.watchdog
watchdog.reset()
self.__nt_put_mode("teleop")
# don't need to update this during teleop -- presumably will switch
# modes when ds is no longer attached
self.__nt_put_is_ds_attached(self.ds.isDSAttached())
# initialize things
self._on_mode_enable_components()
try:
self.teleopInit()
except:
self.onException(forceReport=True)
watchdog.addEpoch("teleopInit()")
observe = hal.observeUserProgramTeleop
with NotifierDelay(self.control_loop_wait_time) as delay:
while self.isOperatorControlEnabled():
observe()
try:
self.teleopPeriodic()
except:
self.onException()
watchdog.addEpoch("teleopPeriodic()")
self._execute_components()
self._update_feedback()
self.robotPeriodic()
watchdog.addEpoch("robotPeriodic()")
# watchdog.disable()
watchdog.printIfExpired()
delay.wait()
watchdog.reset()
self._on_mode_disable_components() |
Python | def test(self):
"""Called when the robot is in test mode"""
watchdog = self.watchdog
watchdog.reset()
self.__nt_put_mode("test")
self.__nt_put_is_ds_attached(self.ds.isDSAttached())
try:
self.testInit()
except:
self.onException(forceReport=True)
watchdog.addEpoch("testInit()")
with NotifierDelay(self.control_loop_wait_time) as delay:
while self.isTest() and self.isEnabled():
hal.observeUserProgramTest()
try:
self.testPeriodic()
except:
self.onException()
watchdog.addEpoch("testPeriodic()")
self._update_feedback()
self.robotPeriodic()
watchdog.addEpoch("robotPeriodic()")
# watchdog.disable()
watchdog.printIfExpired()
delay.wait()
watchdog.reset() | def test(self):
"""Called when the robot is in test mode"""
watchdog = self.watchdog
watchdog.reset()
self.__nt_put_mode("test")
self.__nt_put_is_ds_attached(self.ds.isDSAttached())
try:
self.testInit()
except:
self.onException(forceReport=True)
watchdog.addEpoch("testInit()")
with NotifierDelay(self.control_loop_wait_time) as delay:
while self.isTest() and self.isEnabled():
hal.observeUserProgramTest()
try:
self.testPeriodic()
except:
self.onException()
watchdog.addEpoch("testPeriodic()")
self._update_feedback()
self.robotPeriodic()
watchdog.addEpoch("robotPeriodic()")
# watchdog.disable()
watchdog.printIfExpired()
delay.wait()
watchdog.reset() |
Python | def plot_model_history(model_history):
"""
Plot Accuracy and Loss curves given the model_history
"""
fig, axs = plt.subplots(1, 2, figsize=(15, 5))
# summarize history for accuracy
axs[0].plot(range(1, len(model_history.history['accuracy'])+1),
model_history.history['accuracy'])
axs[0].plot(range(1, len(model_history.history['val_accuracy'])+1),
model_history.history['val_accuracy'])
axs[0].set_title('Model Accuracy')
axs[0].set_ylabel('Accuracy')
axs[0].set_xlabel('Epoch')
axs[0].set_xticks(np.arange(1, len(model_history.history['accuracy'])+1),
len(model_history.history['accuracy'])/10)
axs[0].legend(['train', 'val'], loc='best')
# summarize history for loss
axs[1].plot(range(1, len(model_history.history['loss'])+1),
model_history.history['loss'])
axs[1].plot(range(1, len(model_history.history['val_loss'])+1),
model_history.history['val_loss'])
axs[1].set_title('Model Loss')
axs[1].set_ylabel('Loss')
axs[1].set_xlabel('Epoch')
axs[1].set_xticks(np.arange(
1, len(model_history.history['loss'])+1), len(model_history.history['loss'])/10)
axs[1].legend(['train', 'val'], loc='best')
fig.savefig('plot.png')
plt.show() | def plot_model_history(model_history):
"""
Plot Accuracy and Loss curves given the model_history
"""
fig, axs = plt.subplots(1, 2, figsize=(15, 5))
# summarize history for accuracy
axs[0].plot(range(1, len(model_history.history['accuracy'])+1),
model_history.history['accuracy'])
axs[0].plot(range(1, len(model_history.history['val_accuracy'])+1),
model_history.history['val_accuracy'])
axs[0].set_title('Model Accuracy')
axs[0].set_ylabel('Accuracy')
axs[0].set_xlabel('Epoch')
axs[0].set_xticks(np.arange(1, len(model_history.history['accuracy'])+1),
len(model_history.history['accuracy'])/10)
axs[0].legend(['train', 'val'], loc='best')
# summarize history for loss
axs[1].plot(range(1, len(model_history.history['loss'])+1),
model_history.history['loss'])
axs[1].plot(range(1, len(model_history.history['val_loss'])+1),
model_history.history['val_loss'])
axs[1].set_title('Model Loss')
axs[1].set_ylabel('Loss')
axs[1].set_xlabel('Epoch')
axs[1].set_xticks(np.arange(
1, len(model_history.history['loss'])+1), len(model_history.history['loss'])/10)
axs[1].legend(['train', 'val'], loc='best')
fig.savefig('plot.png')
plt.show() |
Python | def timed_message(bot):
"""
Spit out one of the pre-configured messages every [LRB]timers_delay minutes.
"""
if not 'index' in bot.memory['timer']:
# Because for some reason in setup() it doesn't trigger all the time?
bot.memory['timer']['index'] = 0
if not bot.memory['timer']['enabled']:
# Timed messages are disabled.
return NOLIMIT
if not 'delay' in bot.memory['timer']:
# Because for some reason in setup() it doesn't trigger all the time?
bot.memory['timer']['delay'] = 999
# Determine the delay.
bot.memory['timer']['delay'] = bot.memory['timer']['delay'] + 1
if bot.memory['timer']['delay'] < int(bot.config.LRB.timers_delay):
# Not time yet.
return NOLIMIT
else:
# It is time.
bot.memory['timer']['delay'] = 0
# Fetch line.
ret = bot.db.execute('SELECT message FROM lrb_timers WHERE id=?',
str(bot.memory['timer']['index']))
msg = ret.fetchone()[0]
# Move index up one, or loop.
bot.memory['timer']['index'] += 1
count = bot.db.execute('SELECT COUNT(*) FROM lrb_timers').fetchone()[0]
if bot.memory['timer']['index'] >= int(count):
bot.memory['timer']['index'] = 0
# Say!
bot.msg(bot.config.LRB.channel, msg) | def timed_message(bot):
"""
Spit out one of the pre-configured messages every [LRB]timers_delay minutes.
"""
if not 'index' in bot.memory['timer']:
# Because for some reason in setup() it doesn't trigger all the time?
bot.memory['timer']['index'] = 0
if not bot.memory['timer']['enabled']:
# Timed messages are disabled.
return NOLIMIT
if not 'delay' in bot.memory['timer']:
# Because for some reason in setup() it doesn't trigger all the time?
bot.memory['timer']['delay'] = 999
# Determine the delay.
bot.memory['timer']['delay'] = bot.memory['timer']['delay'] + 1
if bot.memory['timer']['delay'] < int(bot.config.LRB.timers_delay):
# Not time yet.
return NOLIMIT
else:
# It is time.
bot.memory['timer']['delay'] = 0
# Fetch line.
ret = bot.db.execute('SELECT message FROM lrb_timers WHERE id=?',
str(bot.memory['timer']['index']))
msg = ret.fetchone()[0]
# Move index up one, or loop.
bot.memory['timer']['index'] += 1
count = bot.db.execute('SELECT COUNT(*) FROM lrb_timers').fetchone()[0]
if bot.memory['timer']['index'] >= int(count):
bot.memory['timer']['index'] = 0
# Say!
bot.msg(bot.config.LRB.channel, msg) |
Python | def caps_detection(bot, trigger):
"""
Automatically detect allcaps and act on it.
"""
try:
if trigger.admin:
# This person is a moderator.
return NOLIMIT
except KeyError as e:
# This potentially lets new-joiners shout for a little bit.
# #blametwitch
return NOLIMIT
if len(trigger.group(0)) < 10:
# This message was very short, could be something like "OMG",
# let's not make a fuss about it.
return NOLIMIT
if isReg(bot, trigger.sender, trigger.nick):
#This person is a regular.
return NOLIMIT
counter = Counter(trigger.group(0))
caps = 0
lowercase = 0
for c in "ABCDEFGHIJKLMNOPQRSTUVWXYZ":
caps += counter[c]
for c in "abcdefghijklmnopqrstuvwxyz":
lowercase += counter[c]
if caps >= lowercase:
bot.say('.ban '+trigger.nick)
bot.reply('Oi! I\'m the only one allowed to ROAAAAAAAAAAAAR around here! (Caps purge)')
bot.say('.unban '+trigger.nick)
else:
return NOLIMIT | def caps_detection(bot, trigger):
"""
Automatically detect allcaps and act on it.
"""
try:
if trigger.admin:
# This person is a moderator.
return NOLIMIT
except KeyError as e:
# This potentially lets new-joiners shout for a little bit.
# #blametwitch
return NOLIMIT
if len(trigger.group(0)) < 10:
# This message was very short, could be something like "OMG",
# let's not make a fuss about it.
return NOLIMIT
if isReg(bot, trigger.sender, trigger.nick):
#This person is a regular.
return NOLIMIT
counter = Counter(trigger.group(0))
caps = 0
lowercase = 0
for c in "ABCDEFGHIJKLMNOPQRSTUVWXYZ":
caps += counter[c]
for c in "abcdefghijklmnopqrstuvwxyz":
lowercase += counter[c]
if caps >= lowercase:
bot.say('.ban '+trigger.nick)
bot.reply('Oi! I\'m the only one allowed to ROAAAAAAAAAAAAR around here! (Caps purge)')
bot.say('.unban '+trigger.nick)
else:
return NOLIMIT |
Python | def shoutout(bot, trigger):
"""
Share a little bit of twitch love.
"""
if not trigger.admin:
return bot.reply('I only let mods do shoutouts.')
if trigger.group(2):
try:
query_url = 'https://api.twitch.tv/kraken/channels/{0}?api_version=4&client_id={1}'
answer = web.get(query_url.format(trigger.group(2),
bot.config.LRB.api_key))
except:
return bot.reply("Couldn't contact the Twitch API servers. :( #BlameTwitch")
try:
data = json.loads(answer)
except:
return bot.reply("The Twitch API returned an invalid object. :( #BlameTwitch")
try:
replaceData = {'name': data['display_name'],
'link': data['url'], 'game': data['game']}
return bot.say(bot.config.LRB.shoutmsg % replaceData)
except:
return bot.reply("The Twitch API be derp. :( #BlameTwitch")
else:
return NOLIMIT | def shoutout(bot, trigger):
"""
Share a little bit of twitch love.
"""
if not trigger.admin:
return bot.reply('I only let mods do shoutouts.')
if trigger.group(2):
try:
query_url = 'https://api.twitch.tv/kraken/channels/{0}?api_version=4&client_id={1}'
answer = web.get(query_url.format(trigger.group(2),
bot.config.LRB.api_key))
except:
return bot.reply("Couldn't contact the Twitch API servers. :( #BlameTwitch")
try:
data = json.loads(answer)
except:
return bot.reply("The Twitch API returned an invalid object. :( #BlameTwitch")
try:
replaceData = {'name': data['display_name'],
'link': data['url'], 'game': data['game']}
return bot.say(bot.config.LRB.shoutmsg % replaceData)
except:
return bot.reply("The Twitch API be derp. :( #BlameTwitch")
else:
return NOLIMIT |
Python | def link_detection(bot, trigger):
"""
Automatically detect links and act on it.
"""
try:
if trigger.admin:
#Channel ops can link just fine.
return NOLIMIT
except KeyError as e:
pass
if trigger.nick in bot.memory['permitted_users']:
bot.memory['permitted_users'].pop(trigger.nick, None)
return NOLIMIT
elif isReg(bot, trigger.sender, trigger.nick):
return NOLIMIT # Regulars can link just fine.
else:
bot.say('.ban '+trigger.nick)
bot.reply('Sharing knowledge is cool and all, but ask the mods before sending links, ok?')
bot.say('.unban '+trigger.nick) | def link_detection(bot, trigger):
"""
Automatically detect links and act on it.
"""
try:
if trigger.admin:
#Channel ops can link just fine.
return NOLIMIT
except KeyError as e:
pass
if trigger.nick in bot.memory['permitted_users']:
bot.memory['permitted_users'].pop(trigger.nick, None)
return NOLIMIT
elif isReg(bot, trigger.sender, trigger.nick):
return NOLIMIT # Regulars can link just fine.
else:
bot.say('.ban '+trigger.nick)
bot.reply('Sharing knowledge is cool and all, but ask the mods before sending links, ok?')
bot.say('.unban '+trigger.nick) |
Python | def tflite_inference(interpreter, indexes, img_arr):
'''
Receive an image array and run inference
:param interpreter: tflite interpreter.
:param indexes: tflite tensor indexes.
:param img_arr: 3D numpy array, RGB order.
:return:
'''
input_data = np.array(img_arr, dtype=np.float32)
interpreter.set_tensor(indexes[0], input_data)
interpreter.invoke()
bboxes = interpreter.get_tensor(indexes[1][0])
scores = interpreter.get_tensor(indexes[1][1])
return bboxes, scores | def tflite_inference(interpreter, indexes, img_arr):
'''
Receive an image array and run inference
:param interpreter: tflite interpreter.
:param indexes: tflite tensor indexes.
:param img_arr: 3D numpy array, RGB order.
:return:
'''
input_data = np.array(img_arr, dtype=np.float32)
interpreter.set_tensor(indexes[0], input_data)
interpreter.invoke()
bboxes = interpreter.get_tensor(indexes[1][0])
scores = interpreter.get_tensor(indexes[1][1])
return bboxes, scores |
Python | def goals(
self,
timeout: Optional[int] = None,
) -> Tuple[bool, str, Optional[Goals], str]:
"""Get the current set of hypotheses and goals."""
assert self.xml is not None
self.logger.debug("goals")
response, err = self.call(self.xml.goal(), timeout=timeout)
return (
isinstance(response, Ok),
response.msg,
response.val if isinstance(response, Ok) else None,
err,
) | def goals(
self,
timeout: Optional[int] = None,
) -> Tuple[bool, str, Optional[Goals], str]:
"""Get the current set of hypotheses and goals."""
assert self.xml is not None
self.logger.debug("goals")
response, err = self.call(self.xml.goal(), timeout=timeout)
return (
isinstance(response, Ok),
response.msg,
response.val if isinstance(response, Ok) else None,
err,
) |
Python | def do_option(
self,
cmd: str,
in_script: bool,
encoding: str = "utf-8",
timeout: Optional[int] = None,
) -> Tuple[bool, str, Optional[Tuple[int, int]], str]:
"""Set or get an option."""
assert self.xml is not None
self.logger.debug("do_option: %s", cmd)
vals, opt = self.xml.parse_option(cmd)
if vals is None:
response, err = self.call(
self.xml.get_options(encoding=encoding),
timeout=timeout,
)
if isinstance(response, Ok):
optval = [
(val, desc) for name, desc, val in response.val if name == opt
]
if optval != []:
ret = f"{optval[0][1]}: {optval[0][0]}"
else:
ret = "Invalid option name"
else:
errs = []
for val in vals:
response, err = self.call(
self.xml.set_options(opt, val, encoding=encoding),
timeout=timeout,
)
ret = response.msg
errs.append(err)
if isinstance(response, Ok):
break
err = "".join(errs)
if isinstance(response, Ok) and in_script:
# Hack to associate setting an option with a new state id by
# executing a noop so it works correctly with rewinding
if in_script:
success, _, _, _ = self.advance(self.xml.noop, encoding)
assert success
return (
isinstance(response, Ok),
ret if isinstance(response, Ok) else response.msg,
None if isinstance(response, Ok) else response.loc,
err,
) | def do_option(
self,
cmd: str,
in_script: bool,
encoding: str = "utf-8",
timeout: Optional[int] = None,
) -> Tuple[bool, str, Optional[Tuple[int, int]], str]:
"""Set or get an option."""
assert self.xml is not None
self.logger.debug("do_option: %s", cmd)
vals, opt = self.xml.parse_option(cmd)
if vals is None:
response, err = self.call(
self.xml.get_options(encoding=encoding),
timeout=timeout,
)
if isinstance(response, Ok):
optval = [
(val, desc) for name, desc, val in response.val if name == opt
]
if optval != []:
ret = f"{optval[0][1]}: {optval[0][0]}"
else:
ret = "Invalid option name"
else:
errs = []
for val in vals:
response, err = self.call(
self.xml.set_options(opt, val, encoding=encoding),
timeout=timeout,
)
ret = response.msg
errs.append(err)
if isinstance(response, Ok):
break
err = "".join(errs)
if isinstance(response, Ok) and in_script:
# Hack to associate setting an option with a new state id by
# executing a noop so it works correctly with rewinding
if in_script:
success, _, _, _ = self.advance(self.xml.noop, encoding)
assert success
return (
isinstance(response, Ok),
ret if isinstance(response, Ok) else response.msg,
None if isinstance(response, Ok) else response.loc,
err,
) |
Python | def call(
self,
cmdtype_msg: Tuple[str, Optional[bytes]],
timeout: Optional[int] = None,
) -> Tuple[Result, str]:
"""Send 'msg' to the Coqtop process and wait for the response."""
assert self.xml is not None
# Check if Coqtop has stopped
if not self.running():
raise CoqtopError("Coqtop is not running.")
# Throw away any unread messages
self.empty_out()
# 'msg' can be None if a command does not exist for a particular
# version and is being faked.
# NOTE: It is important that the '_standardize' function being called
# does not depend on the value it is passed since it is None
cmd, msg = cmdtype_msg
if msg is None:
return self.xml.standardize(cmd, Ok(None)), self.collect_err()
# Don't bother doing prettyxml if debugging isn't on
if self.logger.isEnabledFor(logging.DEBUG):
self.logger.debug(prettyxml(msg))
self.send_cmd(msg)
with futures.ThreadPoolExecutor(1) as pool:
try:
timeout = timeout if timeout != 0 else None
response, err = pool.submit(self.get_answer).result(timeout)
except futures.TimeoutError:
self.interrupt()
response, err = TIMEOUT_ERR, ""
return self.xml.standardize(cmd, response), err | def call(
self,
cmdtype_msg: Tuple[str, Optional[bytes]],
timeout: Optional[int] = None,
) -> Tuple[Result, str]:
"""Send 'msg' to the Coqtop process and wait for the response."""
assert self.xml is not None
# Check if Coqtop has stopped
if not self.running():
raise CoqtopError("Coqtop is not running.")
# Throw away any unread messages
self.empty_out()
# 'msg' can be None if a command does not exist for a particular
# version and is being faked.
# NOTE: It is important that the '_standardize' function being called
# does not depend on the value it is passed since it is None
cmd, msg = cmdtype_msg
if msg is None:
return self.xml.standardize(cmd, Ok(None)), self.collect_err()
# Don't bother doing prettyxml if debugging isn't on
if self.logger.isEnabledFor(logging.DEBUG):
self.logger.debug(prettyxml(msg))
self.send_cmd(msg)
with futures.ThreadPoolExecutor(1) as pool:
try:
timeout = timeout if timeout != 0 else None
response, err = pool.submit(self.get_answer).result(timeout)
except futures.TimeoutError:
self.interrupt()
response, err = TIMEOUT_ERR, ""
return self.xml.standardize(cmd, response), err |
Python | def drain_queue(q: BytesQueue) -> Iterator[bytes]:
"""Yield data from 'q' until it is empty."""
while not q.empty():
try:
yield q.get_nowait()
except Empty:
return | def drain_queue(q: BytesQueue) -> Iterator[bytes]:
"""Yield data from 'q' until it is empty."""
while not q.empty():
try:
yield q.get_nowait()
except Empty:
return |
Python | def capture_dead(self) -> None:
"""Continually check if Coqtop has died."""
while self.running():
time.sleep(1)
self.stop() | def capture_dead(self) -> None:
"""Continually check if Coqtop has died."""
while self.running():
time.sleep(1)
self.stop() |
Python | def send_cmd(self, cmd: bytes) -> None:
"""Write to Coqtop's stdin."""
if self.coqtop is None:
raise CoqtopError("coqtop must not be None in send_cmd()")
if self.coqtop.stdin is None:
raise CoqtopError("coqtop stdin must not be None in send_cmd()")
self.coqtop.stdin.write(cmd)
self.coqtop.stdin.flush() | def send_cmd(self, cmd: bytes) -> None:
"""Write to Coqtop's stdin."""
if self.coqtop is None:
raise CoqtopError("coqtop must not be None in send_cmd()")
if self.coqtop.stdin is None:
raise CoqtopError("coqtop stdin must not be None in send_cmd()")
self.coqtop.stdin.write(cmd)
self.coqtop.stdin.flush() |
Python | def interrupt(self) -> None:
"""Send a SIGINT signal to Coqtop."""
if self.coqtop is None:
raise CoqtopError("Coqtop is not running.")
self.coqtop.send_signal(signal.SIGINT) | def interrupt(self) -> None:
"""Send a SIGINT signal to Coqtop."""
if self.coqtop is None:
raise CoqtopError("Coqtop is not running.")
self.coqtop.send_signal(signal.SIGINT) |
Python | def toggle_debug(self) -> Optional[str]:
"""Enable or disable logging of debug messages."""
self.logger.removeHandler(self.handler)
self.handler.flush()
self.handler.close()
if self.log is None:
# Create unique log file
fmt = logging.Formatter("%(asctime)s: %(message)s")
self.log = NamedTemporaryFile( # pylint: disable=consider-using-with
mode="w",
prefix=f"coqtop_{datetime.datetime.now().strftime('%y%m%d_%H%M%S')}_",
delete=False,
)
self.handler = logging.StreamHandler(self.log)
self.handler.setFormatter(fmt)
self.logger.addHandler(self.handler)
self.logger.setLevel(logging.DEBUG)
else:
# Clean up old logging
self.log.close()
# Set to null logging
self.log = None
self.handler = logging.NullHandler()
self.logger.addHandler(self.handler)
self.logger.setLevel(logging.CRITICAL)
return self.log.name if self.log is not None else None | def toggle_debug(self) -> Optional[str]:
"""Enable or disable logging of debug messages."""
self.logger.removeHandler(self.handler)
self.handler.flush()
self.handler.close()
if self.log is None:
# Create unique log file
fmt = logging.Formatter("%(asctime)s: %(message)s")
self.log = NamedTemporaryFile( # pylint: disable=consider-using-with
mode="w",
prefix=f"coqtop_{datetime.datetime.now().strftime('%y%m%d_%H%M%S')}_",
delete=False,
)
self.handler = logging.StreamHandler(self.log)
self.handler.setFormatter(fmt)
self.logger.addHandler(self.handler)
self.logger.setLevel(logging.DEBUG)
else:
# Clean up old logging
self.log.close()
# Set to null logging
self.log = None
self.handler = logging.NullHandler()
self.logger.addHandler(self.handler)
self.logger.setLevel(logging.CRITICAL)
return self.log.name if self.log is not None else None |
Python | def _unescape(cmd: bytes) -> bytes:
"""Replace escaped characters with the unescaped version."""
charmap = {b" ": b" ", b"'": b"'", b"(": b"(", b")": b")"}
for escape, unescape in charmap.items():
cmd = cmd.replace(escape, unescape)
return cmd | def _unescape(cmd: bytes) -> bytes:
"""Replace escaped characters with the unescaped version."""
charmap = {b" ": b" ", b"'": b"'", b"(": b"(", b")": b")"}
for escape, unescape in charmap.items():
cmd = cmd.replace(escape, unescape)
return cmd |
Python | def _parse_tagged_tokens(
tags: Container[PPTag],
xml: ET.Element,
stack: Optional[List[PPTag]] = None,
inner: bool = False,
) -> Iterator[Tuple[str, List[PPTag]]]:
"""Scrape an XML element into a stream of text tokens and stack of tags.
Helper function to parse_tagged_tokens.
Written to support richpp tags, and thus supports .start and .end tags
used by Coqtop to highlight ranges that are not properly nested
(i.e., <start.a/>...<start.b/>...<end.a/>...<end.b/> is allowed).
This is somewhat documented here: https://github.com/coq/coq/blob/master/dev/doc/xml-protocol.md#highlighting-text
Documentation neglects to mention the semantics of start. and end. tags
that are not self-closing.
Until we get clarification, we will interpret
<start.a>foo</start.a>bar as <start.a/>foobar and
<end.b>foo</end.b>bar as foobar<end.b/>.
"""
pop_after = None
if stack is None:
stack = []
# Check tag, see if we should modify stack
if xml.tag.startswith("start."):
_, _, tag = xml.tag.rpartition("start.") # assert(tag != "")
if tag in tags:
# start. tag: push onto stack
stack.insert(0, tag)
elif xml.tag.startswith("end."):
_, _, tag = xml.tag.rpartition("end.") # assert(tag != "")
if tag in tags:
# end. tag: remove from stack (even if it's not at the top)
pop_after = tag
elif xml.tag in tags:
# regular tag: push onto stack, but remember to pop it before xml.tail
stack.insert(0, xml.tag)
pop_after = xml.tag
# Get text before first inner child
if xml.text is not None:
yield (xml.text, stack[:])
# Recurse on children, with modified stack
for child in xml:
yield from _parse_tagged_tokens(tags, child, stack, True)
if pop_after is not None:
stack.remove(pop_after)
# Get trailing text up to start of next tag, unless this is the outermost tag
if inner and xml.tail is not None:
yield (xml.tail, stack[:]) | def _parse_tagged_tokens(
tags: Container[PPTag],
xml: ET.Element,
stack: Optional[List[PPTag]] = None,
inner: bool = False,
) -> Iterator[Tuple[str, List[PPTag]]]:
"""Scrape an XML element into a stream of text tokens and stack of tags.
Helper function to parse_tagged_tokens.
Written to support richpp tags, and thus supports .start and .end tags
used by Coqtop to highlight ranges that are not properly nested
(i.e., <start.a/>...<start.b/>...<end.a/>...<end.b/> is allowed).
This is somewhat documented here: https://github.com/coq/coq/blob/master/dev/doc/xml-protocol.md#highlighting-text
Documentation neglects to mention the semantics of start. and end. tags
that are not self-closing.
Until we get clarification, we will interpret
<start.a>foo</start.a>bar as <start.a/>foobar and
<end.b>foo</end.b>bar as foobar<end.b/>.
"""
pop_after = None
if stack is None:
stack = []
# Check tag, see if we should modify stack
if xml.tag.startswith("start."):
_, _, tag = xml.tag.rpartition("start.") # assert(tag != "")
if tag in tags:
# start. tag: push onto stack
stack.insert(0, tag)
elif xml.tag.startswith("end."):
_, _, tag = xml.tag.rpartition("end.") # assert(tag != "")
if tag in tags:
# end. tag: remove from stack (even if it's not at the top)
pop_after = tag
elif xml.tag in tags:
# regular tag: push onto stack, but remember to pop it before xml.tail
stack.insert(0, xml.tag)
pop_after = xml.tag
# Get text before first inner child
if xml.text is not None:
yield (xml.text, stack[:])
# Recurse on children, with modified stack
for child in xml:
yield from _parse_tagged_tokens(tags, child, stack, True)
if pop_after is not None:
stack.remove(pop_after)
# Get trailing text up to start of next tag, unless this is the outermost tag
if inner and xml.tail is not None:
yield (xml.tail, stack[:]) |
Python | def parse_tagged_tokens(
tags: Container[PPTag],
xml: ET.Element,
) -> Iterator[TaggedToken]:
"""Scrape an XML element into a stream of text tokens and accompanying tags.
Written to support richpp markup.
Only considers tags specified by the tags parameter.
"""
token_acc, last_tag = "", None
# Recursive helper _parse_tagged_tokens gives us tag stacks
for token, tag_list in _parse_tagged_tokens(tags, xml):
# Take top tag from tag stack, if any
top_tag = tag_list[0] if tag_list != [] else None
if top_tag == last_tag:
# Join tokens whose top tag is the same
token_acc += token
else:
yield (token_acc, last_tag)
token_acc, last_tag = token, top_tag
yield (token_acc, last_tag) | def parse_tagged_tokens(
tags: Container[PPTag],
xml: ET.Element,
) -> Iterator[TaggedToken]:
"""Scrape an XML element into a stream of text tokens and accompanying tags.
Written to support richpp markup.
Only considers tags specified by the tags parameter.
"""
token_acc, last_tag = "", None
# Recursive helper _parse_tagged_tokens gives us tag stacks
for token, tag_list in _parse_tagged_tokens(tags, xml):
# Take top tag from tag stack, if any
top_tag = tag_list[0] if tag_list != [] else None
if top_tag == last_tag:
# Join tokens whose top tag is the same
token_acc += token
else:
yield (token_acc, last_tag)
token_acc, last_tag = token, top_tag
yield (token_acc, last_tag) |
Python | def join_tagged_tokens(tagged_tokens: Iterable[TaggedToken]) -> str:
"""Join tokens from tagged token stream.
NOTE:
forall xml tags,
join_tagged_tokens(parse_tagged_token(tags, xml)) = "".join(xml.itertext())
"""
return "".join(s for s, _ in tagged_tokens) | def join_tagged_tokens(tagged_tokens: Iterable[TaggedToken]) -> str:
"""Join tokens from tagged token stream.
NOTE:
forall xml tags,
join_tagged_tokens(parse_tagged_token(tags, xml)) = "".join(xml.itertext())
"""
return "".join(s for s, _ in tagged_tokens) |
Python | def partition_warnings(stderr: str) -> Tuple[str, str]:
"""Partition Coq stderr messages into warnings and errors.
Warnings are assumed to have the following form:
Warning: message_with_newlines [warning_type]\n
Everything else is treated as an error message.
"""
warns: List[str] = []
errs: List[str] = []
# Strip whitespace and drop empty strings
for msg in filter(None, map(str.strip, WARNING_RE.split(stderr))):
(warns if WARNING_RE.fullmatch(msg) else errs).append(msg)
return "\n".join(warns), "\n".join(errs) | def partition_warnings(stderr: str) -> Tuple[str, str]:
"""Partition Coq stderr messages into warnings and errors.
Warnings are assumed to have the following form:
Warning: message_with_newlines [warning_type]\n
Everything else is treated as an error message.
"""
warns: List[str] = []
errs: List[str] = []
# Strip whitespace and drop empty strings
for msg in filter(None, map(str.strip, WARNING_RE.split(stderr))):
(warns if WARNING_RE.fullmatch(msg) else errs).append(msg)
return "\n".join(warns), "\n".join(errs) |
Python | def prettyxml(xml: bytes) -> str:
"""Pretty print XML for debugging."""
xml = _unescape(xml)
# No stubs for xml.dom.minidom
return cast(str, parseString(xml).toprettyxml()) | def prettyxml(xml: bytes) -> str:
"""Pretty print XML for debugging."""
xml = _unescape(xml)
# No stubs for xml.dom.minidom
return cast(str, parseString(xml).toprettyxml()) |
Python | def launch(self, filename: str, args: Iterable[str]) -> Tuple[str, ...]:
"""The command to launch coqtop with the appropriate arguments."""
# Find the executable
try:
coqs = (
p
for p in (
which(pre + self.coq_prog + ext, path=self.coq_path)
for pre in ("", "coq-prover.")
for ext in ("", ".opt")
)
if p is not None
)
coq = next(coqs)
except StopIteration as e:
path = "$PATH" if self.coq_path is None else self.coq_path
raise FindCoqtopError(
f"Could not find {self.coq_prog} in {path}. Perhaps you need "
"to set g:coqtail_coq_path or g:coqtail_coq_prog."
) from e
# Confirm the version matches
version = parse_version(extract_version(coq))
if version != self.version:
raise FindCoqtopError(
f"{coq} version does not match version reported by coqc.\n"
f"Expected: {self.version} Got: {version}"
)
return (
(coq,)
+ tuple(self.launch_args)
+ self.topfile(filename, args)
+ tuple(args)
) | def launch(self, filename: str, args: Iterable[str]) -> Tuple[str, ...]:
"""The command to launch coqtop with the appropriate arguments."""
# Find the executable
try:
coqs = (
p
for p in (
which(pre + self.coq_prog + ext, path=self.coq_path)
for pre in ("", "coq-prover.")
for ext in ("", ".opt")
)
if p is not None
)
coq = next(coqs)
except StopIteration as e:
path = "$PATH" if self.coq_path is None else self.coq_path
raise FindCoqtopError(
f"Could not find {self.coq_prog} in {path}. Perhaps you need "
"to set g:coqtail_coq_path or g:coqtail_coq_prog."
) from e
# Confirm the version matches
version = parse_version(extract_version(coq))
if version != self.version:
raise FindCoqtopError(
f"{coq} version does not match version reported by coqc.\n"
f"Expected: {self.version} Got: {version}"
)
return (
(coq,)
+ tuple(self.launch_args)
+ self.topfile(filename, args)
+ tuple(args)
) |
Python | def _to_py(self, xml: ET.Element) -> Any:
"""Parse an XML value into a corresponding Python type."""
try:
return self._to_py_funcs[xml.tag](xml)
except KeyError as e:
raise unexpected(tuple(self._to_py_funcs), xml.tag) from e | def _to_py(self, xml: ET.Element) -> Any:
"""Parse an XML value into a corresponding Python type."""
try:
return self._to_py_funcs[xml.tag](xml)
except KeyError as e:
raise unexpected(tuple(self._to_py_funcs), xml.tag) from e |
Python | def _of_py(self, val: Any) -> ET.Element:
"""Construct an XML element from a corresponding Python type."""
try:
return self._of_py_funcs[type(val).__name__](val)
except KeyError as e:
raise unexpected(tuple(self._of_py_funcs), type(val).__name__) from e | def _of_py(self, val: Any) -> ET.Element:
"""Construct an XML element from a corresponding Python type."""
try:
return self._of_py_funcs[type(val).__name__](val)
except KeyError as e:
raise unexpected(tuple(self._of_py_funcs), type(val).__name__) from e |
Python | def _build_xml(
self,
tag: str,
val: Optional[str] = None,
children: Any = sentinel,
text: Optional[str] = None,
attrs: Optional[Dict[str, str]] = None,
) -> ET.Element:
"""Construct an XML element with a given tag, value, and children."""
if attrs is None:
attrs = {}
if val is not None:
attrs.update({"val": val})
# If children is a list then convert each element separately, if it is
# a tuple, treat it as a single element
if children is self.sentinel:
children = ()
elif isinstance(children, list):
children = [self._of_py(child) for child in children]
else:
children = (self._of_py(children),)
xml = ET.Element(tag, attrs)
xml.extend(children)
xml.text = text
return xml | def _build_xml(
self,
tag: str,
val: Optional[str] = None,
children: Any = sentinel,
text: Optional[str] = None,
attrs: Optional[Dict[str, str]] = None,
) -> ET.Element:
"""Construct an XML element with a given tag, value, and children."""
if attrs is None:
attrs = {}
if val is not None:
attrs.update({"val": val})
# If children is a list then convert each element separately, if it is
# a tuple, treat it as a single element
if children is self.sentinel:
children = ()
elif isinstance(children, list):
children = [self._of_py(child) for child in children]
else:
children = (self._of_py(children),)
xml = ET.Element(tag, attrs)
xml.extend(children)
xml.text = text
return xml |
Python | def raw_response(self, data: bytes) -> Optional[Result]:
"""Try to parse an XML response from Coqtop into an Ok or Err."""
res = None
msgs: List[str] = []
try:
xmls = ET.fromstring(b"<coqtoproot>" + _unescape(data) + b"</coqtoproot>")
except ET.ParseError:
# If not all data has been read, the XML might not be well-formed
return None
# Wait for a 'value' node and store any 'message' nodes
for xml in xmls:
if xml.tag == "value":
res = self._to_response(xml)
elif xml.tag in ("message", "feedback"):
# _to_py is guaranteed to either return str or
# a sequence of tagged tokens for message or feedback
msg = self._to_py(xml)
if isinstance(msg, list):
msg = join_tagged_tokens(msg)
# Sanity check
if not isinstance(msg, str):
raise unexpected((str,), type(msg))
msgs.append(msg.strip())
else:
raise unexpected(("value", "message", "feedback"), xml.tag)
if res is not None:
# Error messages may be duplicated between the 'value' and
# 'feedback' tags.
# https://coq.discourse.group/t/avoiding-duplicate-error-messages-with-the-xml-protocol/411
msg = res.msg.strip()
if msg not in msgs:
msgs.insert(0, msg)
res.msg = "\n\n".join(msg for msg in msgs if msg != "")
return res | def raw_response(self, data: bytes) -> Optional[Result]:
"""Try to parse an XML response from Coqtop into an Ok or Err."""
res = None
msgs: List[str] = []
try:
xmls = ET.fromstring(b"<coqtoproot>" + _unescape(data) + b"</coqtoproot>")
except ET.ParseError:
# If not all data has been read, the XML might not be well-formed
return None
# Wait for a 'value' node and store any 'message' nodes
for xml in xmls:
if xml.tag == "value":
res = self._to_response(xml)
elif xml.tag in ("message", "feedback"):
# _to_py is guaranteed to either return str or
# a sequence of tagged tokens for message or feedback
msg = self._to_py(xml)
if isinstance(msg, list):
msg = join_tagged_tokens(msg)
# Sanity check
if not isinstance(msg, str):
raise unexpected((str,), type(msg))
msgs.append(msg.strip())
else:
raise unexpected(("value", "message", "feedback"), xml.tag)
if res is not None:
# Error messages may be duplicated between the 'value' and
# 'feedback' tags.
# https://coq.discourse.group/t/avoiding-duplicate-error-messages-with-the-xml-protocol/411
msg = res.msg.strip()
if msg not in msgs:
msgs.insert(0, msg)
res.msg = "\n\n".join(msg for msg in msgs if msg != "")
return res |
Python | def standardize(self, cmd: str, res: Result) -> Result:
"""Put the information in 'res' into a version-independent form."""
# By default return unchanged
try:
return self._standardize_funcs[cmd](res)
except KeyError:
return res | def standardize(self, cmd: str, res: Result) -> Result:
"""Put the information in 'res' into a version-independent form."""
# By default return unchanged
try:
return self._standardize_funcs[cmd](res)
except KeyError:
return res |
Python | def edit_at(
self,
state: int,
steps: int,
encoding: str = "utf-8",
) -> Tuple[str, Optional[bytes]]:
"""Create an XML string to move Coqtop to a specific location.""" | def edit_at(
self,
state: int,
steps: int,
encoding: str = "utf-8",
) -> Tuple[str, Optional[bytes]]:
"""Create an XML string to move Coqtop to a specific location.""" |
Python | def query(
self,
query: str,
state: int,
encoding: str = "utf-8",
) -> Tuple[str, Optional[bytes]]:
"""Create an XML string to pose a query to Coqtop.""" | def query(
self,
query: str,
state: int,
encoding: str = "utf-8",
) -> Tuple[str, Optional[bytes]]:
"""Create an XML string to pose a query to Coqtop.""" |
Python | def parse_option(cmd: str) -> Tuple[Optional[Sequence[OptionArg]], str]:
"""Parse what option is being set/checked."""
# Assumes cmd is of the form 'Set|Unset|Test {option_name}'
opts = cmd.strip(".").split()
ty = opts[0]
vals: Optional[Sequence[XMLInterfaceBase.OptionArg]]
if ty == "Test":
vals = None
elif ty == "Set":
val: XMLInterfaceBase.OptionArg
if opts[-1][0].isdigit():
val = int(opts[-1])
opts = opts[:-1]
elif opts[-1][-1] == '"':
for idx, opt in enumerate(opts):
if opt[0] == '"':
val = " ".join(opts[idx:]).strip('"')
opts = opts[:idx]
else:
val = True
vals = (val,)
elif ty == "Unset":
# Don't know if the option expects a bool, option int, or option
# str, so try all
vals = (False, (None, "int"), (None, "str"))
else:
raise unexpected(("Set", "Unset", "Test"), ty)
return vals, " ".join(opts[1:]) | def parse_option(cmd: str) -> Tuple[Optional[Sequence[OptionArg]], str]:
"""Parse what option is being set/checked."""
# Assumes cmd is of the form 'Set|Unset|Test {option_name}'
opts = cmd.strip(".").split()
ty = opts[0]
vals: Optional[Sequence[XMLInterfaceBase.OptionArg]]
if ty == "Test":
vals = None
elif ty == "Set":
val: XMLInterfaceBase.OptionArg
if opts[-1][0].isdigit():
val = int(opts[-1])
opts = opts[:-1]
elif opts[-1][-1] == '"':
for idx, opt in enumerate(opts):
if opt[0] == '"':
val = " ".join(opts[idx:]).strip('"')
opts = opts[:idx]
else:
val = True
vals = (val,)
elif ty == "Unset":
# Don't know if the option expects a bool, option int, or option
# str, so try all
vals = (False, (None, "int"), (None, "str"))
else:
raise unexpected(("Set", "Unset", "Test"), ty)
return vals, " ".join(opts[1:]) |
Python | def _to_option_value(self, xml: ET.Element) -> "CoqOptionValue":
"""Expect: <option_value>bool | option int | string</option_value>"""
ty = xml.get("val", None)
if ty is not None:
if ty.startswith("int"):
ty = "int"
elif ty.startswith("str"):
ty = "str"
else:
ty = "bool"
return self.CoqOptionValue(self._to_py(xml[0]), ty) | def _to_option_value(self, xml: ET.Element) -> "CoqOptionValue":
"""Expect: <option_value>bool | option int | string</option_value>"""
ty = xml.get("val", None)
if ty is not None:
if ty.startswith("int"):
ty = "int"
elif ty.startswith("str"):
ty = "str"
else:
ty = "bool"
return self.CoqOptionValue(self._to_py(xml[0]), ty) |
Python | def init(self, _encoding: str = "utf-8") -> Tuple[str, Optional[bytes]]:
"""Create an XML string to initialize Coqtop.
Not a command in 8.4 so return dummy command.
"""
return ("Init", None) | def init(self, _encoding: str = "utf-8") -> Tuple[str, Optional[bytes]]:
"""Create an XML string to initialize Coqtop.
Not a command in 8.4 so return dummy command.
"""
return ("Init", None) |
Python | def add(
self,
cmd: str,
state: int,
encoding: str = "utf-8",
) -> Tuple[str, Optional[bytes]]:
"""Create an XML string to advance Coqtop.
Attrs:
verbose: bool - Verbose output
id: int - The current state id
Args:
cmd: string - The command to evaluate
"""
return (
"Add",
self._make_call(
encoding,
"interp",
attrs={"verbose": "true", "id": str(state)},
arg=cmd,
),
) | def add(
self,
cmd: str,
state: int,
encoding: str = "utf-8",
) -> Tuple[str, Optional[bytes]]:
"""Create an XML string to advance Coqtop.
Attrs:
verbose: bool - Verbose output
id: int - The current state id
Args:
cmd: string - The command to evaluate
"""
return (
"Add",
self._make_call(
encoding,
"interp",
attrs={"verbose": "true", "id": str(state)},
arg=cmd,
),
) |
Python | def edit_at(
self,
_state: int,
steps: int,
encoding: str = "utf-8",
) -> Tuple[str, Optional[bytes]]:
"""Create an XML string to move Coqtop to a specific location.
Attrs:
steps: int - The number of steps to rewind
"""
return (
"Edit_at",
self._make_call(encoding, "rewind", attrs={"steps": str(steps)}),
) | def edit_at(
self,
_state: int,
steps: int,
encoding: str = "utf-8",
) -> Tuple[str, Optional[bytes]]:
"""Create an XML string to move Coqtop to a specific location.
Attrs:
steps: int - The number of steps to rewind
"""
return (
"Edit_at",
self._make_call(encoding, "rewind", attrs={"steps": str(steps)}),
) |
Python | def goal(self, encoding: str = "utf-8") -> Tuple[str, Optional[bytes]]:
"""Create an XML string to check the current goal state.
Args:
_: unit - Empty arg
"""
return ("Goal", self._make_call(encoding, "goal", children=())) | def goal(self, encoding: str = "utf-8") -> Tuple[str, Optional[bytes]]:
"""Create an XML string to check the current goal state.
Args:
_: unit - Empty arg
"""
return ("Goal", self._make_call(encoding, "goal", children=())) |
Python | def _standardize_goal(self, res: Result) -> Result:
"""Standardize the info returned by 'Goal'.
Return:
fg: list Goal - The current goals
bg: list (list Goal * list Goal) - Unfocused goals
shelved: list Goal - Shelved goals (dummy value in 8.4)
given_up: list Goal - Admitted goals (dummy value in 8.4)
"""
# pylint: disable=no-self-use
if isinstance(res, Ok):
opt_goals: XMLInterfaceBase.CoqOption = res.val
if opt_goals is not None:
goals: XMLInterface84.CoqGoals = opt_goals.val
res.val = Goals(
[Goal(g.hyp, g.ccl) for g in goals.fg],
[
[Goal(g.hyp, g.ccl) for g in pre + post]
for pre, post in goals.bg
],
[],
[],
)
return res | def _standardize_goal(self, res: Result) -> Result:
"""Standardize the info returned by 'Goal'.
Return:
fg: list Goal - The current goals
bg: list (list Goal * list Goal) - Unfocused goals
shelved: list Goal - Shelved goals (dummy value in 8.4)
given_up: list Goal - Admitted goals (dummy value in 8.4)
"""
# pylint: disable=no-self-use
if isinstance(res, Ok):
opt_goals: XMLInterfaceBase.CoqOption = res.val
if opt_goals is not None:
goals: XMLInterface84.CoqGoals = opt_goals.val
res.val = Goals(
[Goal(g.hyp, g.ccl) for g in goals.fg],
[
[Goal(g.hyp, g.ccl) for g in pre + post]
for pre, post in goals.bg
],
[],
[],
)
return res |
Python | def status(self, encoding: str = "utf-8") -> Tuple[str, Optional[bytes]]:
"""Create an XML string to check Coqtop's status.
Args:
_: unit - Empty arg
"""
return ("Status", self._make_call(encoding, "status", children=())) | def status(self, encoding: str = "utf-8") -> Tuple[str, Optional[bytes]]:
"""Create an XML string to check Coqtop's status.
Args:
_: unit - Empty arg
"""
return ("Status", self._make_call(encoding, "status", children=())) |
Python | def init(self, encoding: str = "utf-8") -> Tuple[str, Optional[bytes]]:
"""Create an XML string to initialize Coqtop.
Args:
option string - A Coq file to add to the LoadPath to do ?
"""
return ("Init", self._make_call(encoding, "Init", children=None)) | def init(self, encoding: str = "utf-8") -> Tuple[str, Optional[bytes]]:
"""Create an XML string to initialize Coqtop.
Args:
option string - A Coq file to add to the LoadPath to do ?
"""
return ("Init", self._make_call(encoding, "Init", children=None)) |
Python | def add(
self,
cmd: str,
state: int,
encoding: str = "utf-8",
) -> Tuple[str, Optional[bytes]]:
"""Create an XML string to advance Coqtop.
Args:
cmd: string - The command to evaluate
edit_id: int - The current edit id ?
state_id: CoqStateId - The current state id
verbose: bool - Verbose output
"""
return (
"Add",
self._make_call(
encoding,
"Add",
children=((cmd, -1), (self.CoqStateId(state), True)),
),
) | def add(
self,
cmd: str,
state: int,
encoding: str = "utf-8",
) -> Tuple[str, Optional[bytes]]:
"""Create an XML string to advance Coqtop.
Args:
cmd: string - The command to evaluate
edit_id: int - The current edit id ?
state_id: CoqStateId - The current state id
verbose: bool - Verbose output
"""
return (
"Add",
self._make_call(
encoding,
"Add",
children=((cmd, -1), (self.CoqStateId(state), True)),
),
) |
Python | def edit_at(
self,
state: int,
_steps: int,
encoding: str = "utf-8",
) -> Tuple[str, Optional[bytes]]:
"""Create an XML string to move Coqtop to a specific location.
Args:
state_id: CoqStateId - The state id to move to
"""
return (
"Edit_at",
self._make_call(encoding, "Edit_at", children=self.CoqStateId(state)),
) | def edit_at(
self,
state: int,
_steps: int,
encoding: str = "utf-8",
) -> Tuple[str, Optional[bytes]]:
"""Create an XML string to move Coqtop to a specific location.
Args:
state_id: CoqStateId - The state id to move to
"""
return (
"Edit_at",
self._make_call(encoding, "Edit_at", children=self.CoqStateId(state)),
) |
Python | def query(
self,
query: str,
state: int,
encoding: str = "utf-8",
) -> Tuple[str, Optional[bytes]]:
"""Create an XML string to pose a query to Coqtop.
Args:
query: string - The query to evaluate
state_id: CoqStateId - The current state id
"""
return (
"Query",
self._make_call(
encoding,
"Query",
children=(query, self.CoqStateId(state)),
),
) | def query(
self,
query: str,
state: int,
encoding: str = "utf-8",
) -> Tuple[str, Optional[bytes]]:
"""Create an XML string to pose a query to Coqtop.
Args:
query: string - The query to evaluate
state_id: CoqStateId - The current state id
"""
return (
"Query",
self._make_call(
encoding,
"Query",
children=(query, self.CoqStateId(state)),
),
) |
Python | def goal(self, encoding: str = "utf-8") -> Tuple[str, Optional[bytes]]:
"""Create an XML string to check the current goal state.
Args:
_: unit - Empty arg
"""
return ("Goal", self._make_call(encoding, "Goal", children=())) | def goal(self, encoding: str = "utf-8") -> Tuple[str, Optional[bytes]]:
"""Create an XML string to check the current goal state.
Args:
_: unit - Empty arg
"""
return ("Goal", self._make_call(encoding, "Goal", children=())) |
Python | def _standardize_goal(self, res: Result) -> Result:
"""Standardize the info returned by 'Goal'.
Return:
fg: list Goal - The current goals
bg: list (list Goal * list Goal) - Unfocused goals
shelved: list Goal - Shelved goals
given_up: list Goal - Admitted goals
"""
# pylint: disable=no-self-use
if isinstance(res, Ok):
opt_goals: XMLInterfaceBase.CoqOption = res.val
if opt_goals is not None:
goals: XMLInterface85.CoqGoals = opt_goals.val
res.val = Goals(
[Goal(g.hyp, g.ccl) for g in goals.fg],
[
[Goal(g.hyp, g.ccl) for g in pre + post]
for pre, post in goals.bg
],
[Goal(g.hyp, g.ccl) for g in goals.shelved],
[Goal(g.hyp, g.ccl) for g in goals.given_up],
)
return res | def _standardize_goal(self, res: Result) -> Result:
"""Standardize the info returned by 'Goal'.
Return:
fg: list Goal - The current goals
bg: list (list Goal * list Goal) - Unfocused goals
shelved: list Goal - Shelved goals
given_up: list Goal - Admitted goals
"""
# pylint: disable=no-self-use
if isinstance(res, Ok):
opt_goals: XMLInterfaceBase.CoqOption = res.val
if opt_goals is not None:
goals: XMLInterface85.CoqGoals = opt_goals.val
res.val = Goals(
[Goal(g.hyp, g.ccl) for g in goals.fg],
[
[Goal(g.hyp, g.ccl) for g in pre + post]
for pre, post in goals.bg
],
[Goal(g.hyp, g.ccl) for g in goals.shelved],
[Goal(g.hyp, g.ccl) for g in goals.given_up],
)
return res |
Python | def status(self, encoding: str = "utf-8") -> Tuple[str, Optional[bytes]]:
"""Create an XML string to check Coqtop's status.
Args:
force: bool - Force all pending evaluations
"""
return ("Status", self._make_call(encoding, "Status", children=True)) | def status(self, encoding: str = "utf-8") -> Tuple[str, Optional[bytes]]:
"""Create an XML string to check Coqtop's status.
Args:
force: bool - Force all pending evaluations
"""
return ("Status", self._make_call(encoding, "Status", children=True)) |
Python | def query(
self,
query: str,
state: int,
encoding: str = "utf-8",
) -> Tuple[str, Optional[bytes]]:
"""Create an XML string to pose a query to Coqtop.
Args:
route_id: CoqRouteId - The route id ?
query: string - The query to evaluate
state_id: CoqStateId - The current state id
"""
return (
"Query",
self._make_call(
encoding,
"Query",
(self.CoqRouteId(0), (query, self.CoqStateId(state))),
),
) | def query(
self,
query: str,
state: int,
encoding: str = "utf-8",
) -> Tuple[str, Optional[bytes]]:
"""Create an XML string to pose a query to Coqtop.
Args:
route_id: CoqRouteId - The route id ?
query: string - The query to evaluate
state_id: CoqStateId - The current state id
"""
return (
"Query",
self._make_call(
encoding,
"Query",
(self.CoqRouteId(0), (query, self.CoqStateId(state))),
),
) |
Python | def topfile(filename: str, args: Iterable[str]) -> Tuple[str, ...]:
"""The command to set the top-level module name."""
return (
("-topfile", filename)
if all(arg not in args for arg in ("-top", "-topfile"))
and XMLInterfaceBase.valid_module(filename)
else ()
) | def topfile(filename: str, args: Iterable[str]) -> Tuple[str, ...]:
"""The command to set the top-level module name."""
return (
("-topfile", filename)
if all(arg not in args for arg in ("-top", "-topfile"))
and XMLInterfaceBase.valid_module(filename)
else ()
) |
Python | def find_coq(coq_path: Optional[str], coq_prog: Optional[str]) -> str:
"""Find the path to the Coq executable."""
coq_prog = "coqc" if coq_prog is None else coq_prog
coq = which(coq_prog, path=coq_path)
if coq is None:
path = "$PATH" if coq_path is None else coq_path
raise FindCoqtopError(
f"Could not find {coq_prog} in {path}. Perhaps you need "
"to set g:coqtail_coq_path or g:coqtail_coq_prog."
)
return coq | def find_coq(coq_path: Optional[str], coq_prog: Optional[str]) -> str:
"""Find the path to the Coq executable."""
coq_prog = "coqc" if coq_prog is None else coq_prog
coq = which(coq_prog, path=coq_path)
if coq is None:
path = "$PATH" if coq_path is None else coq_path
raise FindCoqtopError(
f"Could not find {coq_prog} in {path}. Perhaps you need "
"to set g:coqtail_coq_path or g:coqtail_coq_prog."
)
return coq |
Python | def parse_version(version: str) -> Tuple[int, int, int]:
"""Parse a version string into a 3-tuple."""
match = re.fullmatch(r"(\d+)\.(\d+)(?:(?:\.|pl)(\d+)|\+\w+\d*)?", version)
if match is None:
raise ValueError(f"Invalid version: {version}")
major, minor, patch = match.groups()
assert major is not None
assert minor is not None
patch = "0" if patch is None else patch
return (int(major), int(minor), int(patch)) | def parse_version(version: str) -> Tuple[int, int, int]:
"""Parse a version string into a 3-tuple."""
match = re.fullmatch(r"(\d+)\.(\d+)(?:(?:\.|pl)(\d+)|\+\w+\d*)?", version)
if match is None:
raise ValueError(f"Invalid version: {version}")
major, minor, patch = match.groups()
assert major is not None
assert minor is not None
patch = "0" if patch is None else patch
return (int(major), int(minor), int(patch)) |
Python | def XMLInterface(
coq_path: Optional[str],
coq_prog: Optional[str],
) -> Tuple[XMLInterfaceBase, Optional[str]]:
"""Return the appropriate XMLInterface class for the given version."""
coq = find_coq(coq_path, coq_prog)
coq_path = str(Path(coq).parent)
str_version = extract_version(coq)
version = parse_version(str_version)
for minVer, maxVer, xmlInt in XMLInterfaces:
if minVer <= version < maxVer:
return xmlInt(version, str_version, coq_path, coq_prog), None
return (
XMLInterfaceLatest(version, str_version, coq_path, coq_prog),
".".join(map(str, XMLInterfaces[-1][0])),
) | def XMLInterface(
coq_path: Optional[str],
coq_prog: Optional[str],
) -> Tuple[XMLInterfaceBase, Optional[str]]:
"""Return the appropriate XMLInterface class for the given version."""
coq = find_coq(coq_path, coq_prog)
coq_path = str(Path(coq).parent)
str_version = extract_version(coq)
version = parse_version(str_version)
for minVer, maxVer, xmlInt in XMLInterfaces:
if minVer <= version < maxVer:
return xmlInt(version, str_version, coq_path, coq_prog), None
return (
XMLInterfaceLatest(version, str_version, coq_path, coq_prog),
".".join(map(str, XMLInterfaces[-1][0])),
) |
Python | def coq() -> Generator[Coqtop, None, None]:
"""Return a Coqtop for each version."""
ct = Coqtop()
if isinstance(ct.start(None, None, "", [])[0], dict):
yield ct
ct.stop()
else:
pytest.fail("Failed to create Coqtop instance") | def coq() -> Generator[Coqtop, None, None]:
"""Return a Coqtop for each version."""
ct = Coqtop()
if isinstance(ct.start(None, None, "", [])[0], dict):
yield ct
ct.stop()
else:
pytest.fail("Failed to create Coqtop instance") |
Python | def lines_and_highlights(
tagged_tokens: Union[str, Iterable[TaggedToken]],
line_no: int,
) -> Tuple[List[str], List[Highlight]]:
"""Converts a sequence of tagged tokens into lines and higlight positions.
Note that matchaddpos()'s highlight positions are 1-indexed,
but this function expects line_no to be 0-indexed.
"""
# If tagged_tokens turns out to already be a string (which is the case for
# older versions of Coq), just return it as is, with no highlights.
if isinstance(tagged_tokens, str):
return tagged_tokens.splitlines(), []
lines: List[str] = []
highlights: List[Highlight] = []
line_no += 1 # Convert to 1-indexed per matchaddpos()'s spec
line, index = "", 1
for token, tag in tagged_tokens:
# NOTE: Can't use splitlines or else tokens like ' =\n' won't properly
# begin a new line
for i, tok in enumerate(token.split("\n")):
if i > 0:
# Encountered a newline in token
lines.append(line)
line_no += 1
line, index = "", 1
tok_len = len(tok.encode("utf-8"))
if tag is not None:
highlights.append(Highlight(line_no, index, tok_len, tag))
line += tok
index += tok_len
lines.append(line)
return lines, highlights | def lines_and_highlights(
tagged_tokens: Union[str, Iterable[TaggedToken]],
line_no: int,
) -> Tuple[List[str], List[Highlight]]:
"""Converts a sequence of tagged tokens into lines and higlight positions.
Note that matchaddpos()'s highlight positions are 1-indexed,
but this function expects line_no to be 0-indexed.
"""
# If tagged_tokens turns out to already be a string (which is the case for
# older versions of Coq), just return it as is, with no highlights.
if isinstance(tagged_tokens, str):
return tagged_tokens.splitlines(), []
lines: List[str] = []
highlights: List[Highlight] = []
line_no += 1 # Convert to 1-indexed per matchaddpos()'s spec
line, index = "", 1
for token, tag in tagged_tokens:
# NOTE: Can't use splitlines or else tokens like ' =\n' won't properly
# begin a new line
for i, tok in enumerate(token.split("\n")):
if i > 0:
# Encountered a newline in token
lines.append(line)
line_no += 1
line, index = "", 1
tok_len = len(tok.encode("utf-8"))
if tag is not None:
highlights.append(Highlight(line_no, index, tok_len, tag))
line += tok
index += tok_len
lines.append(line)
return lines, highlights |
Python | def sync(self, opts: VimOptions) -> Optional[str]:
"""Check if the buffer has been updated and rewind Coqtop if so."""
err = None
newchange = self.changedtick
if newchange != self.oldchange:
newbuf = self.buffer
if self.endpoints != []:
eline, ecol = self.endpoints[-1]
linediff = _find_diff(self.oldbuf, newbuf, eline + 1)
if linediff is not None:
try:
coldiff = _find_diff(
self.oldbuf[linediff],
newbuf[linediff],
ecol if linediff == eline else None,
)
except IndexError:
linediff = len(newbuf) - 1
coldiff = len(newbuf[-1])
if coldiff is not None:
err = self.rewind_to(linediff, coldiff + 1, opts=opts)
self.oldchange = newchange
self.oldbuf = newbuf
return err | def sync(self, opts: VimOptions) -> Optional[str]:
"""Check if the buffer has been updated and rewind Coqtop if so."""
err = None
newchange = self.changedtick
if newchange != self.oldchange:
newbuf = self.buffer
if self.endpoints != []:
eline, ecol = self.endpoints[-1]
linediff = _find_diff(self.oldbuf, newbuf, eline + 1)
if linediff is not None:
try:
coldiff = _find_diff(
self.oldbuf[linediff],
newbuf[linediff],
ecol if linediff == eline else None,
)
except IndexError:
linediff = len(newbuf) - 1
coldiff = len(newbuf[-1])
if coldiff is not None:
err = self.rewind_to(linediff, coldiff + 1, opts=opts)
self.oldchange = newchange
self.oldbuf = newbuf
return err |
Python | def start(
self,
coq_path: str,
coq_prog: str,
args: Iterable[str],
opts: VimOptions,
) -> Tuple[Union[CT.VersionInfo, str], str]:
"""Start a new Coqtop instance."""
try:
ver_or_err, stderr = self.coqtop.start(
coq_path if coq_path != "" else None,
coq_prog if coq_prog != "" else None,
opts["filename"],
args,
timeout=opts["timeout"],
)
self.print_stderr(stderr)
except (ValueError, CT.CoqtopError) as e:
ver_or_err, stderr = str(e), ""
return ver_or_err, stderr | def start(
self,
coq_path: str,
coq_prog: str,
args: Iterable[str],
opts: VimOptions,
) -> Tuple[Union[CT.VersionInfo, str], str]:
"""Start a new Coqtop instance."""
try:
ver_or_err, stderr = self.coqtop.start(
coq_path if coq_path != "" else None,
coq_prog if coq_prog != "" else None,
opts["filename"],
args,
timeout=opts["timeout"],
)
self.print_stderr(stderr)
except (ValueError, CT.CoqtopError) as e:
ver_or_err, stderr = str(e), ""
return ver_or_err, stderr |
Python | def to_line(self, line: int, col: int, opts: VimOptions) -> Optional[str]:
"""Advance/rewind Coq to the specified position."""
self.sync(opts=opts)
# Get the location of the last '.'
eline, ecol = self.endpoints[-1] if self.endpoints != [] else (0, 0)
# Check if should rewind or advance
if (line, col) < (eline, ecol):
return self.rewind_to(line, col + 2, opts=opts)
unmatched = None
buffer = self.buffer
while True:
try:
to_send = _get_message_range(buffer, (eline, ecol))
except UnmatchedError as e:
# Only report unmatched if it occurs after the desired position
if e.range[0] <= (line, col):
unmatched = e
break
except NoDotError:
break
if (line, col) < to_send["stop"]:
break
eline, ecol = to_send["stop"]
ecol += 1
self.send_queue.append(to_send)
failed_at, err = self.send_until_fail(buffer, opts=opts)
if unmatched is not None and failed_at is None:
# Only report unmatched if no other errors occurred first
self.set_info(str(unmatched), reset=False)
self.error_at = unmatched.range
self.refresh(goals=False, opts=opts)
return err | def to_line(self, line: int, col: int, opts: VimOptions) -> Optional[str]:
"""Advance/rewind Coq to the specified position."""
self.sync(opts=opts)
# Get the location of the last '.'
eline, ecol = self.endpoints[-1] if self.endpoints != [] else (0, 0)
# Check if should rewind or advance
if (line, col) < (eline, ecol):
return self.rewind_to(line, col + 2, opts=opts)
unmatched = None
buffer = self.buffer
while True:
try:
to_send = _get_message_range(buffer, (eline, ecol))
except UnmatchedError as e:
# Only report unmatched if it occurs after the desired position
if e.range[0] <= (line, col):
unmatched = e
break
except NoDotError:
break
if (line, col) < to_send["stop"]:
break
eline, ecol = to_send["stop"]
ecol += 1
self.send_queue.append(to_send)
failed_at, err = self.send_until_fail(buffer, opts=opts)
if unmatched is not None and failed_at is None:
# Only report unmatched if no other errors occurred first
self.set_info(str(unmatched), reset=False)
self.error_at = unmatched.range
self.refresh(goals=False, opts=opts)
return err |
Python | def query(
self,
args: Iterable[str],
opts: VimOptions,
silent: bool = False,
) -> None:
"""Forward Coq query to Coqtop interface."""
success, msg, stderr = self.do_query(" ".join(args), opts=opts)
if not success or not silent:
self.set_info(msg, reset=True)
self.print_stderr(stderr)
self.refresh(goals=False, opts=opts) | def query(
self,
args: Iterable[str],
opts: VimOptions,
silent: bool = False,
) -> None:
"""Forward Coq query to Coqtop interface."""
success, msg, stderr = self.do_query(" ".join(args), opts=opts)
if not success or not silent:
self.set_info(msg, reset=True)
self.print_stderr(stderr)
self.refresh(goals=False, opts=opts) |
Python | def endpoint(self, opts: VimOptions) -> Tuple[int, int]:
"""Return the end of the Coq checked section."""
# pylint: disable=unused-argument
# opts is always passed by handle().
# Get the location of the last '.'
line, col = self.endpoints[-1] if self.endpoints != [] else (0, 1)
return (line + 1, col) | def endpoint(self, opts: VimOptions) -> Tuple[int, int]:
"""Return the end of the Coq checked section."""
# pylint: disable=unused-argument
# opts is always passed by handle().
# Get the location of the last '.'
line, col = self.endpoints[-1] if self.endpoints != [] else (0, 1)
return (line + 1, col) |
Python | def errorpoint(self, opts: VimOptions) -> Optional[Tuple[int, int]]:
"""Return the start of the error region."""
# pylint: disable=unused-argument
# opts is always passed by handle().
if self.error_at is not None:
line, col = self.error_at[0]
return (line + 1, col + 1)
return None | def errorpoint(self, opts: VimOptions) -> Optional[Tuple[int, int]]:
"""Return the start of the error region."""
# pylint: disable=unused-argument
# opts is always passed by handle().
if self.error_at is not None:
line, col = self.error_at[0]
return (line + 1, col + 1)
return None |
Python | def send_until_fail(
self,
buffer: Sequence[bytes],
opts: VimOptions,
) -> Tuple[Optional[Tuple[int, int]], Optional[str]]:
"""Send all sentences in 'send_queue' until an error is encountered."""
scroll = len(self.send_queue) > 1
failed_at = None
no_msgs = True
self.error_at = None
while self.send_queue:
self.refresh(goals=False, force=False, scroll=scroll, opts=opts)
to_send = self.send_queue.popleft()
message = _between(buffer, to_send["start"], to_send["stop"])
no_comments, _ = _strip_comments(message)
try:
success, msg, err_loc, stderr = self.coqtop.dispatch(
message.decode("utf-8"),
no_comments.decode("utf-8"),
encoding=opts["encoding"],
timeout=opts["timeout"],
)
except CT.CoqtopError as e:
return None, str(e)
if msg != "":
self.set_info(msg, reset=no_msgs)
no_msgs = False
self.print_stderr(stderr)
no_msgs = no_msgs and stderr == ""
if success:
line, col = to_send["stop"]
self.endpoints.append((line, col + 1))
else:
self.send_queue.clear()
failed_at = to_send["start"]
# Highlight error location
assert err_loc is not None
loc_s, loc_e = err_loc
if loc_s == loc_e == -1:
self.error_at = (to_send["start"], to_send["stop"])
else:
line, col = to_send["start"]
sline, scol = _pos_from_offset(col, message, loc_s)
eline, ecol = _pos_from_offset(col, message, loc_e)
self.error_at = ((line + sline, scol), (line + eline, ecol))
# Clear info if no messages
if no_msgs:
self.set_info("", reset=True)
self.refresh(opts=opts, scroll=scroll)
return failed_at, None | def send_until_fail(
self,
buffer: Sequence[bytes],
opts: VimOptions,
) -> Tuple[Optional[Tuple[int, int]], Optional[str]]:
"""Send all sentences in 'send_queue' until an error is encountered."""
scroll = len(self.send_queue) > 1
failed_at = None
no_msgs = True
self.error_at = None
while self.send_queue:
self.refresh(goals=False, force=False, scroll=scroll, opts=opts)
to_send = self.send_queue.popleft()
message = _between(buffer, to_send["start"], to_send["stop"])
no_comments, _ = _strip_comments(message)
try:
success, msg, err_loc, stderr = self.coqtop.dispatch(
message.decode("utf-8"),
no_comments.decode("utf-8"),
encoding=opts["encoding"],
timeout=opts["timeout"],
)
except CT.CoqtopError as e:
return None, str(e)
if msg != "":
self.set_info(msg, reset=no_msgs)
no_msgs = False
self.print_stderr(stderr)
no_msgs = no_msgs and stderr == ""
if success:
line, col = to_send["stop"]
self.endpoints.append((line, col + 1))
else:
self.send_queue.clear()
failed_at = to_send["start"]
# Highlight error location
assert err_loc is not None
loc_s, loc_e = err_loc
if loc_s == loc_e == -1:
self.error_at = (to_send["start"], to_send["stop"])
else:
line, col = to_send["start"]
sline, scol = _pos_from_offset(col, message, loc_s)
eline, ecol = _pos_from_offset(col, message, loc_e)
self.error_at = ((line + sline, scol), (line + eline, ecol))
# Clear info if no messages
if no_msgs:
self.set_info("", reset=True)
self.refresh(opts=opts, scroll=scroll)
return failed_at, None |
Python | def rewind_to(self, line: int, col: int, opts: VimOptions) -> Optional[str]:
"""Rewind to a specific location."""
# Count the number of endpoints after the specified location
steps_too_far = sum(pos >= (line, col) for pos in self.endpoints)
return self.rewind(steps_too_far, opts=opts) | def rewind_to(self, line: int, col: int, opts: VimOptions) -> Optional[str]:
"""Rewind to a specific location."""
# Count the number of endpoints after the specified location
steps_too_far = sum(pos >= (line, col) for pos in self.endpoints)
return self.rewind(steps_too_far, opts=opts) |
Python | def do_query(self, query: str, opts: VimOptions) -> Tuple[bool, str, str]:
"""Execute a query and return the reply."""
# Ensure that the query ends in '.'
if not query.endswith("."):
query += "."
try:
success, msg, _, stderr = self.coqtop.dispatch(
query,
in_script=False,
encoding=opts["encoding"],
timeout=opts["timeout"],
)
except CT.CoqtopError as e:
return False, str(e), ""
return success, msg, stderr | def do_query(self, query: str, opts: VimOptions) -> Tuple[bool, str, str]:
"""Execute a query and return the reply."""
# Ensure that the query ends in '.'
if not query.endswith("."):
query += "."
try:
success, msg, _, stderr = self.coqtop.dispatch(
query,
in_script=False,
encoding=opts["encoding"],
timeout=opts["timeout"],
)
except CT.CoqtopError as e:
return False, str(e), ""
return success, msg, stderr |
Python | def find_lib(self, lib: str, opts: VimOptions) -> Optional[str]:
"""Find the path to the .v file corresponding to the libary 'lib'."""
success, locate, _ = self.do_query(f"Locate Library {lib}.", opts=opts)
if not success:
return None
path = re.search(r"file\s+(.*)\.vo", locate)
return path.group(1) if path is not None else None | def find_lib(self, lib: str, opts: VimOptions) -> Optional[str]:
"""Find the path to the .v file corresponding to the libary 'lib'."""
success, locate, _ = self.do_query(f"Locate Library {lib}.", opts=opts)
if not success:
return None
path = re.search(r"file\s+(.*)\.vo", locate)
return path.group(1) if path is not None else None |
Python | def find_qual(
self,
qual_tgt: str,
tgt_type: str,
opts: VimOptions,
) -> Optional[Tuple[str, str]]:
"""Find the Coq file containing the qualified name 'qual_tgt'."""
qual_comps = qual_tgt.split(".")
base_name = qual_comps[-1]
# If 'qual_comps' starts with Top or 'tgt_type' is Variable then
# 'qual_tgt' is defined in the current file
if qual_comps[0] == "Top" or tgt_type == "Variable":
return opts["filename"], base_name
# Find the longest prefix of 'qual_tgt' that matches a logical path in
# 'path_map'
for end in range(-1, -len(qual_comps), -1):
path = self.find_lib(".".join(qual_comps[:end]), opts=opts)
if path is not None:
return path + ".v", base_name
return None | def find_qual(
self,
qual_tgt: str,
tgt_type: str,
opts: VimOptions,
) -> Optional[Tuple[str, str]]:
"""Find the Coq file containing the qualified name 'qual_tgt'."""
qual_comps = qual_tgt.split(".")
base_name = qual_comps[-1]
# If 'qual_comps' starts with Top or 'tgt_type' is Variable then
# 'qual_tgt' is defined in the current file
if qual_comps[0] == "Top" or tgt_type == "Variable":
return opts["filename"], base_name
# Find the longest prefix of 'qual_tgt' that matches a logical path in
# 'path_map'
for end in range(-1, -len(qual_comps), -1):
path = self.find_lib(".".join(qual_comps[:end]), opts=opts)
if path is not None:
return path + ".v", base_name
return None |
Python | def find_def(
self,
target: str,
opts: VimOptions,
) -> Optional[Tuple[str, List[str]]]:
"""Create patterns to jump to the definition of 'target'."""
# Get the fully qualified version of 'target'
qual = self.qual_name(target, opts=opts)
if qual is None:
return None
qual_tgt, tgt_type = qual
# Find what file the definition is in and what type it is
tgt = self.find_qual(qual_tgt, tgt_type, opts=opts)
if tgt is None:
return None
tgt_file, tgt_name = tgt
return tgt_file, get_searches(tgt_type, tgt_name) | def find_def(
self,
target: str,
opts: VimOptions,
) -> Optional[Tuple[str, List[str]]]:
"""Create patterns to jump to the definition of 'target'."""
# Get the fully qualified version of 'target'
qual = self.qual_name(target, opts=opts)
if qual is None:
return None
qual_tgt, tgt_type = qual
# Find what file the definition is in and what type it is
tgt = self.find_qual(qual_tgt, tgt_type, opts=opts)
if tgt is None:
return None
tgt_file, tgt_name = tgt
return tgt_file, get_searches(tgt_type, tgt_name) |
Python | def next_bullet(self, opts: VimOptions) -> Optional[str]:
"""Check the bullet expected for the next subgoal."""
success, show, _ = self.do_query("Show.", opts=opts)
if not success:
return None
bmatch = re.search(r'(?:bullet |unfocusing with ")([-+*}]+)', show)
return bmatch.group(1) if bmatch is not None else None | def next_bullet(self, opts: VimOptions) -> Optional[str]:
"""Check the bullet expected for the next subgoal."""
success, show, _ = self.do_query("Show.", opts=opts)
if not success:
return None
bmatch = re.search(r'(?:bullet |unfocusing with ")([-+*}]+)', show)
return bmatch.group(1) if bmatch is not None else None |
Python | def highlights(self) -> Dict[str, Optional[str]]:
"""Vim match patterns for highlighting."""
matches: Dict[str, Optional[str]] = {
"coqtail_checked": None,
"coqtail_sent": None,
"coqtail_error": None,
}
if self.endpoints != []:
line, col = self.endpoints[-1]
matches["coqtail_checked"] = matcher[: line + 1, :col]
if self.send_queue:
sline, scol = self.endpoints[-1] if self.endpoints != [] else (0, -1)
eline, ecol = self.send_queue[-1]["stop"]
matches["coqtail_sent"] = matcher[sline : eline + 1, scol:ecol]
if self.error_at is not None:
(sline, scol), (eline, ecol) = self.error_at
matches["coqtail_error"] = matcher[sline : eline + 1, scol:ecol]
return matches | def highlights(self) -> Dict[str, Optional[str]]:
"""Vim match patterns for highlighting."""
matches: Dict[str, Optional[str]] = {
"coqtail_checked": None,
"coqtail_sent": None,
"coqtail_error": None,
}
if self.endpoints != []:
line, col = self.endpoints[-1]
matches["coqtail_checked"] = matcher[: line + 1, :col]
if self.send_queue:
sline, scol = self.endpoints[-1] if self.endpoints != [] else (0, -1)
eline, ecol = self.send_queue[-1]["stop"]
matches["coqtail_sent"] = matcher[sline : eline + 1, scol:ecol]
if self.error_at is not None:
(sline, scol), (eline, ecol) = self.error_at
matches["coqtail_error"] = matcher[sline : eline + 1, scol:ecol]
return matches |
Python | def toggle_debug(self, opts: VimOptions) -> None:
"""Enable or disable logging of debug messages."""
log = self.coqtop.toggle_debug()
if log is None:
msg = "Debugging disabled."
self.log = ""
else:
msg = f"Debugging enabled. Log: {log}."
self.log = log
self.set_info(msg, reset=True)
self.refresh(goals=False, opts=opts) | def toggle_debug(self, opts: VimOptions) -> None:
"""Enable or disable logging of debug messages."""
log = self.coqtop.toggle_debug()
if log is None:
msg = "Debugging disabled."
self.log = ""
else:
msg = f"Debugging enabled. Log: {log}."
self.log = log
self.set_info(msg, reset=True)
self.refresh(goals=False, opts=opts) |
Python | def buffer(self) -> List[bytes]:
"""The contents of this buffer."""
lines: List[str] = self.handler.vimcall(
"getbufline",
True,
self.handler.bnum,
1,
"$",
)
return [line.encode("utf-8") for line in lines] | def buffer(self) -> List[bytes]:
"""The contents of this buffer."""
lines: List[str] = self.handler.vimcall(
"getbufline",
True,
self.handler.bnum,
1,
"$",
)
return [line.encode("utf-8") for line in lines] |
Python | def parse_msgs(self) -> None:
"""Parse messages sent over a Vim channel."""
while not self.closed:
try:
msg = self.rfile.readline()
msg_id, data = json.loads(msg)
except (json.JSONDecodeError, ConnectionError):
# Check if channel closed
self.closed = True
break
if msg_id >= 0: # request from Vim
bnum, func, args = data
if func == "interrupt":
self.interrupt()
else:
self.reqs.put((msg_id, bnum, func, args))
else: # response to a `vimeval` request
# NOTE: Accessing self.resps concurrently creates a race
# condition where defaultdict could construct a Queue twice
with self.resp_lk:
self.resps[-msg_id].put((msg_id, data)) | def parse_msgs(self) -> None:
"""Parse messages sent over a Vim channel."""
while not self.closed:
try:
msg = self.rfile.readline()
msg_id, data = json.loads(msg)
except (json.JSONDecodeError, ConnectionError):
# Check if channel closed
self.closed = True
break
if msg_id >= 0: # request from Vim
bnum, func, args = data
if func == "interrupt":
self.interrupt()
else:
self.reqs.put((msg_id, bnum, func, args))
else: # response to a `vimeval` request
# NOTE: Accessing self.resps concurrently creates a race
# condition where defaultdict could construct a Queue twice
with self.resp_lk:
self.resps[-msg_id].put((msg_id, data)) |
Python | def handle(self) -> None:
"""Forward requests from Vim to the appropriate Coqtail function."""
self.coq = Coqtail(self)
self.closed = False
# Requests from Vim (`s:call`)
self.reqs: ReqQueue = Queue()
# Responses to `vimeval` requests.
# The key is the id of Vim's request that was being handled at the
# moment of `vimeval` call.
self.resps: DefaultDict[int, ResQueue] = ddict(Queue)
self.resp_lk = threading.Lock()
threading.Thread(target=self.parse_msgs, daemon=True).start()
while not self.closed:
try:
self.working = False
# pylint: disable=unpacking-non-sequence
self.msg_id, self.bnum, func, args = self.get_msg()
self.refresh_time = 0.0
self.working = True
except EOFError:
break
handlers: Mapping[str, Callable[..., object]] = {
"start": self.coq.start,
"stop": self.coq.stop,
"step": self.coq.step,
"rewind": self.coq.rewind,
"to_line": self.coq.to_line,
"to_top": self.coq.to_top,
"query": self.coq.query,
"endpoint": self.coq.endpoint,
"errorpoint": self.coq.errorpoint,
"toggle_debug": self.coq.toggle_debug,
"splash": self.coq.splash,
"sync": self.coq.sync,
"find_def": self.coq.find_def,
"find_lib": self.coq.find_lib,
"refresh": self.coq.refresh,
}
handler = handlers.get(func, None)
try:
ret = handler(**args) if handler is not None else None
msg = [self.msg_id, {"buf": self.bnum, "ret": ret}]
self.wfile.write(_to_jsonl(msg))
except (EOFError, ConnectionError):
break
try:
del self.resps[self.msg_id]
except KeyError:
pass
if func == "stop":
break | def handle(self) -> None:
"""Forward requests from Vim to the appropriate Coqtail function."""
self.coq = Coqtail(self)
self.closed = False
# Requests from Vim (`s:call`)
self.reqs: ReqQueue = Queue()
# Responses to `vimeval` requests.
# The key is the id of Vim's request that was being handled at the
# moment of `vimeval` call.
self.resps: DefaultDict[int, ResQueue] = ddict(Queue)
self.resp_lk = threading.Lock()
threading.Thread(target=self.parse_msgs, daemon=True).start()
while not self.closed:
try:
self.working = False
# pylint: disable=unpacking-non-sequence
self.msg_id, self.bnum, func, args = self.get_msg()
self.refresh_time = 0.0
self.working = True
except EOFError:
break
handlers: Mapping[str, Callable[..., object]] = {
"start": self.coq.start,
"stop": self.coq.stop,
"step": self.coq.step,
"rewind": self.coq.rewind,
"to_line": self.coq.to_line,
"to_top": self.coq.to_top,
"query": self.coq.query,
"endpoint": self.coq.endpoint,
"errorpoint": self.coq.errorpoint,
"toggle_debug": self.coq.toggle_debug,
"splash": self.coq.splash,
"sync": self.coq.sync,
"find_def": self.coq.find_def,
"find_lib": self.coq.find_lib,
"refresh": self.coq.refresh,
}
handler = handlers.get(func, None)
try:
ret = handler(**args) if handler is not None else None
msg = [self.msg_id, {"buf": self.bnum, "ret": ret}]
self.wfile.write(_to_jsonl(msg))
except (EOFError, ConnectionError):
break
try:
del self.resps[self.msg_id]
except KeyError:
pass
if func == "stop":
break |
Python | def vimvar(self, var: str, val: Optional[Any] = None) -> Any:
"""Get or set the value of a Vim variable."""
return (
self.vimcall("getbufvar", True, self.bnum, var)
if val is None
else self.vimcall("setbufvar", True, self.bnum, var, val)
) | def vimvar(self, var: str, val: Optional[Any] = None) -> Any:
"""Get or set the value of a Vim variable."""
return (
self.vimcall("getbufvar", True, self.bnum, var)
if val is None
else self.vimcall("setbufvar", True, self.bnum, var, val)
) |
Python | def refresh(
self,
goals: bool = True,
force: bool = True,
scroll: bool = False,
) -> None:
"""Refresh the highlighting and auxiliary panels."""
# pylint: disable=attribute-defined-outside-init
# refresh_time is defined in handle() when the connection is opened.
if not force:
cur_time = time.time()
force = cur_time - self.refresh_time > self.refresh_rate
self.refresh_time = cur_time
if force:
self.vimcall(
"coqtail#panels#refresh",
self.sync,
self.bnum,
self.coq.highlights,
self.coq.panels(goals),
scroll,
) | def refresh(
self,
goals: bool = True,
force: bool = True,
scroll: bool = False,
) -> None:
"""Refresh the highlighting and auxiliary panels."""
# pylint: disable=attribute-defined-outside-init
# refresh_time is defined in handle() when the connection is opened.
if not force:
cur_time = time.time()
force = cur_time - self.refresh_time > self.refresh_rate
self.refresh_time = cur_time
if force:
self.vimcall(
"coqtail#panels#refresh",
self.sync,
self.bnum,
self.coq.highlights,
self.coq.panels(goals),
scroll,
) |
Python | def interrupt(self) -> None:
"""Interrupt Coqtop and clear the request queue."""
if self.working:
self.working = False
while not self.reqs.empty():
try:
msg_id, bnum, _, _ = self.reqs.get_nowait()
msg = [msg_id, {"buf": bnum, "ret": None}]
self.wfile.write(_to_jsonl(msg))
except Empty:
break
self.coq.coqtop.interrupt() | def interrupt(self) -> None:
"""Interrupt Coqtop and clear the request queue."""
if self.working:
self.working = False
while not self.reqs.empty():
try:
msg_id, bnum, _, _ = self.reqs.get_nowait()
msg = [msg_id, {"buf": bnum, "ret": None}]
self.wfile.write(_to_jsonl(msg))
except Empty:
break
self.coq.coqtop.interrupt() |
Python | def send(
handle: int,
session: Optional[int],
expr: str,
reply_id: Optional[int] = None,
returns: bool = True,
) -> bool:
"""Send a command request or reply on a channel."""
try:
ch = ChannelManager.channels[handle]
except KeyError:
return False
if reply_id is None and session is not None:
if ChannelManager.sessions.get(handle, None) == session:
return True
ChannelManager.sessions[handle] = session
msg_id = reply_id if reply_id is not None else next(ChannelManager.msg_id)
ch.sendall(_to_jsonl([msg_id, expr]))
if returns:
ChannelManager.results[handle] = ChannelManager.pool.submit(
ChannelManager._recv,
ChannelManager.channels[handle],
)
return True | def send(
handle: int,
session: Optional[int],
expr: str,
reply_id: Optional[int] = None,
returns: bool = True,
) -> bool:
"""Send a command request or reply on a channel."""
try:
ch = ChannelManager.channels[handle]
except KeyError:
return False
if reply_id is None and session is not None:
if ChannelManager.sessions.get(handle, None) == session:
return True
ChannelManager.sessions[handle] = session
msg_id = reply_id if reply_id is not None else next(ChannelManager.msg_id)
ch.sendall(_to_jsonl([msg_id, expr]))
if returns:
ChannelManager.results[handle] = ChannelManager.pool.submit(
ChannelManager._recv,
ChannelManager.channels[handle],
)
return True |
Python | def poll(handle: int) -> Optional[str]:
"""Wait for a response on a channel."""
try:
return ChannelManager.results[handle].result(timeout=0)
except futures.TimeoutError:
return None | def poll(handle: int) -> Optional[str]:
"""Wait for a response on a channel."""
try:
return ChannelManager.results[handle].result(timeout=0)
except futures.TimeoutError:
return None |
Subsets and Splits