language
stringclasses
6 values
original_string
stringlengths
25
887k
text
stringlengths
25
887k
Python
def write_to_csv(keyword, tweets): ''' Save tweets in a csv file to load later. ''' # transform the tweepy tweets into a 2D array that will populate the csv outtweets = [[tweet.id_str, tweet.created_at, tweet.text.encode("utf-8")] for tweet in tweets] # write the csv file_name = '/app/data/{}_{}.csv'.format( keyword, datetime.strftime(datetime.now(), '%d_%m_%Y_%H:%M:%S')) with open(file_name, 'wb') as f: writer = csv.writer(f) writer.writerow(["id", "created_at", "text"]) writer.writerows(outtweets)
def write_to_csv(keyword, tweets): ''' Save tweets in a csv file to load later. ''' # transform the tweepy tweets into a 2D array that will populate the csv outtweets = [[tweet.id_str, tweet.created_at, tweet.text.encode("utf-8")] for tweet in tweets] # write the csv file_name = '/app/data/{}_{}.csv'.format( keyword, datetime.strftime(datetime.now(), '%d_%m_%Y_%H:%M:%S')) with open(file_name, 'wb') as f: writer = csv.writer(f) writer.writerow(["id", "created_at", "text"]) writer.writerows(outtweets)
Python
def write_to_json(keyword, tweets): ''' Save tweets in a json file to load later. ''' outtweets = [{tweet.id_str: {'created_at': str(tweet.created_at), 'place': str(tweet.place), 'geo': str(tweet.geo), 'text': tweet.text.encode("utf-8")}} for tweet in tweets] file_name = '/app/data/{}_{}.json'.format( keyword, datetime.strftime(datetime.now(), '%d_%m_%Y_%H:%M:%S')) # write the json with open(file_name, 'wb') as f: json.dump(outtweets, f)
def write_to_json(keyword, tweets): ''' Save tweets in a json file to load later. ''' outtweets = [{tweet.id_str: {'created_at': str(tweet.created_at), 'place': str(tweet.place), 'geo': str(tweet.geo), 'text': tweet.text.encode("utf-8")}} for tweet in tweets] file_name = '/app/data/{}_{}.json'.format( keyword, datetime.strftime(datetime.now(), '%d_%m_%Y_%H:%M:%S')) # write the json with open(file_name, 'wb') as f: json.dump(outtweets, f)
Python
def find_stats(inputFile, THRESHOLD_TWO_QUARTETS=0.1, THRESHOLD_THREE_QUARTETS=0.15): with open(inputFile) as fileobject: for line in fileobject: append_to_dictionary(line) keys = list(dictionary_quartets.keys()) four_tax_seq = keys[0:] list_names = four_tax_seq # list_four_tax_sequence = [(1,1,2,3,9),(1,1,2,4)] # x = [1,2] x = np.arange(len(four_tax_seq)) list_four_tax_sequence = [] features = 7 '''Does this sequence contain only 1 type of quartet ? [Binary] Does this sequence contain only 2 types of quartets ? [Binary] Does this sequence contain all 3 types of quartets ? [Binary] Does this sequence have 2 top quartets weights <= 10%? [Binary] Does this sequence have 3 quartets weights <= 15% ? [Binary] ''' results_table = np.zeros((len(four_tax_seq),features)) idx_key = 0 for key in four_tax_seq: list_four_tax_sequence.append([]) vals = dictionary_quartets[key] for val in vals: (_1, _2, _3, _4, w) = val list_four_tax_sequence[idx_key].append(float(w)) list_four_tax_sequence[idx_key].sort(reverse=True) #print(len(list_four_tax_sequence[idx_key])) if len(list_four_tax_sequence[idx_key])==1: results_table[idx_key][0] = 1 if len(list_four_tax_sequence[idx_key])==2: results_table[idx_key][1] = 1 if len(list_four_tax_sequence[idx_key])==3: results_table[idx_key][2] = 1 if ( len(list_four_tax_sequence[idx_key])==2 or len(list_four_tax_sequence[idx_key])==3 ) and is_within_range(list_four_tax_sequence[idx_key][0],list_four_tax_sequence[idx_key][1], THRESHOLD_TWO_QUARTETS): results_table[idx_key][3] = 1 # AND condition so, we get Pr(A and B) if len(list_four_tax_sequence[idx_key])==3 and is_within_range(list_four_tax_sequence[idx_key][0],list_four_tax_sequence[idx_key][1], THRESHOLD_THREE_QUARTETS): results_table[idx_key][4] = 1 if len(list_four_tax_sequence[idx_key])==3 and (2*list_four_tax_sequence[idx_key][0] - list_four_tax_sequence[idx_key][1] - list_four_tax_sequence[idx_key][2])>0: results_table[idx_key][5] = 1 if len(list_four_tax_sequence[idx_key])==3 and (3*list_four_tax_sequence[idx_key][0] - 2*list_four_tax_sequence[idx_key][1] - 2*list_four_tax_sequence[idx_key][2])>0: results_table[idx_key][6] = 1 #print(list_four_tax_sequence[idx_key]) #print(results_table[idx_key]) idx_key += 1 #print(len(list_four_tax_sequence)) #print(list_four_tax_sequence) #print(results_table) #print("Overall statistics") sums = np.sum(results_table,axis=0) F1 = (sums[0]/len(list_four_tax_sequence)) F2 = (sums[1]/len(list_four_tax_sequence)) F3 = (sums[2]/len(list_four_tax_sequence)) F4 = (sums[3]/(len(list_four_tax_sequence)-sums[0])) # Pr(A|B) = Pr(A and B) / Pr(B) F5 = (sums[4]/sums[2]) F6 = (sums[5]/sums[2]) F7 = (sums[6]/sums[2]) return F1,F2,F3,F4,F5,F6,F7
def find_stats(inputFile, THRESHOLD_TWO_QUARTETS=0.1, THRESHOLD_THREE_QUARTETS=0.15): with open(inputFile) as fileobject: for line in fileobject: append_to_dictionary(line) keys = list(dictionary_quartets.keys()) four_tax_seq = keys[0:] list_names = four_tax_seq # list_four_tax_sequence = [(1,1,2,3,9),(1,1,2,4)] # x = [1,2] x = np.arange(len(four_tax_seq)) list_four_tax_sequence = [] features = 7 '''Does this sequence contain only 1 type of quartet ? [Binary] Does this sequence contain only 2 types of quartets ? [Binary] Does this sequence contain all 3 types of quartets ? [Binary] Does this sequence have 2 top quartets weights <= 10%? [Binary] Does this sequence have 3 quartets weights <= 15% ? [Binary] ''' results_table = np.zeros((len(four_tax_seq),features)) idx_key = 0 for key in four_tax_seq: list_four_tax_sequence.append([]) vals = dictionary_quartets[key] for val in vals: (_1, _2, _3, _4, w) = val list_four_tax_sequence[idx_key].append(float(w)) list_four_tax_sequence[idx_key].sort(reverse=True) #print(len(list_four_tax_sequence[idx_key])) if len(list_four_tax_sequence[idx_key])==1: results_table[idx_key][0] = 1 if len(list_four_tax_sequence[idx_key])==2: results_table[idx_key][1] = 1 if len(list_four_tax_sequence[idx_key])==3: results_table[idx_key][2] = 1 if ( len(list_four_tax_sequence[idx_key])==2 or len(list_four_tax_sequence[idx_key])==3 ) and is_within_range(list_four_tax_sequence[idx_key][0],list_four_tax_sequence[idx_key][1], THRESHOLD_TWO_QUARTETS): results_table[idx_key][3] = 1 # AND condition so, we get Pr(A and B) if len(list_four_tax_sequence[idx_key])==3 and is_within_range(list_four_tax_sequence[idx_key][0],list_four_tax_sequence[idx_key][1], THRESHOLD_THREE_QUARTETS): results_table[idx_key][4] = 1 if len(list_four_tax_sequence[idx_key])==3 and (2*list_four_tax_sequence[idx_key][0] - list_four_tax_sequence[idx_key][1] - list_four_tax_sequence[idx_key][2])>0: results_table[idx_key][5] = 1 if len(list_four_tax_sequence[idx_key])==3 and (3*list_four_tax_sequence[idx_key][0] - 2*list_four_tax_sequence[idx_key][1] - 2*list_four_tax_sequence[idx_key][2])>0: results_table[idx_key][6] = 1 #print(list_four_tax_sequence[idx_key]) #print(results_table[idx_key]) idx_key += 1 #print(len(list_four_tax_sequence)) #print(list_four_tax_sequence) #print(results_table) #print("Overall statistics") sums = np.sum(results_table,axis=0) F1 = (sums[0]/len(list_four_tax_sequence)) F2 = (sums[1]/len(list_four_tax_sequence)) F3 = (sums[2]/len(list_four_tax_sequence)) F4 = (sums[3]/(len(list_four_tax_sequence)-sums[0])) # Pr(A|B) = Pr(A and B) / Pr(B) F5 = (sums[4]/sums[2]) F6 = (sums[5]/sums[2]) F7 = (sums[6]/sums[2]) return F1,F2,F3,F4,F5,F6,F7
Python
def discover_taxa(self, treefile, schema, preserve_underscores): """ Reads first tree in treefile, and assumes that is sufficient to populate a taxon set object fully, which it then returns. """ for tree in dendropy.Tree.yield_from_files([treefile], schema=schema, preserve_underscores=preserve_underscores, ignore_unrecognized_keyword_arguments=True, ): return tree.taxon_namespace
def discover_taxa(self, treefile, schema, preserve_underscores): """ Reads first tree in treefile, and assumes that is sufficient to populate a taxon set object fully, which it then returns. """ for tree in dendropy.Tree.yield_from_files([treefile], schema=schema, preserve_underscores=preserve_underscores, ignore_unrecognized_keyword_arguments=True, ): return tree.taxon_namespace
Python
def find_stats(inputFile, THRESHOLD_TWO_QUARTETS=0.1, THRESHOLD_THREE_QUARTETS=0.15): with open(inputFile) as fileobject: for line in fileobject: append_to_dictionary(line) keys = list(dictionary_quartets.keys()) four_tax_seq = keys[0:] list_names = four_tax_seq # list_four_tax_sequence = [(1,1,2,3,9),(1,1,2,4)] # x = [1,2] x = np.arange(len(four_tax_seq)) list_four_tax_sequence = [] features = 8 '''Does this sequence contain only 1 type of quartet ? [Binary] Does this sequence contain only 2 types of quartets ? [Binary] Does this sequence contain all 3 types of quartets ? [Binary] Does this sequence have 2 top quartets weights <= 10%? [Binary] Does this sequence have 3 quartets weights <= 15% ? [Binary] ''' results_table = np.zeros((len(four_tax_seq),features)) idx_key = 0 ratios = [] for key in four_tax_seq: list_four_tax_sequence.append([]) vals = dictionary_quartets[key] for val in vals: (_1, _2, _3, _4, w) = val list_four_tax_sequence[idx_key].append(float(w)) list_four_tax_sequence[idx_key].sort(reverse=True) #print(len(list_four_tax_sequence[idx_key])) if len(list_four_tax_sequence[idx_key])==1: results_table[idx_key][0] = 1 if len(list_four_tax_sequence[idx_key])==2: results_table[idx_key][1] = 1 if len(list_four_tax_sequence[idx_key])==3: results_table[idx_key][2] = 1 if ( len(list_four_tax_sequence[idx_key])==2 or len(list_four_tax_sequence[idx_key])==3 ) and is_within_range(list_four_tax_sequence[idx_key][0],list_four_tax_sequence[idx_key][1], THRESHOLD_TWO_QUARTETS): results_table[idx_key][3] = 1 # AND condition so, we get Pr(A and B) if len(list_four_tax_sequence[idx_key])==3 and is_within_range(list_four_tax_sequence[idx_key][0],list_four_tax_sequence[idx_key][1], THRESHOLD_THREE_QUARTETS): results_table[idx_key][4] = 1 if len(list_four_tax_sequence[idx_key])==3 and (2*list_four_tax_sequence[idx_key][0] - list_four_tax_sequence[idx_key][1] - list_four_tax_sequence[idx_key][2])>0: results_table[idx_key][5] = 1 if len(list_four_tax_sequence[idx_key])==3 and (3*list_four_tax_sequence[idx_key][0] - 2*list_four_tax_sequence[idx_key][1] - 2*list_four_tax_sequence[idx_key][2])>0: results_table[idx_key][6] = 1 if len(list_four_tax_sequence[idx_key])==3: ratios.append( (list_four_tax_sequence[idx_key][0] / (list_four_tax_sequence[idx_key][1] +list_four_tax_sequence[idx_key][2]))) #print(list_four_tax_sequence[idx_key]) #print(results_table[idx_key]) idx_key += 1 #print(len(list_four_tax_sequence)) #print(list_four_tax_sequence) #print("Overall statistics") mean = np.mean(ratios) print(mean) #unique_elements, counts_elements = np.unique(results_table[:,7], return_counts=True) #print("Frequency of unique values of the said array:") #print(np.asarray((unique_elements, counts_elements))) sums = np.sum(results_table,axis=0) F1 = (sums[0]/len(list_four_tax_sequence)) F2 = (sums[1]/len(list_four_tax_sequence)) F3 = (sums[2]/len(list_four_tax_sequence)) F4 = (sums[3]/(len(list_four_tax_sequence)-sums[0])) # Pr(A|B) = Pr(A and B) / Pr(B) F5 = (sums[4]/sums[2]) F6 = (sums[5]/sums[2]) F7 = (sums[6]/sums[2]) return F1,F2,F3,F4,F5,F6,F7,mean
def find_stats(inputFile, THRESHOLD_TWO_QUARTETS=0.1, THRESHOLD_THREE_QUARTETS=0.15): with open(inputFile) as fileobject: for line in fileobject: append_to_dictionary(line) keys = list(dictionary_quartets.keys()) four_tax_seq = keys[0:] list_names = four_tax_seq # list_four_tax_sequence = [(1,1,2,3,9),(1,1,2,4)] # x = [1,2] x = np.arange(len(four_tax_seq)) list_four_tax_sequence = [] features = 8 '''Does this sequence contain only 1 type of quartet ? [Binary] Does this sequence contain only 2 types of quartets ? [Binary] Does this sequence contain all 3 types of quartets ? [Binary] Does this sequence have 2 top quartets weights <= 10%? [Binary] Does this sequence have 3 quartets weights <= 15% ? [Binary] ''' results_table = np.zeros((len(four_tax_seq),features)) idx_key = 0 ratios = [] for key in four_tax_seq: list_four_tax_sequence.append([]) vals = dictionary_quartets[key] for val in vals: (_1, _2, _3, _4, w) = val list_four_tax_sequence[idx_key].append(float(w)) list_four_tax_sequence[idx_key].sort(reverse=True) #print(len(list_four_tax_sequence[idx_key])) if len(list_four_tax_sequence[idx_key])==1: results_table[idx_key][0] = 1 if len(list_four_tax_sequence[idx_key])==2: results_table[idx_key][1] = 1 if len(list_four_tax_sequence[idx_key])==3: results_table[idx_key][2] = 1 if ( len(list_four_tax_sequence[idx_key])==2 or len(list_four_tax_sequence[idx_key])==3 ) and is_within_range(list_four_tax_sequence[idx_key][0],list_four_tax_sequence[idx_key][1], THRESHOLD_TWO_QUARTETS): results_table[idx_key][3] = 1 # AND condition so, we get Pr(A and B) if len(list_four_tax_sequence[idx_key])==3 and is_within_range(list_four_tax_sequence[idx_key][0],list_four_tax_sequence[idx_key][1], THRESHOLD_THREE_QUARTETS): results_table[idx_key][4] = 1 if len(list_four_tax_sequence[idx_key])==3 and (2*list_four_tax_sequence[idx_key][0] - list_four_tax_sequence[idx_key][1] - list_four_tax_sequence[idx_key][2])>0: results_table[idx_key][5] = 1 if len(list_four_tax_sequence[idx_key])==3 and (3*list_four_tax_sequence[idx_key][0] - 2*list_four_tax_sequence[idx_key][1] - 2*list_four_tax_sequence[idx_key][2])>0: results_table[idx_key][6] = 1 if len(list_four_tax_sequence[idx_key])==3: ratios.append( (list_four_tax_sequence[idx_key][0] / (list_four_tax_sequence[idx_key][1] +list_four_tax_sequence[idx_key][2]))) #print(list_four_tax_sequence[idx_key]) #print(results_table[idx_key]) idx_key += 1 #print(len(list_four_tax_sequence)) #print(list_four_tax_sequence) #print("Overall statistics") mean = np.mean(ratios) print(mean) #unique_elements, counts_elements = np.unique(results_table[:,7], return_counts=True) #print("Frequency of unique values of the said array:") #print(np.asarray((unique_elements, counts_elements))) sums = np.sum(results_table,axis=0) F1 = (sums[0]/len(list_four_tax_sequence)) F2 = (sums[1]/len(list_four_tax_sequence)) F3 = (sums[2]/len(list_four_tax_sequence)) F4 = (sums[3]/(len(list_four_tax_sequence)-sums[0])) # Pr(A|B) = Pr(A and B) / Pr(B) F5 = (sums[4]/sums[2]) F6 = (sums[5]/sums[2]) F7 = (sums[6]/sums[2]) return F1,F2,F3,F4,F5,F6,F7,mean
Python
def cudnnCheckStatus(status): """ Raise cuDNN exception Raise an exception corresponding to the specified cuDNN error code. Parameters ---------- status : int cuDNN error code """ if status != 0: try: raise cudnnExceptions[status] except KeyError: raise cudnnError
def cudnnCheckStatus(status): """ Raise cuDNN exception Raise an exception corresponding to the specified cuDNN error code. Parameters ---------- status : int cuDNN error code """ if status != 0: try: raise cudnnExceptions[status] except KeyError: raise cudnnError
Python
def cudnnTransformTensor(handle, alpha, srcDesc, srcData, beta, destDesc, destData): """" Tensor layout conversion helper (dest = alpha * src + beta * dest). This function copies the scaled data from one tensor to another tensor with a different layout. Those descriptors need to have the same dimensions but not necessarily the same strides. The input and output tensors must not overlap in any way (i.e., tensors cannot be transformed in place). This function can be used to convert a tensor with an unsupported format to a supported one. Parameters ---------- handle : cudnnHandle cuDNN context. alpha : float Scalar factor to be applied to every element of the input tensor before it is added to the output tensor. srcDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. srcData : void_p Pointer to data of the tensor described by srcDesc descriptor. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the operation. Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). destDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. destData : void_p Pointer to data of the tensor described by destDesc descriptor. """ dataType, _, _, _, _, _, _, _, _ = cudnnGetTensor4dDescriptor(destDesc) if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnTransformTensor(handle, alphaRef, srcDesc, srcData, betaRef, destDesc, destData) cudnnCheckStatus(status)
def cudnnTransformTensor(handle, alpha, srcDesc, srcData, beta, destDesc, destData): """" Tensor layout conversion helper (dest = alpha * src + beta * dest). This function copies the scaled data from one tensor to another tensor with a different layout. Those descriptors need to have the same dimensions but not necessarily the same strides. The input and output tensors must not overlap in any way (i.e., tensors cannot be transformed in place). This function can be used to convert a tensor with an unsupported format to a supported one. Parameters ---------- handle : cudnnHandle cuDNN context. alpha : float Scalar factor to be applied to every element of the input tensor before it is added to the output tensor. srcDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. srcData : void_p Pointer to data of the tensor described by srcDesc descriptor. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the operation. Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). destDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. destData : void_p Pointer to data of the tensor described by destDesc descriptor. """ dataType, _, _, _, _, _, _, _, _ = cudnnGetTensor4dDescriptor(destDesc) if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnTransformTensor(handle, alphaRef, srcDesc, srcData, betaRef, destDesc, destData) cudnnCheckStatus(status)
Python
def cudnnAddTensor(handle, mode, alpha, biasDesc, biasData, beta, srcDestDesc, srcDestData): """" Tensor Bias addition : srcDest = alpha * bias + beta * srcDestDesc. This function adds the scaled values of one tensor to another tensor. The mode parameter can be used to select different ways of performing the scaled addition. The amount of data described by the biasDesc descriptor must match exactly the amount of data needed to perform the addition. Parameters ---------- handle : cudnnHandle Handle to a cuDNN context. mode : cudnnAddMode Addition mode that describes how the addition is performed alpha : float Scalar factor to be applied to every data element of the bias tensor before it is added to the output tensor. biasDesc : cudnnTensorDescriptor Handle to a previoulsy initialized tensor descriptor. biasData : void_p Pointer to data of the tensor described by biasDesc. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the operation. Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). srcDestDesc : cudnnTensorDescriptor Handle to a previoulsy initialized tensor descriptor. srcDestData : void_p Pointer to data of the tensor described by srcDestDesc. """ dataType, _, _, _, _, _, _, _, _ = cudnnGetTensor4dDescriptor(srcDestDesc) if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnAddTensor(handle, mode, alphaRef, biasDesc, biasData, betaRef, srcDestDesc, srcDestData) cudnnCheckStatus(status)
def cudnnAddTensor(handle, mode, alpha, biasDesc, biasData, beta, srcDestDesc, srcDestData): """" Tensor Bias addition : srcDest = alpha * bias + beta * srcDestDesc. This function adds the scaled values of one tensor to another tensor. The mode parameter can be used to select different ways of performing the scaled addition. The amount of data described by the biasDesc descriptor must match exactly the amount of data needed to perform the addition. Parameters ---------- handle : cudnnHandle Handle to a cuDNN context. mode : cudnnAddMode Addition mode that describes how the addition is performed alpha : float Scalar factor to be applied to every data element of the bias tensor before it is added to the output tensor. biasDesc : cudnnTensorDescriptor Handle to a previoulsy initialized tensor descriptor. biasData : void_p Pointer to data of the tensor described by biasDesc. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the operation. Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). srcDestDesc : cudnnTensorDescriptor Handle to a previoulsy initialized tensor descriptor. srcDestData : void_p Pointer to data of the tensor described by srcDestDesc. """ dataType, _, _, _, _, _, _, _, _ = cudnnGetTensor4dDescriptor(srcDestDesc) if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnAddTensor(handle, mode, alphaRef, biasDesc, biasData, betaRef, srcDestDesc, srcDestData) cudnnCheckStatus(status)
Python
def cudnnSetTensor(handle, srcDesc, srcData, value): """" Set all data points of a tensor to a given value : srcDest = alpha. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. srcDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. srcData : void_p Pointer to data of the tensor described by srcDesc descriptor. value : float Value that all elements of the tensor will be set to. """ dataType, _, _, _, _, _, _, _, _ = cudnnGetTensor4dDescriptor(srcDesc) if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) status = _libcudnn.cudnnSetTensor(handle, srcDesc, srcData, alphaRef) cudnnCheckStatus(status)
def cudnnSetTensor(handle, srcDesc, srcData, value): """" Set all data points of a tensor to a given value : srcDest = alpha. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. srcDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. srcData : void_p Pointer to data of the tensor described by srcDesc descriptor. value : float Value that all elements of the tensor will be set to. """ dataType, _, _, _, _, _, _, _, _ = cudnnGetTensor4dDescriptor(srcDesc) if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) status = _libcudnn.cudnnSetTensor(handle, srcDesc, srcData, alphaRef) cudnnCheckStatus(status)
Python
def cudnnScaleTensor(handle, srcDesc, srcData, alpha): """" This function scales all the elements of a tensor by a give factor. Set all data points of a tensor to scaled value : srcDest = alpha * srcDest. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. srcDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. srcData : void_p Pointer to data of the tensor described by srcDesc descriptor. alpha : float Value that all elements of the tensor will be scaled with. """ dataType, _, _, _, _, _, _, _, _ = cudnnGetTensor4dDescriptor(srcDesc) if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) status = _libcudnn.cudnnScaleTensor(handle, srcDesc, srcData, alphaRef) cudnnCheckStatus(status)
def cudnnScaleTensor(handle, srcDesc, srcData, alpha): """" This function scales all the elements of a tensor by a give factor. Set all data points of a tensor to scaled value : srcDest = alpha * srcDest. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. srcDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. srcData : void_p Pointer to data of the tensor described by srcDesc descriptor. alpha : float Value that all elements of the tensor will be scaled with. """ dataType, _, _, _, _, _, _, _, _ = cudnnGetTensor4dDescriptor(srcDesc) if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) status = _libcudnn.cudnnScaleTensor(handle, srcDesc, srcData, alphaRef) cudnnCheckStatus(status)
Python
def cudnnCreateFilterDescriptor(): """" Create a filter descriptor. This function creates a filter descriptor object by allocating the memory needed to hold its opaque structure. Parameters ---------- Returns ------- filterDesc : cudnnFilterDescriptor Handle to a newly allocated filter descriptor. """ filterDesc = ctypes.c_void_p() status = _libcudnn.cudnnCreateFilterDescriptor(ctypes.byref(filterDesc)) cudnnCheckStatus(status) return filterDesc.value
def cudnnCreateFilterDescriptor(): """" Create a filter descriptor. This function creates a filter descriptor object by allocating the memory needed to hold its opaque structure. Parameters ---------- Returns ------- filterDesc : cudnnFilterDescriptor Handle to a newly allocated filter descriptor. """ filterDesc = ctypes.c_void_p() status = _libcudnn.cudnnCreateFilterDescriptor(ctypes.byref(filterDesc)) cudnnCheckStatus(status) return filterDesc.value
Python
def cudnnSetFilter4dDescriptor(filterDesc, dataType, k, c, h, w): """" Initialize a filter descriptor. This function initializes a previously created filter descriptor object into a 4D filter. Filters layout must be contiguous in memory. Parameters ---------- filterDesc : cudnnFilterDescriptor Handle to a previously created filter descriptor. dataType : cudnnDataType Data type. k : int Number of output feature maps. c : int Number of input feature maps. h : int Height of each filter. w : int Width of each filter. """ status = _libcudnn.cudnnSetFilter4dDescriptor(filterDesc, dataType, k, c, h, w) cudnnCheckStatus(status)
def cudnnSetFilter4dDescriptor(filterDesc, dataType, k, c, h, w): """" Initialize a filter descriptor. This function initializes a previously created filter descriptor object into a 4D filter. Filters layout must be contiguous in memory. Parameters ---------- filterDesc : cudnnFilterDescriptor Handle to a previously created filter descriptor. dataType : cudnnDataType Data type. k : int Number of output feature maps. c : int Number of input feature maps. h : int Height of each filter. w : int Width of each filter. """ status = _libcudnn.cudnnSetFilter4dDescriptor(filterDesc, dataType, k, c, h, w) cudnnCheckStatus(status)
Python
def cudnnGetFilter4dDescriptor(filterDesc): """" Get parameters of filter descriptor. This function queries the parameters of the previouly initialized filter descriptor object. Parameters ---------- filterDesc : cudnnFilterDescriptor Handle to a previously created filter descriptor. Returns ------- dataType : cudnnDataType Data type. k : int Number of output feature maps. c : int Number of input feature maps. h : int Height of each filter. w : int Width of each filter. """ dataType = ctypes.c_int() k = ctypes.c_int() c = ctypes.c_int() h = ctypes.c_int() w = ctypes.c_int() status = _libcudnn.cudnnGetFilter4dDescriptor(filterDesc, ctypes.byref(dataType), ctypes.byref(k), ctypes.byref(c), ctypes.byref(h), ctypes.byref(w)) cudnnCheckStatus(status) return dataType.value, k.value, c.value, h.value, w.value
def cudnnGetFilter4dDescriptor(filterDesc): """" Get parameters of filter descriptor. This function queries the parameters of the previouly initialized filter descriptor object. Parameters ---------- filterDesc : cudnnFilterDescriptor Handle to a previously created filter descriptor. Returns ------- dataType : cudnnDataType Data type. k : int Number of output feature maps. c : int Number of input feature maps. h : int Height of each filter. w : int Width of each filter. """ dataType = ctypes.c_int() k = ctypes.c_int() c = ctypes.c_int() h = ctypes.c_int() w = ctypes.c_int() status = _libcudnn.cudnnGetFilter4dDescriptor(filterDesc, ctypes.byref(dataType), ctypes.byref(k), ctypes.byref(c), ctypes.byref(h), ctypes.byref(w)) cudnnCheckStatus(status) return dataType.value, k.value, c.value, h.value, w.value
Python
def cudnnDestroyFilterDescriptor(filterDesc): """" Destroy filter descriptor. This function destroys a previously created Tensor4D descriptor object. Parameters ---------- filterDesc : cudnnFilterDescriptor """ status = _libcudnn.cudnnDestroyFilterDescriptor(filterDesc) cudnnCheckStatus(status)
def cudnnDestroyFilterDescriptor(filterDesc): """" Destroy filter descriptor. This function destroys a previously created Tensor4D descriptor object. Parameters ---------- filterDesc : cudnnFilterDescriptor """ status = _libcudnn.cudnnDestroyFilterDescriptor(filterDesc) cudnnCheckStatus(status)
Python
def cudnnSetConvolution2dDescriptor(convDesc, pad_h, pad_w, u, v, upscalex, upscaley, mode): """" Initialize a convolution descriptor. This function initializes a previously created convolution descriptor object into a 2D correlation. This function assumes that the tensor and filter descriptors corresponds to the formard convolution path and checks if their settings are valid. That same convolution descriptor can be reused in the backward path provided it corresponds to the same layer. Parameters ---------- convDesc : cudnnConvolutionDescriptor Handle to a previously created convolution descriptor. pad_h : int zero-padding height: number of rows of zeros implicitly concatenated onto the top and onto the bottom of input images. pad_w : int zero-padding width: number of columns of zeros implicitly concatenated onto the left and onto the right of input images. u : int Vertical filter stride. v : int Horizontal filter stride. upscalex : int Upscale the input in x-direction. uscaley : int Upscale the input in y-direction. mode : cudnnConvolutionMode Select between CUDNN_CONVOLUTION or CUDNN_CROSS_CORRELATION. """ status = _libcudnn.cudnnSetConvolution2dDescriptor(convDesc, pad_h, pad_w, u, v, upscalex, upscaley, mode) cudnnCheckStatus(status)
def cudnnSetConvolution2dDescriptor(convDesc, pad_h, pad_w, u, v, upscalex, upscaley, mode): """" Initialize a convolution descriptor. This function initializes a previously created convolution descriptor object into a 2D correlation. This function assumes that the tensor and filter descriptors corresponds to the formard convolution path and checks if their settings are valid. That same convolution descriptor can be reused in the backward path provided it corresponds to the same layer. Parameters ---------- convDesc : cudnnConvolutionDescriptor Handle to a previously created convolution descriptor. pad_h : int zero-padding height: number of rows of zeros implicitly concatenated onto the top and onto the bottom of input images. pad_w : int zero-padding width: number of columns of zeros implicitly concatenated onto the left and onto the right of input images. u : int Vertical filter stride. v : int Horizontal filter stride. upscalex : int Upscale the input in x-direction. uscaley : int Upscale the input in y-direction. mode : cudnnConvolutionMode Select between CUDNN_CONVOLUTION or CUDNN_CROSS_CORRELATION. """ status = _libcudnn.cudnnSetConvolution2dDescriptor(convDesc, pad_h, pad_w, u, v, upscalex, upscaley, mode) cudnnCheckStatus(status)
Python
def cudnnGetConvolution2dDescriptor(convDesc): """" Get a convolution descriptor. This function queries a previously initialized 2D convolution descriptor object. Parameters ---------- convDesc : cudnnConvolutionDescriptor Handle to a previously created convolution descriptor. Returns ------- pad_h : int zero-padding height: number of rows of zeros implicitly concatenated onto the top and onto the bottom of input images. pad_w : int zero-padding width: number of columns of zeros implicitly concatenated onto the left and onto the right of input images. u : int Vertical filter stride. v : int Horizontal filter stride. upscalex : int Upscale the input in x-direction. upscaley : int Upscale the input in y-direction. mode : cudnnConvolutionMode Either CUDNN_CONVOLUTION or CUDNN_CROSS_CORRELATION. """ pad_h = ctypes.c_int() pad_w = ctypes.c_int() u = ctypes.c_int() v = ctypes.c_int() upscalex = ctypes.c_int() upscaley = ctypes.c_int() mode = ctypes.c_int() status = _libcudnn.cudnnGetConvolution2dDescriptor(convDesc, ctypes.byref(pad_h), ctypes.byref(pad_w), ctypes.byref(u), ctypes.byref(v), ctypes.byref(upscalex), ctypes.byref(upscaley), ctypes.byref(mode)) cudnnCheckStatus(status) return pad_h.value, pad_w.value, u.value, v.value, upscalex.value, upscaley.value, mode.value
def cudnnGetConvolution2dDescriptor(convDesc): """" Get a convolution descriptor. This function queries a previously initialized 2D convolution descriptor object. Parameters ---------- convDesc : cudnnConvolutionDescriptor Handle to a previously created convolution descriptor. Returns ------- pad_h : int zero-padding height: number of rows of zeros implicitly concatenated onto the top and onto the bottom of input images. pad_w : int zero-padding width: number of columns of zeros implicitly concatenated onto the left and onto the right of input images. u : int Vertical filter stride. v : int Horizontal filter stride. upscalex : int Upscale the input in x-direction. upscaley : int Upscale the input in y-direction. mode : cudnnConvolutionMode Either CUDNN_CONVOLUTION or CUDNN_CROSS_CORRELATION. """ pad_h = ctypes.c_int() pad_w = ctypes.c_int() u = ctypes.c_int() v = ctypes.c_int() upscalex = ctypes.c_int() upscaley = ctypes.c_int() mode = ctypes.c_int() status = _libcudnn.cudnnGetConvolution2dDescriptor(convDesc, ctypes.byref(pad_h), ctypes.byref(pad_w), ctypes.byref(u), ctypes.byref(v), ctypes.byref(upscalex), ctypes.byref(upscaley), ctypes.byref(mode)) cudnnCheckStatus(status) return pad_h.value, pad_w.value, u.value, v.value, upscalex.value, upscaley.value, mode.value
Python
def cudnnGetConvolution2dForwardOutputDim(convDesc, inputTensorDesc, filterDesc): """" Return the dimensions of the output tensor given a convolution descriptor. This function returns the dimensions of the resulting 4D tensor of a 2D convolution, given the convolution descriptor, the input tensor descriptor and the filter descriptor. This function can help to setup the output tensor and allocate the proper amount of memory prior to launching the actual convolution. Parameters ---------- convDesc : cudnnConvolutionDescriptor Handle to a previously created convolution descriptor. inputTensorDesc: cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. filterDesc: cudnnFilterDescriptor Handle to a previously initialized filter descriptor. Returns ------- n : int Number of output images. c : int Number of output feature maps per image. h : int Height of each output feature map. w : int Width of each output feature map. """ n = ctypes.c_int() c = ctypes.c_int() h = ctypes.c_int() w = ctypes.c_int() status = _libcudnn.cudnnGetConvolution2dForwardOutputDim(convDesc, inputTensorDesc, filterDesc, ctypes.byref(n), ctypes.byref(c), ctypes.byref(h), ctypes.byref(w)) cudnnCheckStatus(status) return n.value, c.value, h.value, w.value
def cudnnGetConvolution2dForwardOutputDim(convDesc, inputTensorDesc, filterDesc): """" Return the dimensions of the output tensor given a convolution descriptor. This function returns the dimensions of the resulting 4D tensor of a 2D convolution, given the convolution descriptor, the input tensor descriptor and the filter descriptor. This function can help to setup the output tensor and allocate the proper amount of memory prior to launching the actual convolution. Parameters ---------- convDesc : cudnnConvolutionDescriptor Handle to a previously created convolution descriptor. inputTensorDesc: cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. filterDesc: cudnnFilterDescriptor Handle to a previously initialized filter descriptor. Returns ------- n : int Number of output images. c : int Number of output feature maps per image. h : int Height of each output feature map. w : int Width of each output feature map. """ n = ctypes.c_int() c = ctypes.c_int() h = ctypes.c_int() w = ctypes.c_int() status = _libcudnn.cudnnGetConvolution2dForwardOutputDim(convDesc, inputTensorDesc, filterDesc, ctypes.byref(n), ctypes.byref(c), ctypes.byref(h), ctypes.byref(w)) cudnnCheckStatus(status) return n.value, c.value, h.value, w.value
Python
def cudnnGetConvolutionForwardAlgorithm(handle, srcDesc, filterDesc, convDesc, destDesc, preference, memoryLimitInbytes): """" This function returns the best algorithm to choose for the forward convolution depending on the critera expressed in the cudnnConvolutionFwdPreference_t enumerant. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. srcDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. filterDesc : cudnnFilterDescriptor Handle to a previously initialized filter descriptor. convDesc : cudnnConvolutionDescriptor Previously initialized convolution descriptor. destDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. preference : cudnnConvolutionFwdPreference Enumerant to express the preference criteria in terms of memory requirement and speed. memoryLimitInbytes: size_t The maximum amount of GPU memory the user is willing to use as a workspace when preference is CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT. Returns ------- algo: cudnnConvolutionFwdAlgo Enumerant that specifies which convolution algorithm should be used to compute the results according to the specified preference. """ algo = ctypes.c_int() status = _libcudnn.cudnnGetConvolutionForwardAlgorithm(handle, srcDesc, filterDesc, convDesc, destDesc, preference, ctypes.c_size_t(memoryLimitInbytes), ctypes.byref(algo)) cudnnCheckStatus(status) return algo
def cudnnGetConvolutionForwardAlgorithm(handle, srcDesc, filterDesc, convDesc, destDesc, preference, memoryLimitInbytes): """" This function returns the best algorithm to choose for the forward convolution depending on the critera expressed in the cudnnConvolutionFwdPreference_t enumerant. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. srcDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. filterDesc : cudnnFilterDescriptor Handle to a previously initialized filter descriptor. convDesc : cudnnConvolutionDescriptor Previously initialized convolution descriptor. destDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. preference : cudnnConvolutionFwdPreference Enumerant to express the preference criteria in terms of memory requirement and speed. memoryLimitInbytes: size_t The maximum amount of GPU memory the user is willing to use as a workspace when preference is CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT. Returns ------- algo: cudnnConvolutionFwdAlgo Enumerant that specifies which convolution algorithm should be used to compute the results according to the specified preference. """ algo = ctypes.c_int() status = _libcudnn.cudnnGetConvolutionForwardAlgorithm(handle, srcDesc, filterDesc, convDesc, destDesc, preference, ctypes.c_size_t(memoryLimitInbytes), ctypes.byref(algo)) cudnnCheckStatus(status) return algo
Python
def cudnnGetConvolutionForwardWorkspaceSize(handle, srcDesc, filterDesc, convDesc, destDesc, algo): """" This function returns the amount of GPU memory workspace the user needs to allocate to be able to call cudnnConvolutionForward with the specified algorithm. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. srcDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. filterDesc : cudnnFilterDescriptor Handle to a previously initialized filter descriptor. convDesc : cudnnConvolutionDescriptor Previously initialized convolution descriptor. destDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. algo : cudnnConvolutionFwdAlgo Enumerant that specifies the chosen convolution algorithm. Returns ------- sizeInBytes: c_size_t Amount of GPU memory needed as workspace to be able to execute a forward convolution with the sepcified algo. """ sizeInBytes = ctypes.c_size_t() status = _libcudnn.cudnnGetConvolutionForwardWorkspaceSize(handle, srcDesc, filterDesc, convDesc, destDesc, algo, ctypes.byref(sizeInBytes)) cudnnCheckStatus(status) return sizeInBytes
def cudnnGetConvolutionForwardWorkspaceSize(handle, srcDesc, filterDesc, convDesc, destDesc, algo): """" This function returns the amount of GPU memory workspace the user needs to allocate to be able to call cudnnConvolutionForward with the specified algorithm. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. srcDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. filterDesc : cudnnFilterDescriptor Handle to a previously initialized filter descriptor. convDesc : cudnnConvolutionDescriptor Previously initialized convolution descriptor. destDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. algo : cudnnConvolutionFwdAlgo Enumerant that specifies the chosen convolution algorithm. Returns ------- sizeInBytes: c_size_t Amount of GPU memory needed as workspace to be able to execute a forward convolution with the sepcified algo. """ sizeInBytes = ctypes.c_size_t() status = _libcudnn.cudnnGetConvolutionForwardWorkspaceSize(handle, srcDesc, filterDesc, convDesc, destDesc, algo, ctypes.byref(sizeInBytes)) cudnnCheckStatus(status) return sizeInBytes
Python
def cudnnConvolutionForward(handle, alpha, srcDesc, srcData, filterDesc, filterData, convDesc, algo, workspace, workSpaceSizeInBytes, beta, destDesc, destData): """" Perform forward convolution. All of the form "output = alpha * Op(inputs) + beta * output". This function executes convolutions or cross-correlations over src using the specified filters, returning results in dest. Scaling factors alpha and beta can be used to scale the input tensor and the output tensor respectively. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. alpha: float Scaling factor with which every element of the input tensor is multiplied. srcDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. srcData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDesc. filterDesc : cudnnFilterDescriptor Handle to a previously initialized filter descriptor. filterData : void_p Data pointer to GPU memory associated with the filter descriptor filterDesc. convDesc : cudnnConvolutionDescriptor Previously initialized convolution descriptor. algo: cudnnConvolutionFwdAlgo Enumerant that specifies which convolution algorithm shoud be used to compute the results. workSpace: void_p Data pointer to GPU memory to a workspace needed to able to execute the specified algorithm. If no workspace is needed for a particular algorithm, that pointer can be nil. workSpaceSizeInBytes: long Specifies the size in bytes of the provided workSpace. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the convolution. destDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. destData : void_p Data pointer to GPU memory associated with the tensor descriptor destDesc. """ dataType = cudnnGetTensor4dDescriptor(destDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnConvolutionForward(handle, alphaRef, srcDesc, srcData, filterDesc, filterData, convDesc, algo, workspace, ctypes.c_size_t(workSpaceSizeInBytes), betaRef, destDesc, destData) cudnnCheckStatus(status)
def cudnnConvolutionForward(handle, alpha, srcDesc, srcData, filterDesc, filterData, convDesc, algo, workspace, workSpaceSizeInBytes, beta, destDesc, destData): """" Perform forward convolution. All of the form "output = alpha * Op(inputs) + beta * output". This function executes convolutions or cross-correlations over src using the specified filters, returning results in dest. Scaling factors alpha and beta can be used to scale the input tensor and the output tensor respectively. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. alpha: float Scaling factor with which every element of the input tensor is multiplied. srcDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. srcData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDesc. filterDesc : cudnnFilterDescriptor Handle to a previously initialized filter descriptor. filterData : void_p Data pointer to GPU memory associated with the filter descriptor filterDesc. convDesc : cudnnConvolutionDescriptor Previously initialized convolution descriptor. algo: cudnnConvolutionFwdAlgo Enumerant that specifies which convolution algorithm shoud be used to compute the results. workSpace: void_p Data pointer to GPU memory to a workspace needed to able to execute the specified algorithm. If no workspace is needed for a particular algorithm, that pointer can be nil. workSpaceSizeInBytes: long Specifies the size in bytes of the provided workSpace. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the convolution. destDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. destData : void_p Data pointer to GPU memory associated with the tensor descriptor destDesc. """ dataType = cudnnGetTensor4dDescriptor(destDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnConvolutionForward(handle, alphaRef, srcDesc, srcData, filterDesc, filterData, convDesc, algo, workspace, ctypes.c_size_t(workSpaceSizeInBytes), betaRef, destDesc, destData) cudnnCheckStatus(status)
Python
def cudnnConvolutionBackwardBias(handle, alpha, srcDesc, srcData, beta, destDesc, destData): """" Compute the gradient wrt the bias. This function computes the convolution gradient with respect to the bias, which is the sum of every element belonging to the same feature map across all of the images of the input tensor. Therefore, the number of elements produced is equal to the number of features maps of the input tensor. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. alpha: float Scaling factor with which every element of the input tensor is multiplied. srcDesc : cudnnTensorDescriptor Handle to the previously initialized input tensor descriptor. srcData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDesc. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the convolution gradient. Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). destDesc : cudnnTensorDescriptor Handle to the previously initialized output tensor descriptor. destData : void_p Data pointer to GPU memory associated with the output tensor descriptor destDesc. """ dataType = cudnnGetTensor4dDescriptor(destDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnConvolutionBackwardBias(handle, alphaRef, srcDesc, srcData, betaRef, destDesc, destData) cudnnCheckStatus(status)
def cudnnConvolutionBackwardBias(handle, alpha, srcDesc, srcData, beta, destDesc, destData): """" Compute the gradient wrt the bias. This function computes the convolution gradient with respect to the bias, which is the sum of every element belonging to the same feature map across all of the images of the input tensor. Therefore, the number of elements produced is equal to the number of features maps of the input tensor. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. alpha: float Scaling factor with which every element of the input tensor is multiplied. srcDesc : cudnnTensorDescriptor Handle to the previously initialized input tensor descriptor. srcData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDesc. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the convolution gradient. Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). destDesc : cudnnTensorDescriptor Handle to the previously initialized output tensor descriptor. destData : void_p Data pointer to GPU memory associated with the output tensor descriptor destDesc. """ dataType = cudnnGetTensor4dDescriptor(destDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnConvolutionBackwardBias(handle, alphaRef, srcDesc, srcData, betaRef, destDesc, destData) cudnnCheckStatus(status)
Python
def cudnnConvolutionBackwardFilter(handle, alpha, srcDesc, srcData, diffDesc, diffData, convDesc, beta, gradDesc, gradData): """" Compute the gradient wrt the filter coefficients. This function computes the convolution gradient with respect to the filter coefficients. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. alpha: float Scaling factor with which every element of the input tensor is multiplied. srcDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. srcData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDesc. diffDesc : cudnnTensorDescriptor Handle to the previously initialized input differential tensor descriptor. diffData : void_p Data pointer to GPU memory associated with the input differential tensor descriptor diffDesc. convDesc : cudnnConvolutionDescriptor Previously initialized convolution descriptor. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the convolution gradient. Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). gradDesc : cudnnFilterDescriptor Handle to a previously initialized filter descriptor. gradData : void_p Data pointer to GPU memory associated with the filter descriptor gradDesc that carries the result. """ dataType = cudnnGetTensor4dDescriptor(destDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnConvolutionBackwardFilter(handle, alphaRef, srcDesc, srcData, diffDesc, diffData, convDesc, betaRef, gradDesc, gradData) cudnnCheckStatus(status)
def cudnnConvolutionBackwardFilter(handle, alpha, srcDesc, srcData, diffDesc, diffData, convDesc, beta, gradDesc, gradData): """" Compute the gradient wrt the filter coefficients. This function computes the convolution gradient with respect to the filter coefficients. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. alpha: float Scaling factor with which every element of the input tensor is multiplied. srcDesc : cudnnTensorDescriptor Handle to a previously initialized tensor descriptor. srcData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDesc. diffDesc : cudnnTensorDescriptor Handle to the previously initialized input differential tensor descriptor. diffData : void_p Data pointer to GPU memory associated with the input differential tensor descriptor diffDesc. convDesc : cudnnConvolutionDescriptor Previously initialized convolution descriptor. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the convolution gradient. Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). gradDesc : cudnnFilterDescriptor Handle to a previously initialized filter descriptor. gradData : void_p Data pointer to GPU memory associated with the filter descriptor gradDesc that carries the result. """ dataType = cudnnGetTensor4dDescriptor(destDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnConvolutionBackwardFilter(handle, alphaRef, srcDesc, srcData, diffDesc, diffData, convDesc, betaRef, gradDesc, gradData) cudnnCheckStatus(status)
Python
def cudnnConvolutionBackwardData(handle, alpha, filterDesc, filterData, diffDesc, diffData, convDesc, beta, gradDesc, gradData): """" Compute the gradients wrt the data. This function computes the convolution gradient with respect to the output tensor. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. alpha: float Scaling factor with which every element of the input tensor is multiplied. filterDesc : cudnnFilterDescriptor Handle to a previously initialized filter descriptor. filterData : void_p Data pointer to GPU memory associated with the filter descriptor filterDesc. diffDesc : cudnnTensorDescriptor Handle to the previously initialized input differential tensor descriptor. diffData : void_p Data pointer to GPU memory associated with the input differential tensor descriptor diffDesc. convDesc : cudnnConvolutionDescriptor Previously initialized convolution descriptor. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the convolution gradient. Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). gradDesc : cudnnFilterDescriptor Handle to a previously initialized filter descriptor. gradData : void_p Data pointer to GPU memory associated with the filter descriptor gradDesc that carries the result. """ dataType = cudnnGetTensor4dDescriptor(destDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnConvolutionBackwardData(handle, alphaRef, filterDesc, filterData, diffDesc, diffData, convDesc, betaRef, gradDesc, gradData) cudnnCheckStatus(status)
def cudnnConvolutionBackwardData(handle, alpha, filterDesc, filterData, diffDesc, diffData, convDesc, beta, gradDesc, gradData): """" Compute the gradients wrt the data. This function computes the convolution gradient with respect to the output tensor. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. alpha: float Scaling factor with which every element of the input tensor is multiplied. filterDesc : cudnnFilterDescriptor Handle to a previously initialized filter descriptor. filterData : void_p Data pointer to GPU memory associated with the filter descriptor filterDesc. diffDesc : cudnnTensorDescriptor Handle to the previously initialized input differential tensor descriptor. diffData : void_p Data pointer to GPU memory associated with the input differential tensor descriptor diffDesc. convDesc : cudnnConvolutionDescriptor Previously initialized convolution descriptor. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the convolution gradient. Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). gradDesc : cudnnFilterDescriptor Handle to a previously initialized filter descriptor. gradData : void_p Data pointer to GPU memory associated with the filter descriptor gradDesc that carries the result. """ dataType = cudnnGetTensor4dDescriptor(destDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnConvolutionBackwardData(handle, alphaRef, filterDesc, filterData, diffDesc, diffData, convDesc, betaRef, gradDesc, gradData) cudnnCheckStatus(status)
Python
def cudnnSoftmaxForward(handle, algorithm, mode, alpha, srcDesc, srcData, beta, destDesc, destData): """" This routing computes the softmax function Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. algorithm : cudnnSoftmaxAlgorithm Enumerant to specify the softmax algorithm. mode : cudnnSoftmaxMode Enumerant to specify the softmax mode. alpha: float Scaling factor with which every element of the input tensors is multiplied. srcDesc : cudnnTensorDescriptor Handle to the previously initialized input tensor descriptor. srcData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDesc. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the activation Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). destDesc : cudnnTensorDescriptor Handle to the previously initialized output tensor descriptor. destData : void_p Data pointer to GPU memory associated with the output tensor descriptor destDesc. """ dataType = cudnnGetTensor4dDescriptor(destDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnSoftmaxForward(handle, algorithm, mode, alphaRef, srcDesc, srcData, betaRef, destDesc, destData) cudnnCheckStatus(status)
def cudnnSoftmaxForward(handle, algorithm, mode, alpha, srcDesc, srcData, beta, destDesc, destData): """" This routing computes the softmax function Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. algorithm : cudnnSoftmaxAlgorithm Enumerant to specify the softmax algorithm. mode : cudnnSoftmaxMode Enumerant to specify the softmax mode. alpha: float Scaling factor with which every element of the input tensors is multiplied. srcDesc : cudnnTensorDescriptor Handle to the previously initialized input tensor descriptor. srcData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDesc. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the activation Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). destDesc : cudnnTensorDescriptor Handle to the previously initialized output tensor descriptor. destData : void_p Data pointer to GPU memory associated with the output tensor descriptor destDesc. """ dataType = cudnnGetTensor4dDescriptor(destDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnSoftmaxForward(handle, algorithm, mode, alphaRef, srcDesc, srcData, betaRef, destDesc, destData) cudnnCheckStatus(status)
Python
def cudnnSoftmaxBackward(handle, algorithm, mode, alpha, srcDesc, srcData, srcDiffDesc, srcDiffData, beta, destDiffDesc, destDiffData): """" This routine computes the gradient of the softmax function. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. algorithm : cudnnSoftmaxAlgorithm Enumerant to specify the softmax algorithm. mode : cudnnSoftmaxMode Enumerant to specify the softmax mode. alpha: float Scaling factor with which every element of the input tensors is multiplied. srcDesc : cudnnTensorDescriptor Handle to the previously initialized input tensor descriptor. srcData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDesc. srcDiffDesc : cudnnTensorDescriptor Handle to the previously initialized input differential tensor descriptor. srcDiffData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDiffData. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the activation Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). destDiffDesc : cudnnTensorDescriptor Handle to the previously initialized output differential tensor descriptor. destDiffData : void_p Data pointer to GPU memory associated with the output tensor descriptor destDiffDesc. """ dataType = cudnnGetTensor4dDescriptor(destDiffDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnSoftmaxBackward(handle, algorithm, mode, alphaRef, srcDesc, srcData, srcDiffDesc, srcDiffData, betaRef, destDiffDesc, destDiffData) cudnnCheckStatus(status)
def cudnnSoftmaxBackward(handle, algorithm, mode, alpha, srcDesc, srcData, srcDiffDesc, srcDiffData, beta, destDiffDesc, destDiffData): """" This routine computes the gradient of the softmax function. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. algorithm : cudnnSoftmaxAlgorithm Enumerant to specify the softmax algorithm. mode : cudnnSoftmaxMode Enumerant to specify the softmax mode. alpha: float Scaling factor with which every element of the input tensors is multiplied. srcDesc : cudnnTensorDescriptor Handle to the previously initialized input tensor descriptor. srcData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDesc. srcDiffDesc : cudnnTensorDescriptor Handle to the previously initialized input differential tensor descriptor. srcDiffData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDiffData. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the activation Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). destDiffDesc : cudnnTensorDescriptor Handle to the previously initialized output differential tensor descriptor. destDiffData : void_p Data pointer to GPU memory associated with the output tensor descriptor destDiffDesc. """ dataType = cudnnGetTensor4dDescriptor(destDiffDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnSoftmaxBackward(handle, algorithm, mode, alphaRef, srcDesc, srcData, srcDiffDesc, srcDiffData, betaRef, destDiffDesc, destDiffData) cudnnCheckStatus(status)
Python
def cudnnPoolingForward(handle, poolingDesc, alpha, srcDesc, srcData, beta, destDesc, destData): """" Perform pooling. This function computes pooling of input values (i.e., the maximum or average of several adjacent values) to produce an output with smaller height and/or width. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. poolingDesc : cudnnPoolingDescriptor Handle to a previously initialized pooling descriptor. alpha: float Scaling factor with which every element of the input tensor is multiplied. srcDesc : cudnnTensorDescriptor Handle to the previously initialized input tensor descriptor. srcData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDesc. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the activation Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). destDesc : cudnnTensorDescriptor Handle to the previously initialized output tensor descriptor. destData : void_p Data pointer to GPU memory associated with the output tensor descriptor destDesc. """ dataType = cudnnGetTensor4dDescriptor(destDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnPoolingForward(handle, poolingDesc, alphaRef, srcDesc, srcData, betaRef, destDesc, destData) cudnnCheckStatus(status)
def cudnnPoolingForward(handle, poolingDesc, alpha, srcDesc, srcData, beta, destDesc, destData): """" Perform pooling. This function computes pooling of input values (i.e., the maximum or average of several adjacent values) to produce an output with smaller height and/or width. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. poolingDesc : cudnnPoolingDescriptor Handle to a previously initialized pooling descriptor. alpha: float Scaling factor with which every element of the input tensor is multiplied. srcDesc : cudnnTensorDescriptor Handle to the previously initialized input tensor descriptor. srcData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDesc. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the activation Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). destDesc : cudnnTensorDescriptor Handle to the previously initialized output tensor descriptor. destData : void_p Data pointer to GPU memory associated with the output tensor descriptor destDesc. """ dataType = cudnnGetTensor4dDescriptor(destDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnPoolingForward(handle, poolingDesc, alphaRef, srcDesc, srcData, betaRef, destDesc, destData) cudnnCheckStatus(status)
Python
def cudnnPoolingBackward(handle, poolingDesc, alpha, srcDesc, srcData, srcDiffDesc, srcDiffData, destDesc, destData, beta, destDiffDesc, destDiffData): """" Gradients wrt the pooling operation. This function computes the gradient of a pooling operation. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. poolingDesc : cudnnPoolingDescriptor Handle to the previously initialized pooling descriptor. alpha: float Scaling factor with which every element of the input tensors is multiplied. srcDesc : cudnnTensorDescriptor Handle to the previously initialized input tensor descriptor. srcData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDesc. srcDiffDesc : cudnnTensorDescriptor Handle to the previously initialized input differential tensor descriptor. srcDiffData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDiffData. destDesc : cudnnTensorDescriptor Handle to the previously initialized output tensor descriptor. destData : void_p Data pointer to GPU memory associated with the output tensor descriptor destDesc. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the activation Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). destDiffDesc : cudnnTensorDescriptor Handle to the previously initialized output differential tensor descriptor. destDiffData : void_p Data pointer to GPU memory associated with the output tensor descriptor destDiffDesc. """ dataType = cudnnGetTensor4dDescriptor(destDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnPoolingBackward(handle, poolingDesc, alphaRef, srcDesc, srcData, srcDiffDesc, srcDiffData, destDesc, destData, betaRef, destDiffDesc, destDiffData) cudnnCheckStatus(status)
def cudnnPoolingBackward(handle, poolingDesc, alpha, srcDesc, srcData, srcDiffDesc, srcDiffData, destDesc, destData, beta, destDiffDesc, destDiffData): """" Gradients wrt the pooling operation. This function computes the gradient of a pooling operation. Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. poolingDesc : cudnnPoolingDescriptor Handle to the previously initialized pooling descriptor. alpha: float Scaling factor with which every element of the input tensors is multiplied. srcDesc : cudnnTensorDescriptor Handle to the previously initialized input tensor descriptor. srcData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDesc. srcDiffDesc : cudnnTensorDescriptor Handle to the previously initialized input differential tensor descriptor. srcDiffData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDiffData. destDesc : cudnnTensorDescriptor Handle to the previously initialized output tensor descriptor. destData : void_p Data pointer to GPU memory associated with the output tensor descriptor destDesc. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the activation Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). destDiffDesc : cudnnTensorDescriptor Handle to the previously initialized output differential tensor descriptor. destDiffData : void_p Data pointer to GPU memory associated with the output tensor descriptor destDiffDesc. """ dataType = cudnnGetTensor4dDescriptor(destDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnPoolingBackward(handle, poolingDesc, alphaRef, srcDesc, srcData, srcDiffDesc, srcDiffData, destDesc, destData, betaRef, destDiffDesc, destDiffData) cudnnCheckStatus(status)
Python
def cudnnActivationForward(handle, mode, alpha, srcDesc, srcData, beta, destDesc, destData): """" Apply activation function. This routine applies a specified neuron activation function element-wise over each input value. In-place operation is allowed for this routine; i.e., srcData and destData pointers may be equal. However, this requires srcDesc and destDesc descriptors to be identical (particularly, the strides of the input and output must match for in-place operation to be allowed). Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. mode : cudnnActivationMode Enumerant to specify the activation mode. alpha: float Scaling factor with which every element of the input tensor is multiplied. srcDesc : cudnnTensor4dDescription Handle to the previously initialized input tensor descriptor. srcData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDesc. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the activation Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). destDesc : cudnnTensor4dDescription Handle to the previously initialized output tensor descriptor. destData : void_p Data pointer to GPU memory associated with the output tensor descriptor destDesc. """ dataType = cudnnGetTensor4dDescriptor(destDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnActivationForward(handle, mode, alphaRef, srcDesc, srcData, betaRef, destDesc, destData) cudnnCheckStatus(status)
def cudnnActivationForward(handle, mode, alpha, srcDesc, srcData, beta, destDesc, destData): """" Apply activation function. This routine applies a specified neuron activation function element-wise over each input value. In-place operation is allowed for this routine; i.e., srcData and destData pointers may be equal. However, this requires srcDesc and destDesc descriptors to be identical (particularly, the strides of the input and output must match for in-place operation to be allowed). Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. mode : cudnnActivationMode Enumerant to specify the activation mode. alpha: float Scaling factor with which every element of the input tensor is multiplied. srcDesc : cudnnTensor4dDescription Handle to the previously initialized input tensor descriptor. srcData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDesc. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the activation Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). destDesc : cudnnTensor4dDescription Handle to the previously initialized output tensor descriptor. destData : void_p Data pointer to GPU memory associated with the output tensor descriptor destDesc. """ dataType = cudnnGetTensor4dDescriptor(destDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnActivationForward(handle, mode, alphaRef, srcDesc, srcData, betaRef, destDesc, destData) cudnnCheckStatus(status)
Python
def cudnnActivationBackward(handle, mode, alpha, srcDesc, srcData, srcDiffDesc, srcDiffData, destDesc, destData, beta, destDiffDesc, destDiffData): """" Gradient of activation function. This routine computes the gradient of a neuron activation function. In-place operation is allowed for this routine; i.e., srcData and destData pointers may be equal and srcDiffData and destDiffData pointers may be equal. However, this requires the corresponding tensor descriptors to be identical (particularly, the strides of the input and output must match for in-place operation to be allowed). Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. mode : cudnnActivationMode Enumerant to specify the activation mode. alpha: float Scaling factor with which every element of the input tensor is multiplied. srcDesc : cudnnTensorDescriptor Handle to the previously initialized input tensor descriptor. srcData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDesc. srcDiffDesc : cudnnTensorDescriptor Handle to the previously initialized input differential tensor descriptor. srcDiffData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDiffData. destDesc : cudnnTensorDescriptor Handle to the previously initialized output tensor descriptor. destData : void_p Data pointer to GPU memory associated with the output tensor descriptor destDesc. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the activation gradient. Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). destDiffDesc : cudnnTensorDescriptor Handle to the previously initialized output differential tensor descriptor. destDiffData : void_p Data pointer to GPU memory associated with the output tensor descriptor destDiffDesc. """ dataType = cudnnGetTensor4dDescriptor(destDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnActivationBackward(handle, mode, alphaRef, srcDesc, srcData, srcDiffDesc, srcDiffData, destDesc, destData, betaRef, destDiffDesc, destDiffData) cudnnCheckStatus(status)
def cudnnActivationBackward(handle, mode, alpha, srcDesc, srcData, srcDiffDesc, srcDiffData, destDesc, destData, beta, destDiffDesc, destDiffData): """" Gradient of activation function. This routine computes the gradient of a neuron activation function. In-place operation is allowed for this routine; i.e., srcData and destData pointers may be equal and srcDiffData and destDiffData pointers may be equal. However, this requires the corresponding tensor descriptors to be identical (particularly, the strides of the input and output must match for in-place operation to be allowed). Parameters ---------- handle : cudnnHandle Handle to a previously created cuDNN context. mode : cudnnActivationMode Enumerant to specify the activation mode. alpha: float Scaling factor with which every element of the input tensor is multiplied. srcDesc : cudnnTensorDescriptor Handle to the previously initialized input tensor descriptor. srcData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDesc. srcDiffDesc : cudnnTensorDescriptor Handle to the previously initialized input differential tensor descriptor. srcDiffData : void_p Data pointer to GPU memory associated with the tensor descriptor srcDiffData. destDesc : cudnnTensorDescriptor Handle to the previously initialized output tensor descriptor. destData : void_p Data pointer to GPU memory associated with the output tensor descriptor destDesc. beta: float Scaling factor which is applied on every element of the output tensor prior to adding the result of the activation gradient. Note that if beta is zero, the output is not read and can contain any uninitialized data (including Nan numbers). destDiffDesc : cudnnTensorDescriptor Handle to the previously initialized output differential tensor descriptor. destDiffData : void_p Data pointer to GPU memory associated with the output tensor descriptor destDiffDesc. """ dataType = cudnnGetTensor4dDescriptor(destDesc)[0] if dataType == cudnnDataType['CUDNN_DATA_FLOAT']: alphaRef = ctypes.byref(ctypes.c_float(alpha)) betaRef = ctypes.byref(ctypes.c_float(beta)) else: alphaRef = ctypes.byref(ctypes.c_double(alpha)) betaRef = ctypes.byref(ctypes.c_double(beta)) status = _libcudnn.cudnnActivationBackward(handle, mode, alphaRef, srcDesc, srcData, srcDiffDesc, srcDiffData, destDesc, destData, betaRef, destDiffDesc, destDiffData) cudnnCheckStatus(status)
Python
def api_url(api_endpoint): """ Get SendGrid API URL for syncing webhooks. :param api_endpoint: SendGrid API endpoint, will be appended to API url """ return urllib.basejoin('https://api.sendgrid.com/v3/', api_endpoint.lstrip("/"))
def api_url(api_endpoint): """ Get SendGrid API URL for syncing webhooks. :param api_endpoint: SendGrid API endpoint, will be appended to API url """ return urllib.basejoin('https://api.sendgrid.com/v3/', api_endpoint.lstrip("/"))
Python
def auth_header(api_key): """ Get SendGrid authorization header for API key. :param api_key: SendGrid API key to use for authorization """ return {"Authorization": "Bearer {}".format(api_key)}
def auth_header(api_key): """ Get SendGrid authorization header for API key. :param api_key: SendGrid API key to use for authorization """ return {"Authorization": "Bearer {}".format(api_key)}
Python
def handle_http_error(response): """ Check HTTP response for errors and process them accordingly. :param response: HTTP response to check """ if response.status_code != 200: # check if there is some info about error in json format if response.headers.get("content-type") == "application/json": error_json = response.json().get("errors") # log every error for error in error_json: frappe.errprint("SendGrid HTTP error {}: {}".format( response.status_code, error.get("message"))) else: # log status code at least frappe.errprint("SendGrid HTTP error {}: {}".format( response.status_code, response.text)) return True return False
def handle_http_error(response): """ Check HTTP response for errors and process them accordingly. :param response: HTTP response to check """ if response.status_code != 200: # check if there is some info about error in json format if response.headers.get("content-type") == "application/json": error_json = response.json().get("errors") # log every error for error in error_json: frappe.errprint("SendGrid HTTP error {}: {}".format( response.status_code, error.get("message"))) else: # log status code at least frappe.errprint("SendGrid HTTP error {}: {}".format( response.status_code, response.text)) return True return False
Python
def handle_request_errors(request_method): """Decorator that handles errors and provides correct log messages.""" @wraps(request_method) def safe_request_method(*args, **kwargs): try: return request_method(*args, **kwargs) except requests.ConnectionError: frappe.errprint("Failed to connect to SendGrid API") except Exception as e: frappe.errprint("SendGrid API Request Error: {}".format(e.message)) return safe_request_method
def handle_request_errors(request_method): """Decorator that handles errors and provides correct log messages.""" @wraps(request_method) def safe_request_method(*args, **kwargs): try: return request_method(*args, **kwargs) except requests.ConnectionError: frappe.errprint("Failed to connect to SendGrid API") except Exception as e: frappe.errprint("SendGrid API Request Error: {}".format(e.message)) return safe_request_method
Python
def webhook_exists(api_key, webhook_post_url): """ Use SendGrid API to find out if webhook exists already. :param api_key: SendGrid API key, should be generated in SendGrid settings :param webhook_post_url: full url for SendGrid webhook with credentials Response JSON data example from https://sendgrid.com/docs/API_Reference/Web_API_v3/Webhooks/event.html { "enabled": true, "url": "url", "group_resubscribe": true, "delivered": true, "group_unsubscribe": true, "spam_report": true, "bounce": true, "deferred": true, "unsubscribe": true, "processed": true, "open": true, "click": true, "dropped": true } """ r = requests.get(api_url("/user/webhooks/event/settings"), headers=auth_header(api_key)) if handle_http_error(r): return return _webhook_enabled(r.json(), webhook_post_url)
def webhook_exists(api_key, webhook_post_url): """ Use SendGrid API to find out if webhook exists already. :param api_key: SendGrid API key, should be generated in SendGrid settings :param webhook_post_url: full url for SendGrid webhook with credentials Response JSON data example from https://sendgrid.com/docs/API_Reference/Web_API_v3/Webhooks/event.html { "enabled": true, "url": "url", "group_resubscribe": true, "delivered": true, "group_unsubscribe": true, "spam_report": true, "bounce": true, "deferred": true, "unsubscribe": true, "processed": true, "open": true, "click": true, "dropped": true } """ r = requests.get(api_url("/user/webhooks/event/settings"), headers=auth_header(api_key)) if handle_http_error(r): return return _webhook_enabled(r.json(), webhook_post_url)
Python
def add_webhook(api_key, webhook_post_url): """ Use SendGrid API to setup events webhook for given url. :param api_key: SendGrid API key, should be generated in SendGrid settings :param webhook_post_url: url for SendGrid events webhook Note that SendGrid webhooks only support basic HTTP authentication so username and password should be generated and included in webhook url like this: http(s)://username:password@domain/foo.php More on SendGrid webhooks here: https://sendgrid.com/docs/API_Reference/Webhooks/event.html """ webhook_settings = {"enabled": True, "url": webhook_post_url, "group_resubscribe": True, "delivered": True, "group_unsubscribe": True, "spam_report": True, "bounce": True, "deferred": True, "unsubscribe": True, "processed": True, "open": True, "click": True, "dropped": True, } r = requests.patch(api_url("/user/webhooks/event/settings"), data=json.dumps(webhook_settings), headers=auth_header(api_key)) if handle_http_error(r): return return _webhook_enabled(r.json(), webhook_post_url)
def add_webhook(api_key, webhook_post_url): """ Use SendGrid API to setup events webhook for given url. :param api_key: SendGrid API key, should be generated in SendGrid settings :param webhook_post_url: url for SendGrid events webhook Note that SendGrid webhooks only support basic HTTP authentication so username and password should be generated and included in webhook url like this: http(s)://username:password@domain/foo.php More on SendGrid webhooks here: https://sendgrid.com/docs/API_Reference/Webhooks/event.html """ webhook_settings = {"enabled": True, "url": webhook_post_url, "group_resubscribe": True, "delivered": True, "group_unsubscribe": True, "spam_report": True, "bounce": True, "deferred": True, "unsubscribe": True, "processed": True, "open": True, "click": True, "dropped": True, } r = requests.patch(api_url("/user/webhooks/event/settings"), data=json.dumps(webhook_settings), headers=auth_header(api_key)) if handle_http_error(r): return return _webhook_enabled(r.json(), webhook_post_url)
Python
def unsubscribe_emails(api_key, endpoint, batch_key="emails", remove_endpoint=None): """ Receive list of emails from SendGrid and unsubscribe each email. :param api_key: SendGrid API key, should be generated in SendGrid settings :param endpoint: API endpoint to use in order to get list of emails :param batch_key: key to group emails and perform batch deletion with one request. If not present - each deletion will become an individual request. :param remove_endpoint: API endpoint to use in order to remove email from list. If not present - endpoint for retrieval will be used as removal endpoint. """ if not remove_endpoint: remove_endpoint = endpoint header = auth_header(api_key) r = requests.get(api_url(endpoint), headers=header) # process errors if handle_http_error(r): return emails = [item["email"] for item in r.json()] if not emails: return # unsubscribe and remove if batch_key: # perform batch request request_data = json.dumps({batch_key: emails}) r = requests.delete(api_url(endpoint), data=request_data, headers=header) if handle_http_error(r): return # mark emails as unsubscribed in erpnext for email in emails: global_unsubscribe_and_commit(email) else: # perform deletion request for each email for email in emails: global_unsubscribe_and_commit(email) # remove from SendGrid list email_removal_url = "{}/{}".format(remove_endpoint.rstrip("/"), urllib.quote_plus(email)) r = requests.delete(api_url(email_removal_url), headers=header) # check if rate limit reached if r.status_code == 429: msg = "SendGrid request rate limit reached for {}".format( remove_endpoint) frappe.errprint(msg) break # process errors if handle_http_error(r): continue
def unsubscribe_emails(api_key, endpoint, batch_key="emails", remove_endpoint=None): """ Receive list of emails from SendGrid and unsubscribe each email. :param api_key: SendGrid API key, should be generated in SendGrid settings :param endpoint: API endpoint to use in order to get list of emails :param batch_key: key to group emails and perform batch deletion with one request. If not present - each deletion will become an individual request. :param remove_endpoint: API endpoint to use in order to remove email from list. If not present - endpoint for retrieval will be used as removal endpoint. """ if not remove_endpoint: remove_endpoint = endpoint header = auth_header(api_key) r = requests.get(api_url(endpoint), headers=header) # process errors if handle_http_error(r): return emails = [item["email"] for item in r.json()] if not emails: return # unsubscribe and remove if batch_key: # perform batch request request_data = json.dumps({batch_key: emails}) r = requests.delete(api_url(endpoint), data=request_data, headers=header) if handle_http_error(r): return # mark emails as unsubscribed in erpnext for email in emails: global_unsubscribe_and_commit(email) else: # perform deletion request for each email for email in emails: global_unsubscribe_and_commit(email) # remove from SendGrid list email_removal_url = "{}/{}".format(remove_endpoint.rstrip("/"), urllib.quote_plus(email)) r = requests.delete(api_url(email_removal_url), headers=header) # check if rate limit reached if r.status_code == 429: msg = "SendGrid request rate limit reached for {}".format( remove_endpoint) frappe.errprint(msg) break # process errors if handle_http_error(r): continue
Python
def _get_webhook_credentials(): """ Get list of SendGrid webhook credentials for all Email Accounts. Generator method that gets values from db. """ email_accounts = frappe.get_all("Email Account", fields=["sendgrid_webhook_credentials", "api_key"], filters={"enable_outgoing": 1, "service": "SendGrid"}) webhook_credentials = list() for account in email_accounts: if account.sendgrid_webhook_credentials and account.api_key: webhook_credentials.append(account.sendgrid_webhook_credentials) if frappe.conf.sendgrid_webhook_credentials: webhook_credentials.append( frappe.conf.sendgrid_webhook_credentials) return webhook_credentials
def _get_webhook_credentials(): """ Get list of SendGrid webhook credentials for all Email Accounts. Generator method that gets values from db. """ email_accounts = frappe.get_all("Email Account", fields=["sendgrid_webhook_credentials", "api_key"], filters={"enable_outgoing": 1, "service": "SendGrid"}) webhook_credentials = list() for account in email_accounts: if account.sendgrid_webhook_credentials and account.api_key: webhook_credentials.append(account.sendgrid_webhook_credentials) if frappe.conf.sendgrid_webhook_credentials: webhook_credentials.append( frappe.conf.sendgrid_webhook_credentials) return webhook_credentials
Python
def global_unsubscribe_and_commit(email): """Set Global Unsubscribe flag for the email and commit to db. :param email: email address to unsubscribe """ try: unsubscribe_data = {"doctype": "Email Unsubscribe", "email": email, "global_unsubscribe": 1} frappe.get_doc(unsubscribe_data).insert(ignore_permissions=True) except frappe.DuplicateEntryError: pass else: frappe.db.commit()
def global_unsubscribe_and_commit(email): """Set Global Unsubscribe flag for the email and commit to db. :param email: email address to unsubscribe """ try: unsubscribe_data = {"doctype": "Email Unsubscribe", "email": email, "global_unsubscribe": 1} frappe.get_doc(unsubscribe_data).insert(ignore_permissions=True) except frappe.DuplicateEntryError: pass else: frappe.db.commit()
Python
def unsubscribe_blacklisted(): """ Get blacklisted emails, unsubscribe them globally and delete them from SendGrid. Run via Daily Scheduler. """ for email_account in frappe.get_all("Email Account", filters={"service": "SendGrid", "enable_outgoing": 1}, fields=["api_key", "sendgrid_webhook_credentials"]): # don't do it when SendGrid integration is inactive if not email_account.sendgrid_webhook_credentials or not email_account.api_key: continue # process blocked emails unsubscribe_emails(email_account.api_key, endpoint="/suppression/blocks") # process bounced emails unsubscribe_emails(email_account.api_key, endpoint="/suppression/bounces") # process emails that were marked as spam unsubscribe_emails(email_account.api_key, endpoint="/suppression/spam_reports") # process invalid emails unsubscribe_emails(email_account.api_key, endpoint="/suppression/invalid_emails") # process unsubscribed emails unsubscribe_emails(email_account.api_key, endpoint="/suppression/unsubscribes", remove_endpoint="/asm/suppressions/global", batch_key=None)
def unsubscribe_blacklisted(): """ Get blacklisted emails, unsubscribe them globally and delete them from SendGrid. Run via Daily Scheduler. """ for email_account in frappe.get_all("Email Account", filters={"service": "SendGrid", "enable_outgoing": 1}, fields=["api_key", "sendgrid_webhook_credentials"]): # don't do it when SendGrid integration is inactive if not email_account.sendgrid_webhook_credentials or not email_account.api_key: continue # process blocked emails unsubscribe_emails(email_account.api_key, endpoint="/suppression/blocks") # process bounced emails unsubscribe_emails(email_account.api_key, endpoint="/suppression/bounces") # process emails that were marked as spam unsubscribe_emails(email_account.api_key, endpoint="/suppression/spam_reports") # process invalid emails unsubscribe_emails(email_account.api_key, endpoint="/suppression/invalid_emails") # process unsubscribed emails unsubscribe_emails(email_account.api_key, endpoint="/suppression/unsubscribes", remove_endpoint="/asm/suppressions/global", batch_key=None)
Python
def sync(doc, method=None): """Sync Webhook under SendGrid account.""" if not doc.service == "SendGrid": return if not (doc.api_key and doc.enable_outgoing and doc.smtp_server and doc.email_id and doc.password): frappe.msgprint("Imposible to setup SendGrid webhook (incorrect of settings)") return webhook_url = None if doc.sendgrid_webhook_credentials: webhook_url = get_webhook_post_url(doc.sendgrid_webhook_credentials) if webhook_exists(doc.api_key, webhook_url): frappe.msgprint("SendGrid events webhook already exists") return credentials = generate_credentials() webhook_url = get_webhook_post_url(credentials) if add_webhook(doc.api_key, webhook_url): # save webhook credentials in Email Account doc.sendgrid_webhook_credentials = credentials doc.db_set("sendgrid_webhook_credentials", credentials) frappe.db.commit() frappe.msgprint("SendGrid events webhook created successfuly") else: frappe.msgprint("Failed to create SendGrid events webhook") frappe.errprint("Failed to create SendGrid events webhook") # always clear key cache clear_cache()
def sync(doc, method=None): """Sync Webhook under SendGrid account.""" if not doc.service == "SendGrid": return if not (doc.api_key and doc.enable_outgoing and doc.smtp_server and doc.email_id and doc.password): frappe.msgprint("Imposible to setup SendGrid webhook (incorrect of settings)") return webhook_url = None if doc.sendgrid_webhook_credentials: webhook_url = get_webhook_post_url(doc.sendgrid_webhook_credentials) if webhook_exists(doc.api_key, webhook_url): frappe.msgprint("SendGrid events webhook already exists") return credentials = generate_credentials() webhook_url = get_webhook_post_url(credentials) if add_webhook(doc.api_key, webhook_url): # save webhook credentials in Email Account doc.sendgrid_webhook_credentials = credentials doc.db_set("sendgrid_webhook_credentials", credentials) frappe.db.commit() frappe.msgprint("SendGrid events webhook created successfuly") else: frappe.msgprint("Failed to create SendGrid events webhook") frappe.errprint("Failed to create SendGrid events webhook") # always clear key cache clear_cache()
Python
def generate_string(length=10): """ Generate string of random symbols and digits. :param length: length of string to generate """ symbols = string.ascii_letters + string.digits return "".join((random.choice(symbols) for i in xrange(length)))
def generate_string(length=10): """ Generate string of random symbols and digits. :param length: length of string to generate """ symbols = string.ascii_letters + string.digits return "".join((random.choice(symbols) for i in xrange(length)))
Python
def _load_image_set_index(self): """ Load the indexes listed in this dataset's image set file. """ # Example path to image set file: # self._devkit_path + /VOCdevkit2007/VOC2007/ImageSets/Main/val.txt image_set_file = os.path.join(self._data_path, 'ImageSets', self._image_set + '.txt') assert os.path.exists(image_set_file), \ 'Path does not exist: {}'.format(image_set_file) with open(image_set_file) as f: image_index = [x.strip() for x in f.readlines()] return image_index
def _load_image_set_index(self): """ Load the indexes listed in this dataset's image set file. """ # Example path to image set file: # self._devkit_path + /VOCdevkit2007/VOC2007/ImageSets/Main/val.txt image_set_file = os.path.join(self._data_path, 'ImageSets', self._image_set + '.txt') assert os.path.exists(image_set_file), \ 'Path does not exist: {}'.format(image_set_file) with open(image_set_file) as f: image_index = [x.strip() for x in f.readlines()] return image_index
Python
def _get_default_path(self): """ Return the default path where PASCAL VOC is expected to be installed. """ return os.path.join(cfg.DATA_DIR, 'school_lunch_dataset' )
def _get_default_path(self): """ Return the default path where PASCAL VOC is expected to be installed. """ return os.path.join(cfg.DATA_DIR, 'school_lunch_dataset' )
Python
def _load_pascal_annotation(self, index): """ Load image and bounding boxes info from XML file in the PASCAL VOC format. """ filename = os.path.join(self._data_path, 'Annotations', index + '.xml') tree = ET.parse(filename) objs = tree.findall('object') # if not self.config['use_diff']: # # Exclude the samples labeled as difficult # non_diff_objs = [ # obj for obj in objs if int(obj.find('difficult').text) == 0] # # if len(non_diff_objs) != len(objs): # # print 'Removed {} difficult objects'.format( # # len(objs) - len(non_diff_objs)) # objs = non_diff_objs num_objs = len(objs) boxes = np.zeros((num_objs, 4), dtype=np.uint16) gt_classes = np.zeros((num_objs), dtype=np.int32) overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) # "Seg" area for pascal is just the box area seg_areas = np.zeros((num_objs), dtype=np.float32) ishards = np.zeros((num_objs), dtype=np.int32) # Load object bounding boxes into a data frame. for ix, obj in enumerate(objs): bbox = obj.find('bndbox') # Make pixel indexes 0-based x1 = float(bbox.find('xmin').text) - 1 y1 = float(bbox.find('ymin').text) - 1 x2 = float(bbox.find('xmax').text) - 1 y2 = float(bbox.find('ymax').text) - 1 diffc = obj.find('difficult') difficult = 0 if diffc == None else int(diffc.text) ishards[ix] = difficult cls = self._class_to_ind[obj.find('name').text.lower().strip()] boxes[ix, :] = [x1, y1, x2, y2] gt_classes[ix] = cls overlaps[ix, cls] = 1.0 seg_areas[ix] = (x2 - x1 + 1) * (y2 - y1 + 1) overlaps = scipy.sparse.csr_matrix(overlaps) return {'boxes': boxes, 'gt_classes': gt_classes, 'gt_ishard': ishards, 'gt_overlaps': overlaps, 'flipped': False, 'rotated': 0, 'seg_areas': seg_areas, }
def _load_pascal_annotation(self, index): """ Load image and bounding boxes info from XML file in the PASCAL VOC format. """ filename = os.path.join(self._data_path, 'Annotations', index + '.xml') tree = ET.parse(filename) objs = tree.findall('object') # if not self.config['use_diff']: # # Exclude the samples labeled as difficult # non_diff_objs = [ # obj for obj in objs if int(obj.find('difficult').text) == 0] # # if len(non_diff_objs) != len(objs): # # print 'Removed {} difficult objects'.format( # # len(objs) - len(non_diff_objs)) # objs = non_diff_objs num_objs = len(objs) boxes = np.zeros((num_objs, 4), dtype=np.uint16) gt_classes = np.zeros((num_objs), dtype=np.int32) overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) # "Seg" area for pascal is just the box area seg_areas = np.zeros((num_objs), dtype=np.float32) ishards = np.zeros((num_objs), dtype=np.int32) # Load object bounding boxes into a data frame. for ix, obj in enumerate(objs): bbox = obj.find('bndbox') # Make pixel indexes 0-based x1 = float(bbox.find('xmin').text) - 1 y1 = float(bbox.find('ymin').text) - 1 x2 = float(bbox.find('xmax').text) - 1 y2 = float(bbox.find('ymax').text) - 1 diffc = obj.find('difficult') difficult = 0 if diffc == None else int(diffc.text) ishards[ix] = difficult cls = self._class_to_ind[obj.find('name').text.lower().strip()] boxes[ix, :] = [x1, y1, x2, y2] gt_classes[ix] = cls overlaps[ix, cls] = 1.0 seg_areas[ix] = (x2 - x1 + 1) * (y2 - y1 + 1) overlaps = scipy.sparse.csr_matrix(overlaps) return {'boxes': boxes, 'gt_classes': gt_classes, 'gt_ishard': ishards, 'gt_overlaps': overlaps, 'flipped': False, 'rotated': 0, 'seg_areas': seg_areas, }
Python
def batchnorm(input, weight=None, bias=None, running_mean=None, running_var=None, training=True, eps=1e-5, momentum=0.1): ''' momentum = 1 restricts stats to the current mini-batch ''' # This hack only works when momentum is 1 and avoids needing to track running stats # by substuting dummy variables running_mean = torch.zeros(np.prod(np.array(input.data.size()[1]))).cuda() running_var = torch.ones(np.prod(np.array(input.data.size()[1]))).cuda() return F.batch_norm(input, running_mean, running_var, weight, bias, training, momentum, eps)
def batchnorm(input, weight=None, bias=None, running_mean=None, running_var=None, training=True, eps=1e-5, momentum=0.1): ''' momentum = 1 restricts stats to the current mini-batch ''' # This hack only works when momentum is 1 and avoids needing to track running stats # by substuting dummy variables running_mean = torch.zeros(np.prod(np.array(input.data.size()[1]))).cuda() running_var = torch.ones(np.prod(np.array(input.data.size()[1]))).cuda() return F.batch_norm(input, running_mean, running_var, weight, bias, training, momentum, eps)
Python
def create_inner_imageset(ct, excl_train_mtN): ''' inner is the inner set between train of excl{dataset} and trainval of {dataset} ''' print("------processing {}-----------".format(ct)) imgsets_path = "../data/Food/Food_{}/ImageSets".format(ct) anno_path = "../data/Food/Food_{}/Annotations".format(ct) if excl_train_mtN == 0: excl_class = get_categories("excl"+ct+"_train") else: excl_class = get_categories( "excl"+ct+"_trainmt{}".format(excl_train_mtN)) # 3种方法实现通过回调函数,对xml进行筛选 # 1. save extra info of callback with class fx = filter_xml(excl_class) process_all_xml_files_from_dir(anno_path, fx.process) print(len(fx.reserver_xmls)) filter_xmls = fx.reserver_xmls # 保存筛选信息 print("saving inner mt {} sets:{}".format( excl_train_mtN, len(filter_xmls))) print(imgsets_path) if excl_train_mtN == 0: saving_file = "inner.txt" else: saving_file = "innermt{}.txt".format(excl_train_mtN) with open(os.path.join(imgsets_path, saving_file), 'w') as f: for i in filter_xmls: x_name = os.path.split(i)[1] x_name = os.path.splitext(x_name)[0] f.write(x_name + '\n')
def create_inner_imageset(ct, excl_train_mtN): ''' inner is the inner set between train of excl{dataset} and trainval of {dataset} ''' print("------processing {}-----------".format(ct)) imgsets_path = "../data/Food/Food_{}/ImageSets".format(ct) anno_path = "../data/Food/Food_{}/Annotations".format(ct) if excl_train_mtN == 0: excl_class = get_categories("excl"+ct+"_train") else: excl_class = get_categories( "excl"+ct+"_trainmt{}".format(excl_train_mtN)) # 3种方法实现通过回调函数,对xml进行筛选 # 1. save extra info of callback with class fx = filter_xml(excl_class) process_all_xml_files_from_dir(anno_path, fx.process) print(len(fx.reserver_xmls)) filter_xmls = fx.reserver_xmls # 保存筛选信息 print("saving inner mt {} sets:{}".format( excl_train_mtN, len(filter_xmls))) print(imgsets_path) if excl_train_mtN == 0: saving_file = "inner.txt" else: saving_file = "innermt{}.txt".format(excl_train_mtN) with open(os.path.join(imgsets_path, saving_file), 'w') as f: for i in filter_xmls: x_name = os.path.split(i)[1] x_name = os.path.splitext(x_name)[0] f.write(x_name + '\n')
Python
def create_few_inner_for_cross_domain(ct, imgset, mtN, fewN): """select_few_inner_for_train Selecting few shot training samples and from the val of canteen :param ct: :param mtN: N of mt which means the number of training sample is more than N :param fewN: the number of selected sample for each categories """ print("------processing {}-selecting few inner--------".format(ct)) imgsets_path = "../data/Food/Food_{}/ImageSets".format(ct) anno_path = "../data/Food/Food_{}/Annotations".format(ct) imset_path = os.path.join(imgsets_path, imgset+'.txt') if mtN == 0: excl_classes = get_categories("excl"+ct+"_train") else: excl_classes = get_categories("excl"+ct+"_trainmt{}".format(mtN)) cls_sample_count = {} for ex_cls in excl_classes[1:]: cls_sample_count[ex_cls] = 0 few_filter = Xml_in_few_sample_filter(cls_sample_count, fewN) dishes = create_dishes(ct, 'innermt10val') process_xml_from_file(imset_path, anno_path, few_filter.process) # 保存筛选信息 def saving_file(xmls, imgset): print("saving inner few{} mt {} {} sets:{}".format( fewN, mtN, imgset, len(xmls))) if mtN == 0: saving_file = "innermt10valfew{}{}.txt".format(fewN, imgset) else: saving_file = "innermt10valfew{}mt{}{}.txt".format( fewN, mtN, imgset) with open(os.path.join(imgsets_path, saving_file), 'w') as f: for x_name in xmls: f.write(x_name + '\n') few_filter.clean_discard_by_dishes(dishes) saving_file(few_filter.reserver_xmls, 'train') saving_file(few_filter.discard_xmls, 'val')
def create_few_inner_for_cross_domain(ct, imgset, mtN, fewN): """select_few_inner_for_train Selecting few shot training samples and from the val of canteen :param ct: :param mtN: N of mt which means the number of training sample is more than N :param fewN: the number of selected sample for each categories """ print("------processing {}-selecting few inner--------".format(ct)) imgsets_path = "../data/Food/Food_{}/ImageSets".format(ct) anno_path = "../data/Food/Food_{}/Annotations".format(ct) imset_path = os.path.join(imgsets_path, imgset+'.txt') if mtN == 0: excl_classes = get_categories("excl"+ct+"_train") else: excl_classes = get_categories("excl"+ct+"_trainmt{}".format(mtN)) cls_sample_count = {} for ex_cls in excl_classes[1:]: cls_sample_count[ex_cls] = 0 few_filter = Xml_in_few_sample_filter(cls_sample_count, fewN) dishes = create_dishes(ct, 'innermt10val') process_xml_from_file(imset_path, anno_path, few_filter.process) # 保存筛选信息 def saving_file(xmls, imgset): print("saving inner few{} mt {} {} sets:{}".format( fewN, mtN, imgset, len(xmls))) if mtN == 0: saving_file = "innermt10valfew{}{}.txt".format(fewN, imgset) else: saving_file = "innermt10valfew{}mt{}{}.txt".format( fewN, mtN, imgset) with open(os.path.join(imgsets_path, saving_file), 'w') as f: for x_name in xmls: f.write(x_name + '\n') few_filter.clean_discard_by_dishes(dishes) saving_file(few_filter.reserver_xmls, 'train') saving_file(few_filter.discard_xmls, 'val')
Python
def create_inner_imagesets(): ''' inner is the inner set between train of excl{dataset} and trainval of {dataset} ''' cantten = ['Arts', 'Science', 'TechMixedVeg', 'TechChicken', 'UTown', 'YIH'] for ct in cantten: print("------processing {}-----------".format(ct)) imgsets_path = "../data/Food/Food_{}/ImageSets".format(ct) anno_path = "../data/Food/Food_{}/Annotations".format(ct) for N in [0, 10, 30, 50, 100]: if N == 0: excl_class = get_categories("excl"+ct+"_train") else: excl_class = get_categories("excl"+ct+"_trainmt{}".format(N)) # 3种方法实现通过回调函数,对xml进行筛选 # 1. save extra info of callback with class # fx = filter_xml(tech_classes) # process_all_xml_files_from_dir(path, fx.process) # print(len(fx.reserver_xmls)) # 2. save extra info of callback with closet fx_clo = filter_clo(excl_class) process_all_xml_files_from_dir(anno_path, fx_clo) # print(len(fx_clo.__closure__)) # __closure__ 有cell对象的元祖构成 filter_xmls = fx_clo.__closure__[ 0].cell_contents # cell 对象有cell_contents的内容 # 3. 通过协程 # how to implement?? # NotImplemented # 保存筛选信息 print("saving inner mt {} sets:{}".format(N, len(filter_xmls))) print(imgsets_path) if N == 0: saving_file = "inner.txt" else: saving_file = "innermt{}.txt".format(N) with open(os.path.join(imgsets_path, saving_file), 'w') as f: for i in filter_xmls: x_name = os.path.split(i)[1] x_name = os.path.splitext(x_name)[0] f.write(x_name + '\n')
def create_inner_imagesets(): ''' inner is the inner set between train of excl{dataset} and trainval of {dataset} ''' cantten = ['Arts', 'Science', 'TechMixedVeg', 'TechChicken', 'UTown', 'YIH'] for ct in cantten: print("------processing {}-----------".format(ct)) imgsets_path = "../data/Food/Food_{}/ImageSets".format(ct) anno_path = "../data/Food/Food_{}/Annotations".format(ct) for N in [0, 10, 30, 50, 100]: if N == 0: excl_class = get_categories("excl"+ct+"_train") else: excl_class = get_categories("excl"+ct+"_trainmt{}".format(N)) # 3种方法实现通过回调函数,对xml进行筛选 # 1. save extra info of callback with class # fx = filter_xml(tech_classes) # process_all_xml_files_from_dir(path, fx.process) # print(len(fx.reserver_xmls)) # 2. save extra info of callback with closet fx_clo = filter_clo(excl_class) process_all_xml_files_from_dir(anno_path, fx_clo) # print(len(fx_clo.__closure__)) # __closure__ 有cell对象的元祖构成 filter_xmls = fx_clo.__closure__[ 0].cell_contents # cell 对象有cell_contents的内容 # 3. 通过协程 # how to implement?? # NotImplemented # 保存筛选信息 print("saving inner mt {} sets:{}".format(N, len(filter_xmls))) print(imgsets_path) if N == 0: saving_file = "inner.txt" else: saving_file = "innermt{}.txt".format(N) with open(os.path.join(imgsets_path, saving_file), 'w') as f: for i in filter_xmls: x_name = os.path.split(i)[1] x_name = os.path.splitext(x_name)[0] f.write(x_name + '\n')
Python
def prepare_roidb(imdb): """Enrich the imdb's roidb by adding some derived quantities that are useful for training. This function precomputes the maximum overlap, taken over ground-truth boxes, between each ROI and each ground-truth box. The class with maximum overlap is also recorded. """ roidb = imdb.roidb if not (imdb.name.startswith('coco')): # sizes = [PIL.Image.open(imdb.image_path_at(i)).size # for i in range(imdb.num_images)] widths = imdb._get_widths() * int(imdb.num_images / imdb.origin_img_len) heights = imdb._get_heights() * int(imdb.num_images / imdb.origin_img_len) for i in range(len(imdb.image_index)): roidb[i]['img_id'] = imdb.image_id_at(i) roidb[i]['image'] = imdb.image_path_at(i) if not (imdb.name.startswith('coco')): if roidb[i]['rotated'] in [90, 270]: roidb[i]['width'] = heights[i] # sizes[i][1] roidb[i]['height'] = widths[i] # sizes[i][0] else: roidb[i]['width'] = widths[i] # sizes[i][0] roidb[i]['height'] = heights[i] # sizes[i][1] # need gt_overlaps as a dense array for argmax gt_overlaps = roidb[i]['gt_overlaps'].toarray() # max overlap with gt over classes (columns) max_overlaps = gt_overlaps.max(axis=1) # gt class that had the max overlap max_classes = gt_overlaps.argmax(axis=1) roidb[i]['max_classes'] = max_classes roidb[i]['max_overlaps'] = max_overlaps # sanity checks # max overlap of 0 => class should be zero (background) zero_inds = np.where(max_overlaps == 0)[0] assert all(max_classes[zero_inds] == 0) # max overlap > 0 => class should not be zero (must be a fg class) nonzero_inds = np.where(max_overlaps > 0)[0] #assert all(max_classes[nonzero_inds] != 0) if all(max_classes[nonzero_inds] == 0): pdb.set_trace()
def prepare_roidb(imdb): """Enrich the imdb's roidb by adding some derived quantities that are useful for training. This function precomputes the maximum overlap, taken over ground-truth boxes, between each ROI and each ground-truth box. The class with maximum overlap is also recorded. """ roidb = imdb.roidb if not (imdb.name.startswith('coco')): # sizes = [PIL.Image.open(imdb.image_path_at(i)).size # for i in range(imdb.num_images)] widths = imdb._get_widths() * int(imdb.num_images / imdb.origin_img_len) heights = imdb._get_heights() * int(imdb.num_images / imdb.origin_img_len) for i in range(len(imdb.image_index)): roidb[i]['img_id'] = imdb.image_id_at(i) roidb[i]['image'] = imdb.image_path_at(i) if not (imdb.name.startswith('coco')): if roidb[i]['rotated'] in [90, 270]: roidb[i]['width'] = heights[i] # sizes[i][1] roidb[i]['height'] = widths[i] # sizes[i][0] else: roidb[i]['width'] = widths[i] # sizes[i][0] roidb[i]['height'] = heights[i] # sizes[i][1] # need gt_overlaps as a dense array for argmax gt_overlaps = roidb[i]['gt_overlaps'].toarray() # max overlap with gt over classes (columns) max_overlaps = gt_overlaps.max(axis=1) # gt class that had the max overlap max_classes = gt_overlaps.argmax(axis=1) roidb[i]['max_classes'] = max_classes roidb[i]['max_overlaps'] = max_overlaps # sanity checks # max overlap of 0 => class should be zero (background) zero_inds = np.where(max_overlaps == 0)[0] assert all(max_classes[zero_inds] == 0) # max overlap > 0 => class should not be zero (must be a fg class) nonzero_inds = np.where(max_overlaps > 0)[0] #assert all(max_classes[nonzero_inds] != 0) if all(max_classes[nonzero_inds] == 0): pdb.set_trace()
Python
def append_rotated_images(self, anchor: int, flipped=False): """append_rotate_image append rotated annotations from the origin gt rois :param anchor: only support 90, 180, 270 degree, clockwised :type anchor: int """ num_images = self.origin_img_len # TODO width and heights may lead errors widths = self._get_widths() heights = self._get_heights() if flipped: base = (self._augmentations.index("flipped") + 1) * num_images else: base = 0 for i in range(base, base+num_images): boxes = self.roidb[i]['boxes'].copy() oldx1 = boxes[:, 0].copy() oldy1 = boxes[:, 1].copy() oldx2 = boxes[:, 2].copy() oldy2 = boxes[:, 3].copy() size_i = i - num_images if anchor == 90: boxes[:, 0] = oldy1 boxes[:, 1] = widths[size_i] - oldx2 boxes[:, 2] = oldy2 boxes[:, 3] = widths[size_i] - oldx1 elif anchor == 180: boxes[:, 0] = widths[size_i] - oldx2 boxes[:, 1] = heights[size_i] - oldy2 boxes[:, 2] = widths[size_i] - oldx1 boxes[:, 3] = heights[size_i] - oldy1 elif anchor == 270: boxes[:, 0] = heights[size_i] - oldy2 boxes[:, 1] = oldx1 boxes[:, 2] = heights[size_i] - oldy1 boxes[:, 3] = oldx2 assert (boxes[:, 2] >= boxes[:, 0]).all() assert (boxes[:, 3] >= boxes[:, 1]).all() entry = {'boxes': boxes, 'gt_overlaps': self.roidb[i]['gt_overlaps'], 'gt_classes': self.roidb[i]['gt_classes'], 'flipped': flipped, 'rotated': anchor} self.roidb.append(entry) self._image_index += self._image_index[:num_images] if flipped: self._augmentations.append("flippedrotated{}".format(anchor)) else: self._augmentations.append("rotated{}".format(anchor))
def append_rotated_images(self, anchor: int, flipped=False): """append_rotate_image append rotated annotations from the origin gt rois :param anchor: only support 90, 180, 270 degree, clockwised :type anchor: int """ num_images = self.origin_img_len # TODO width and heights may lead errors widths = self._get_widths() heights = self._get_heights() if flipped: base = (self._augmentations.index("flipped") + 1) * num_images else: base = 0 for i in range(base, base+num_images): boxes = self.roidb[i]['boxes'].copy() oldx1 = boxes[:, 0].copy() oldy1 = boxes[:, 1].copy() oldx2 = boxes[:, 2].copy() oldy2 = boxes[:, 3].copy() size_i = i - num_images if anchor == 90: boxes[:, 0] = oldy1 boxes[:, 1] = widths[size_i] - oldx2 boxes[:, 2] = oldy2 boxes[:, 3] = widths[size_i] - oldx1 elif anchor == 180: boxes[:, 0] = widths[size_i] - oldx2 boxes[:, 1] = heights[size_i] - oldy2 boxes[:, 2] = widths[size_i] - oldx1 boxes[:, 3] = heights[size_i] - oldy1 elif anchor == 270: boxes[:, 0] = heights[size_i] - oldy2 boxes[:, 1] = oldx1 boxes[:, 2] = heights[size_i] - oldy1 boxes[:, 3] = oldx2 assert (boxes[:, 2] >= boxes[:, 0]).all() assert (boxes[:, 3] >= boxes[:, 1]).all() entry = {'boxes': boxes, 'gt_overlaps': self.roidb[i]['gt_overlaps'], 'gt_classes': self.roidb[i]['gt_classes'], 'flipped': flipped, 'rotated': anchor} self.roidb.append(entry) self._image_index += self._image_index[:num_images] if flipped: self._augmentations.append("flippedrotated{}".format(anchor)) else: self._augmentations.append("rotated{}".format(anchor))
Python
def parse_rec(filename): """ Parse a PASCAL VOC xml file """ tree = ET.parse(filename) objects = [] for obj in tree.findall('object'): obj_struct = {} obj_struct['name'] = obj.find('name').text obj_struct['pose'] = obj.find('pose').text obj_struct['truncated'] = int(obj.find('truncated').text) obj_struct['difficult'] = int(obj.find('difficult').text) obj_struct['height'] = int(tree.find('size').find('height').text) obj_struct['width'] = int(tree.find('size').find('width').text) bbox = obj.find('bndbox') obj_struct['bbox'] = [int(bbox.find('xmin').text), int(bbox.find('ymin').text), int(bbox.find('xmax').text), int(bbox.find('ymax').text)] objects.append(obj_struct) return objects
def parse_rec(filename): """ Parse a PASCAL VOC xml file """ tree = ET.parse(filename) objects = [] for obj in tree.findall('object'): obj_struct = {} obj_struct['name'] = obj.find('name').text obj_struct['pose'] = obj.find('pose').text obj_struct['truncated'] = int(obj.find('truncated').text) obj_struct['difficult'] = int(obj.find('difficult').text) obj_struct['height'] = int(tree.find('size').find('height').text) obj_struct['width'] = int(tree.find('size').find('width').text) bbox = obj.find('bndbox') obj_struct['bbox'] = [int(bbox.find('xmin').text), int(bbox.find('ymin').text), int(bbox.find('xmax').text), int(bbox.find('ymax').text)] objects.append(obj_struct) return objects
Python
def topk_acc_of_cls_per_dish_2(all_boxes, annopath, imagesetfile, cls_idx, classname, cachedir, threshold=0.5, ovthresh=0.5, topk=5 ): """topk_acc_of_cls_per_dish_2 topk accuracy of the dish whose categrioy is classname topk accuracy: TP/npos. TP is 1 when topK reuslt has the correct result, otherwise is 0 :param all_boxes: :param annopath: :param imagesetfile: :param classname: :param cachedir: :param threshold: :param ovthresh: :param topk: """ # first load gt imagenames, recs = get_gt_recs(cachedir, imagesetfile, annopath) # extract gt objects for this class class_recs = {} cls_idx_recs = {} npos = 0 for img_idx, imagename in enumerate(imagenames): R = [obj for obj in recs[imagename] if obj['name'] == classname] bbox = np.array([x['bbox'] for x in R]) difficult = np.array([x['difficult'] for x in R]).astype(np.bool) det = [False] * len(R) npos = npos + sum(~difficult) class_recs[imagename] = {'bbox': bbox, 'difficult': difficult, 'det': det} cls_idx_recs[img_idx] = {'bbox': bbox, 'difficult': difficult, 'det': det} TP = 0 FP = 0 # evaluate on each image for img_idx in cls_idx_recs: # get all box of img img_all_boxes = [b[img_idx] for b in all_boxes] # add cls_idx to box_cls bboxes = None for cls_idx_det, boxes_of_cls in enumerate(img_all_boxes): if len(boxes_of_cls) != 0: cls_cloumn = np.zeros(len(boxes_of_cls)) + cls_idx_det # img_all_boxes[cls_idx] = np.c_[boxes_of_cls, cls_cloumn] if bboxes is None: bboxes = np.c_[boxes_of_cls, cls_cloumn] else: bboxes = np.vstack( (bboxes, np.c_[boxes_of_cls, cls_cloumn])) # choose topk results which include cls information if bboxes is None: continue else: # sort results bboxes = bboxes[bboxes[:, 4].argsort()] bboxes = bboxes[::-1] bboxes = bboxes[np.where(bboxes[:, 5] != 1)] # topk result for det_box in bboxes[:topk]: # cls_name = classes[int(det_box[5])] if int(det_box[5]) != cls_idx: continue # gt bbox = cls_idx_recs[img_idx]['bbox'] if len(bbox) > 0: omax, jmax = cal_overlap(bbox, det_box) if omax > ovthresh: # if int(det_box[6]) == cls_idx TP += 1 else: FP += 1 else: FP += 1 # use np to return nan while the npos is zero accuracy = TP / np.float32(npos) falseAlarm = FP / np.float32(TP + FP) return accuracy, falseAlarm
def topk_acc_of_cls_per_dish_2(all_boxes, annopath, imagesetfile, cls_idx, classname, cachedir, threshold=0.5, ovthresh=0.5, topk=5 ): """topk_acc_of_cls_per_dish_2 topk accuracy of the dish whose categrioy is classname topk accuracy: TP/npos. TP is 1 when topK reuslt has the correct result, otherwise is 0 :param all_boxes: :param annopath: :param imagesetfile: :param classname: :param cachedir: :param threshold: :param ovthresh: :param topk: """ # first load gt imagenames, recs = get_gt_recs(cachedir, imagesetfile, annopath) # extract gt objects for this class class_recs = {} cls_idx_recs = {} npos = 0 for img_idx, imagename in enumerate(imagenames): R = [obj for obj in recs[imagename] if obj['name'] == classname] bbox = np.array([x['bbox'] for x in R]) difficult = np.array([x['difficult'] for x in R]).astype(np.bool) det = [False] * len(R) npos = npos + sum(~difficult) class_recs[imagename] = {'bbox': bbox, 'difficult': difficult, 'det': det} cls_idx_recs[img_idx] = {'bbox': bbox, 'difficult': difficult, 'det': det} TP = 0 FP = 0 # evaluate on each image for img_idx in cls_idx_recs: # get all box of img img_all_boxes = [b[img_idx] for b in all_boxes] # add cls_idx to box_cls bboxes = None for cls_idx_det, boxes_of_cls in enumerate(img_all_boxes): if len(boxes_of_cls) != 0: cls_cloumn = np.zeros(len(boxes_of_cls)) + cls_idx_det # img_all_boxes[cls_idx] = np.c_[boxes_of_cls, cls_cloumn] if bboxes is None: bboxes = np.c_[boxes_of_cls, cls_cloumn] else: bboxes = np.vstack( (bboxes, np.c_[boxes_of_cls, cls_cloumn])) # choose topk results which include cls information if bboxes is None: continue else: # sort results bboxes = bboxes[bboxes[:, 4].argsort()] bboxes = bboxes[::-1] bboxes = bboxes[np.where(bboxes[:, 5] != 1)] # topk result for det_box in bboxes[:topk]: # cls_name = classes[int(det_box[5])] if int(det_box[5]) != cls_idx: continue # gt bbox = cls_idx_recs[img_idx]['bbox'] if len(bbox) > 0: omax, jmax = cal_overlap(bbox, det_box) if omax > ovthresh: # if int(det_box[6]) == cls_idx TP += 1 else: FP += 1 else: FP += 1 # use np to return nan while the npos is zero accuracy = TP / np.float32(npos) falseAlarm = FP / np.float32(TP + FP) return accuracy, falseAlarm
Python
def _load_image_set_index(self): """ Load the indexes listed in this dataset's image set file. """ # Example path to image set file: # self._devkit_path + /VOCdevkit2007/VOC2007/ImageSets/Main/val.txt # image_set_file = os.path.join(self._data_path, 'ImageSets', # self._image_set + '.txt') # assert os.path.exists(image_set_file), \ # 'Path does not exist: {}'.format(image_set_file) # with open(image_set_file) as f: # image_index = [x.strip() for x in f.readlines()] dishes = self.create_dishes() random.shuffle(dishes) train_dishes = dishes[0:5] test_dishes = dishes[5:10] self.train_index = [] self.test_index = [] for dish in train_dishes: self.train_index.extend(dish) for dish in test_dishes: self.test_index.extend(dish) # TODO save test_dishes return self.train_index
def _load_image_set_index(self): """ Load the indexes listed in this dataset's image set file. """ # Example path to image set file: # self._devkit_path + /VOCdevkit2007/VOC2007/ImageSets/Main/val.txt # image_set_file = os.path.join(self._data_path, 'ImageSets', # self._image_set + '.txt') # assert os.path.exists(image_set_file), \ # 'Path does not exist: {}'.format(image_set_file) # with open(image_set_file) as f: # image_index = [x.strip() for x in f.readlines()] dishes = self.create_dishes() random.shuffle(dishes) train_dishes = dishes[0:5] test_dishes = dishes[5:10] self.train_index = [] self.test_index = [] for dish in train_dishes: self.train_index.extend(dish) for dish in test_dishes: self.test_index.extend(dish) # TODO save test_dishes return self.train_index
Python
def _get_default_path(self): """ Return the default path where PASCAL VOC is expected to be installed. """ return os.path.join(cfg.DATA_DIR, 'Food')
def _get_default_path(self): """ Return the default path where PASCAL VOC is expected to be installed. """ return os.path.join(cfg.DATA_DIR, 'Food')
Python
def gt_roidb(self): """ Return the database of ground-truth regions of interest. This function loads/saves from/to a cache file to speed up future calls. """ #cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl') # if os.path.exists(cache_file): # with open(cache_file, 'rb') as fid: # roidb = pickle.load(fid) # print('{} gt roidb loaded from {}'.format(self.name, cache_file)) # return roidb print("{} gt roidb are reading".format(self.name)) gt_roidb = [self._load_pascal_annotation(index) for index in self.image_index] # with open(cache_file, 'wb') as fid: # pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL) #print('wrote gt roidb to {}'.format(cache_file)) return gt_roidb
def gt_roidb(self): """ Return the database of ground-truth regions of interest. This function loads/saves from/to a cache file to speed up future calls. """ #cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl') # if os.path.exists(cache_file): # with open(cache_file, 'rb') as fid: # roidb = pickle.load(fid) # print('{} gt roidb loaded from {}'.format(self.name, cache_file)) # return roidb print("{} gt roidb are reading".format(self.name)) gt_roidb = [self._load_pascal_annotation(index) for index in self.image_index] # with open(cache_file, 'wb') as fid: # pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL) #print('wrote gt roidb to {}'.format(cache_file)) return gt_roidb
Python
def _load_pascal_annotation(self, index): """ Load image and bounding boxes info from XML file in the PASCAL VOC format. """ filename = os.path.join(self._data_path, 'Annotations', index + '.xml') tree = ET.parse(filename) objs = tree.findall('object') # if not self.config['use_diff']: # # Exclude the samples labeled as difficult # non_diff_objs = [ # obj for obj in objs if int(obj.find('difficult').text) == 0] # # if len(non_diff_objs) != len(objs): # # print 'Removed {} difficult objects'.format( # # len(objs) - len(non_diff_objs)) # objs = non_diff_objs # exlcude unused cls ori_num_objs = len(objs) num_objs = 0 for obj in objs: try: cls = self._class_to_ind[obj.find('name').text.lower().strip()] num_objs += 1 except: continue # assert num_objs == 0 if num_objs == 0: import pdb pdb.set_trace() num_objs = num_objs # len(objs) boxes = np.zeros((num_objs, 4), dtype=np.uint16) gt_classes = np.zeros((num_objs), dtype=np.int32) overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) # "Seg" area for pascal is just the box area seg_areas = np.zeros((num_objs), dtype=np.float32) ishards = np.zeros((num_objs), dtype=np.int32) # Load object bounding boxes into a data frame. ix = 0 for obj in objs: bbox = obj.find('bndbox') # Make pixel indexes 0-based # the range of food label is (0, width) which may cause by bugs in labelimg 1.4 x1 = max(0.0, float(bbox.find('xmin').text) - 1) y1 = max(0.0, float(bbox.find('ymin').text) - 1) x2 = float(bbox.find('xmax').text) - 1 y2 = float(bbox.find('ymax').text) - 1 diffc = obj.find('difficult') difficult = 0 if diffc == None else int(diffc.text) try: cls = self._class_to_ind[obj.find('name').text.lower().strip()] # cls = int(obj.find('name').text.strip()) except: print("Warning:*******cls can not found in file:******") print(filename) continue raise ishards[ix] = difficult boxes[ix, :] = [x1, y1, x2, y2] gt_classes[ix] = cls try: overlaps[ix, cls] = 1.0 except: print(filename) raise seg_areas[ix] = (x2 - x1 + 1) * (y2 - y1 + 1) ix += 1 overlaps = scipy.sparse.csr_matrix(overlaps) return {'boxes': boxes, 'gt_classes': gt_classes, 'gt_ishard': ishards, 'gt_overlaps': overlaps, 'flipped': False, 'rotated': 0, 'seg_areas': seg_areas}
def _load_pascal_annotation(self, index): """ Load image and bounding boxes info from XML file in the PASCAL VOC format. """ filename = os.path.join(self._data_path, 'Annotations', index + '.xml') tree = ET.parse(filename) objs = tree.findall('object') # if not self.config['use_diff']: # # Exclude the samples labeled as difficult # non_diff_objs = [ # obj for obj in objs if int(obj.find('difficult').text) == 0] # # if len(non_diff_objs) != len(objs): # # print 'Removed {} difficult objects'.format( # # len(objs) - len(non_diff_objs)) # objs = non_diff_objs # exlcude unused cls ori_num_objs = len(objs) num_objs = 0 for obj in objs: try: cls = self._class_to_ind[obj.find('name').text.lower().strip()] num_objs += 1 except: continue # assert num_objs == 0 if num_objs == 0: import pdb pdb.set_trace() num_objs = num_objs # len(objs) boxes = np.zeros((num_objs, 4), dtype=np.uint16) gt_classes = np.zeros((num_objs), dtype=np.int32) overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) # "Seg" area for pascal is just the box area seg_areas = np.zeros((num_objs), dtype=np.float32) ishards = np.zeros((num_objs), dtype=np.int32) # Load object bounding boxes into a data frame. ix = 0 for obj in objs: bbox = obj.find('bndbox') # Make pixel indexes 0-based # the range of food label is (0, width) which may cause by bugs in labelimg 1.4 x1 = max(0.0, float(bbox.find('xmin').text) - 1) y1 = max(0.0, float(bbox.find('ymin').text) - 1) x2 = float(bbox.find('xmax').text) - 1 y2 = float(bbox.find('ymax').text) - 1 diffc = obj.find('difficult') difficult = 0 if diffc == None else int(diffc.text) try: cls = self._class_to_ind[obj.find('name').text.lower().strip()] # cls = int(obj.find('name').text.strip()) except: print("Warning:*******cls can not found in file:******") print(filename) continue raise ishards[ix] = difficult boxes[ix, :] = [x1, y1, x2, y2] gt_classes[ix] = cls try: overlaps[ix, cls] = 1.0 except: print(filename) raise seg_areas[ix] = (x2 - x1 + 1) * (y2 - y1 + 1) ix += 1 overlaps = scipy.sparse.csr_matrix(overlaps) return {'boxes': boxes, 'gt_classes': gt_classes, 'gt_ishard': ishards, 'gt_overlaps': overlaps, 'flipped': False, 'rotated': 0, 'seg_areas': seg_areas}
Python
def create_excl_ct__softlink(): """ build softlink of excl canteens from original canteens which we collect """ for exclude_ct in canteens + ['All']: print("canteens: exclude ", exclude_ct) # create if exclude_ct == 'All': exclude_food_root = os.path.join( food_dataset_dir, 'Food_'+exclude_ct) else: exclude_food_root = os.path.join( food_dataset_dir, 'Food_excl'+exclude_ct) exclude_food_Anno_dir = os.path.join(exclude_food_root, "Annotations") exclude_food_ImSet_dir = os.path.join(exclude_food_root, "ImageSets") exclude_food_JPEG_dir = os.path.join(exclude_food_root, "JPEGImages") create_dir(exclude_food_Anno_dir) create_dir(exclude_food_JPEG_dir) create_dir(exclude_food_ImSet_dir) exclude_trainval_path = os.path.join( exclude_food_ImSet_dir, 'trainval.txt') trainval_content = [] for ct in canteens: if exclude_ct == ct: continue ct_root = os.path.join(food_dataset_dir, 'Food_' + ct) ct_Anno_dir = os.path.join(ct_root, 'Annotations') ct_ImSet_dir = os.path.join(ct_root, 'ImageSets') ct_JPEG_dir = os.path.join(ct_root, 'JPEGImages') # 处理空格 # create soft link for mixed datset for f in os.listdir(ct_Anno_dir): os.symlink(ct_Anno_dir+'/' + f, exclude_food_Anno_dir + '/' + f) for f in os.listdir(ct_JPEG_dir): os.symlink(ct_JPEG_dir+'/' + f, exclude_food_JPEG_dir+'/' + f) # trainval.txt ct_trainval_path = os.path.join(ct_ImSet_dir, 'trainval.txt') with open(ct_trainval_path) as f: trainval_content += f.readlines() print(len(trainval_content)) with open(exclude_trainval_path, 'w') as f: f.writelines(trainval_content) #train_content = [] #val_content = [] # TODO: the images of one same dish which were taken from different angles should be splited. # for i, sample in enumerate(trainval_content): # if i % 8 == 0 or i % 9 == 0: # val_content.append(sample) # else: # train_content.append(sample) # with open(os.path.join(exclude_food_ImSet_dir, 'train.txt'), 'w') as f: # print("len of training set", len(train_content)) # f.writelines(train_content) # with open(os.path.join(exclude_food_ImSet_dir, 'val.txt'), 'w') as f: # print("len of val set", len(val_content)) # f.writelines(val_content)
def create_excl_ct__softlink(): """ build softlink of excl canteens from original canteens which we collect """ for exclude_ct in canteens + ['All']: print("canteens: exclude ", exclude_ct) # create if exclude_ct == 'All': exclude_food_root = os.path.join( food_dataset_dir, 'Food_'+exclude_ct) else: exclude_food_root = os.path.join( food_dataset_dir, 'Food_excl'+exclude_ct) exclude_food_Anno_dir = os.path.join(exclude_food_root, "Annotations") exclude_food_ImSet_dir = os.path.join(exclude_food_root, "ImageSets") exclude_food_JPEG_dir = os.path.join(exclude_food_root, "JPEGImages") create_dir(exclude_food_Anno_dir) create_dir(exclude_food_JPEG_dir) create_dir(exclude_food_ImSet_dir) exclude_trainval_path = os.path.join( exclude_food_ImSet_dir, 'trainval.txt') trainval_content = [] for ct in canteens: if exclude_ct == ct: continue ct_root = os.path.join(food_dataset_dir, 'Food_' + ct) ct_Anno_dir = os.path.join(ct_root, 'Annotations') ct_ImSet_dir = os.path.join(ct_root, 'ImageSets') ct_JPEG_dir = os.path.join(ct_root, 'JPEGImages') # 处理空格 # create soft link for mixed datset for f in os.listdir(ct_Anno_dir): os.symlink(ct_Anno_dir+'/' + f, exclude_food_Anno_dir + '/' + f) for f in os.listdir(ct_JPEG_dir): os.symlink(ct_JPEG_dir+'/' + f, exclude_food_JPEG_dir+'/' + f) # trainval.txt ct_trainval_path = os.path.join(ct_ImSet_dir, 'trainval.txt') with open(ct_trainval_path) as f: trainval_content += f.readlines() print(len(trainval_content)) with open(exclude_trainval_path, 'w') as f: f.writelines(trainval_content) #train_content = [] #val_content = [] # TODO: the images of one same dish which were taken from different angles should be splited. # for i, sample in enumerate(trainval_content): # if i % 8 == 0 or i % 9 == 0: # val_content.append(sample) # else: # train_content.append(sample) # with open(os.path.join(exclude_food_ImSet_dir, 'train.txt'), 'w') as f: # print("len of training set", len(train_content)) # f.writelines(train_content) # with open(os.path.join(exclude_food_ImSet_dir, 'val.txt'), 'w') as f: # print("len of val set", len(val_content)) # f.writelines(val_content)
Python
def rotate_bbox(im_shape, bbox, exif_flag): """ rotate one bbox base the exif flag and original image shape. :param im_shape: tuples, shape of origin image: (width, height) :param bbox: :param exif_flag: exif flag of orientation(274) : :return: """ width, height = im_shape y = height x = width if exif_flag == 0 or exif_flag == 1: return bbox # 8 is clockwise 90 degree # 3 is 180 # 6 is 270 if exif_flag == 6: x1 = y - bbox[3] y1 = bbox[0] x2 = y - bbox[1] y2 = bbox[2] elif exif_flag == 8: x1 = bbox[1] y1 = x - bbox[2] x2 = bbox[3] y2 = x - bbox[0] elif exif_flag == 3: x1 = x - bbox[2] y1 = y - bbox[3] x2 = x - bbox[0] y2 = y - bbox[1] else: assert "not right flag" return [x1, y1, x2, y2]
def rotate_bbox(im_shape, bbox, exif_flag): """ rotate one bbox base the exif flag and original image shape. :param im_shape: tuples, shape of origin image: (width, height) :param bbox: :param exif_flag: exif flag of orientation(274) : :return: """ width, height = im_shape y = height x = width if exif_flag == 0 or exif_flag == 1: return bbox # 8 is clockwise 90 degree # 3 is 180 # 6 is 270 if exif_flag == 6: x1 = y - bbox[3] y1 = bbox[0] x2 = y - bbox[1] y2 = bbox[2] elif exif_flag == 8: x1 = bbox[1] y1 = x - bbox[2] x2 = bbox[3] y2 = x - bbox[0] elif exif_flag == 3: x1 = x - bbox[2] y1 = y - bbox[3] x2 = x - bbox[0] y2 = y - bbox[1] else: assert "not right flag" return [x1, y1, x2, y2]
Python
def mutate(self,scale=0.01, amount=0.1): """ Change random waights by a small amount params: scale: std of the weights deltas amount: percent of the weights that will be modified """ for layer in self.layers: h, w = layer.W.shape to_mutate = np.random.rand(h+1,w) < amount change = np.random.normal(loc=0, scale=scale, size=(h+1, w)) * to_mutate layer.W += change[:-1, :] # layer.b += change[-1, :] / 10
def mutate(self,scale=0.01, amount=0.1): """ Change random waights by a small amount params: scale: std of the weights deltas amount: percent of the weights that will be modified """ for layer in self.layers: h, w = layer.W.shape to_mutate = np.random.rand(h+1,w) < amount change = np.random.normal(loc=0, scale=scale, size=(h+1, w)) * to_mutate layer.W += change[:-1, :] # layer.b += change[-1, :] / 10
Python
def default_context(papers, **kwargs): """ build a default context for the frontend """ gvars = {'num_papers': len(jall['rels'])} gvars.update(kwargs) # insert anything else from kwargs into global context context = {'papers': papers, 'gvars': gvars} return context
def default_context(papers, **kwargs): """ build a default context for the frontend """ gvars = {'num_papers': len(jall['rels'])} gvars.update(kwargs) # insert anything else from kwargs into global context context = {'papers': papers, 'gvars': gvars} return context
Python
def main(): """start the game of life in a new widget """ width, height = 20, 20 grid = _make_grid_from_size(width, height) app = QApplication([]) game_of_life_widget = GameOfLifeWidget(width, height, grid) game_of_life_widget.show() app.exec_()
def main(): """start the game of life in a new widget """ width, height = 20, 20 grid = _make_grid_from_size(width, height) app = QApplication([]) game_of_life_widget = GameOfLifeWidget(width, height, grid) game_of_life_widget.show() app.exec_()
Python
def project(directory: str, config_file: str, **overrides) -> dict: """Returns back the complete configuration - including all sub configuration components defined below that `portray` was able to determine for the project """ if not ( os.path.isfile(os.path.join(directory, config_file)) or os.path.isfile(os.path.join(directory, "setup.py")) ): raise NoProjectFound(directory) project_config = {**PORTRAY_DEFAULTS, "directory": directory} # type: Dict[str, Any] project_config.update(toml(os.path.join(directory, config_file), **overrides)) project_config.setdefault("modules", [os.path.basename(os.getcwd())]) project_config.setdefault("pdoc3", {}).setdefault("modules", project_config["modules"]) project_config["mkdocs"] = mkdocs(directory, **project_config.get("mkdocs", {})) project_config["pdoc3"] = pdoc3(directory, **project_config.get("pdoc3", {})) return project_config
def project(directory: str, config_file: str, **overrides) -> dict: """Returns back the complete configuration - including all sub configuration components defined below that `portray` was able to determine for the project """ if not ( os.path.isfile(os.path.join(directory, config_file)) or os.path.isfile(os.path.join(directory, "setup.py")) ): raise NoProjectFound(directory) project_config = {**PORTRAY_DEFAULTS, "directory": directory} # type: Dict[str, Any] project_config.update(toml(os.path.join(directory, config_file), **overrides)) project_config.setdefault("modules", [os.path.basename(os.getcwd())]) project_config.setdefault("pdoc3", {}).setdefault("modules", project_config["modules"]) project_config["mkdocs"] = mkdocs(directory, **project_config.get("mkdocs", {})) project_config["pdoc3"] = pdoc3(directory, **project_config.get("pdoc3", {})) return project_config
Python
def pdoc3(config: dict) -> None: """Render this project using the specified pdoc config passed into pdoc. This rendering is from code definition to Markdown so that it will be compatible with MkDocs. """ try: pdoc.cli.main(Namespace(**config)) except TypeError as type_error: if not "show_type_annotations=True" in config["config"]: raise print(type_error) print("WARNING: A type error was thrown. Attempting graceful degradation to no type hints") config["config"].remove("show_type_annotations=True") config["config"].append("show_type_annotations=False") pdoc.cli.main(Namespace(**config))
def pdoc3(config: dict) -> None: """Render this project using the specified pdoc config passed into pdoc. This rendering is from code definition to Markdown so that it will be compatible with MkDocs. """ try: pdoc.cli.main(Namespace(**config)) except TypeError as type_error: if not "show_type_annotations=True" in config["config"]: raise print(type_error) print("WARNING: A type error was thrown. Attempting graceful degradation to no type hints") config["config"].remove("show_type_annotations=True") config["config"].append("show_type_annotations=False") pdoc.cli.main(Namespace(**config))
Python
def documentation_in_temp_folder(config: dict): """Build documentation within a temp folder, returning that folder name before it is deleted.""" with tempfile.TemporaryDirectory() as input_dir: input_dir = os.path.join(input_dir, "input") with tempfile.TemporaryDirectory() as temp_output_dir: shutil.copytree(config["directory"], input_dir) if "output_dir" not in config["pdoc3"]: config["pdoc3"]["output_dir"] = os.path.join(input_dir, "reference") pdoc3(config["pdoc3"]) if "docs_dir" not in config["mkdocs"]: config["mkdocs"]["docs_dir"] = input_dir if "site_dir" not in config["mkdocs"]: config["mkdocs"]["site_dir"] = temp_output_dir if "nav" not in config["mkdocs"]: nav = config["mkdocs"]["nav"] = [] root_docs = sorted(glob(os.path.join(input_dir, "*.md"))) readme_doc = os.path.join(input_dir, "README.md") if readme_doc in root_docs: root_docs.remove(readme_doc) nav.append({"Home": "README.md"}) nav.extend(_doc(doc, input_dir, config) for doc in root_docs) nav.extend( _nested_docs(os.path.join(input_dir, config["docs_dir"]), input_dir, config) ) reference_docs = _nested_docs(config["pdoc3"]["output_dir"], input_dir, config) nav.append({"Reference": reference_docs}) # type: ignore mkdocs(config["mkdocs"]) yield temp_output_dir
def documentation_in_temp_folder(config: dict): """Build documentation within a temp folder, returning that folder name before it is deleted.""" with tempfile.TemporaryDirectory() as input_dir: input_dir = os.path.join(input_dir, "input") with tempfile.TemporaryDirectory() as temp_output_dir: shutil.copytree(config["directory"], input_dir) if "output_dir" not in config["pdoc3"]: config["pdoc3"]["output_dir"] = os.path.join(input_dir, "reference") pdoc3(config["pdoc3"]) if "docs_dir" not in config["mkdocs"]: config["mkdocs"]["docs_dir"] = input_dir if "site_dir" not in config["mkdocs"]: config["mkdocs"]["site_dir"] = temp_output_dir if "nav" not in config["mkdocs"]: nav = config["mkdocs"]["nav"] = [] root_docs = sorted(glob(os.path.join(input_dir, "*.md"))) readme_doc = os.path.join(input_dir, "README.md") if readme_doc in root_docs: root_docs.remove(readme_doc) nav.append({"Home": "README.md"}) nav.extend(_doc(doc, input_dir, config) for doc in root_docs) nav.extend( _nested_docs(os.path.join(input_dir, config["docs_dir"]), input_dir, config) ) reference_docs = _nested_docs(config["pdoc3"]["output_dir"], input_dir, config) nav.append({"Reference": reference_docs}) # type: ignore mkdocs(config["mkdocs"]) yield temp_output_dir
Python
def _is_format_endpoint(self, pattern): """ Exclude endpoints with a "format" parameter """ return '?P<format>' in pattern._regex
def _is_format_endpoint(self, pattern): """ Exclude endpoints with a "format" parameter """ return '?P<format>' in pattern._regex
Python
def _set_cor_per_frame(self): """ Locate the index for the current frame/slice being processed. Set the centre of rotation (cor) for the current frame. """ if isinstance(self.center, list) or \ isinstance(self.center, np.ndarray): count = self.get_process_frames_counter() current_idx = self.get_global_frame_index()[count] self.frame_center = self.center[current_idx] else: self.frame_center = self.center
def _set_cor_per_frame(self): """ Locate the index for the current frame/slice being processed. Set the centre of rotation (cor) for the current frame. """ if isinstance(self.center, list) or \ isinstance(self.center, np.ndarray): count = self.get_process_frames_counter() current_idx = self.get_global_frame_index()[count] self.frame_center = self.center[current_idx] else: self.frame_center = self.center
Python
def _calculate_overlap(self): """ Use the centre of rotation for the current frame to calculate the overlap and shift values. """ if (self.frame_center <= 0) or (self.frame_center > self.width): self.frame_center = self.mid_width center_int = np.int16(np.floor(self.frame_center)) self.subpixel_shift = self.frame_center - center_int if self.frame_center < self.mid_width: self.overlap = 2 * center_int self.cor = self.width + center_int else: self.overlap = 2 * (self.width - center_int) self.cor = center_int list_wedge = np.linspace(1.0, 0.0, self.overlap) self.mat_wedge_left[:, -self.overlap:] = np.float32(list_wedge) self.mat_wedge_right = np.fliplr(self.mat_wedge_left)
def _calculate_overlap(self): """ Use the centre of rotation for the current frame to calculate the overlap and shift values. """ if (self.frame_center <= 0) or (self.frame_center > self.width): self.frame_center = self.mid_width center_int = np.int16(np.floor(self.frame_center)) self.subpixel_shift = self.frame_center - center_int if self.frame_center < self.mid_width: self.overlap = 2 * center_int self.cor = self.width + center_int else: self.overlap = 2 * (self.width - center_int) self.cor = center_int list_wedge = np.linspace(1.0, 0.0, self.overlap) self.mat_wedge_left[:, -self.overlap:] = np.float32(list_wedge) self.mat_wedge_right = np.fliplr(self.mat_wedge_left)
Python
def search_overlap(self, mat1, mat2, win_width, side, denoise=True, norm=False, use_overlap=False): """ Calculate the correlation metrics between a rectangular region, defined by the window width, on the utmost left/right side of image 2 and the same size region in image 1 where the region is slided across image 1. Parameters ---------- mat1 : array_like 2D array. Projection image or sinogram image. mat2 : array_like 2D array. Projection image or sinogram image. win_width : int Width of the searching window. side : {0, 1} Only two options: 0 or 1. It is used to indicate the overlap side respects to image 1. "0" corresponds to the left side. "1" corresponds to the right side. denoise : bool, optional Apply the Gaussian filter if True. norm : bool, optional Apply the normalization if True. use_overlap : bool, optional Use the combination of images in the overlap area for calculating correlation coefficients if True. Returns ------- list_metric : array_like 1D array. List of the correlation metrics. offset : int Initial position of the searching window where the position corresponds to the center of the window. """ if denoise is True: mat1 = ndi.gaussian_filter(mat1, (2, 2), mode='reflect') mat2 = ndi.gaussian_filter(mat2, (2, 2), mode='reflect') (nrow1, ncol1) = mat1.shape (nrow2, ncol2) = mat2.shape if nrow1 != nrow2: raise ValueError("Two images are not at the same height!!!") win_width = np.int16(np.clip(win_width, 6, min(ncol1, ncol2) // 2 - 1)) offset = win_width // 2 win_width = 2 * offset # Make it even ramp_down = np.linspace(1.0, 0.0, win_width) ramp_up = 1.0 - ramp_down wei_down = np.tile(ramp_down, (nrow1, 1)) wei_up = np.tile(ramp_up, (nrow1, 1)) if side == 1: mat2_roi = mat2[:, 0:win_width] mat2_roi_wei = mat2_roi * wei_up else: mat2_roi = mat2[:, ncol2 - win_width:] mat2_roi_wei = mat2_roi * wei_down list_mean2 = np.mean(np.abs(mat2_roi), axis=1) list_pos = np.arange(offset, ncol1 - offset) num_metric = len(list_pos) list_metric = np.ones(num_metric, dtype=np.float32) for i, pos in enumerate(list_pos): mat1_roi = mat1[:, pos - offset:pos + offset] if use_overlap is True: if side == 1: mat1_roi_wei = mat1_roi * wei_down else: mat1_roi_wei = mat1_roi * wei_up if norm is True: list_mean1 = np.mean(np.abs(mat1_roi), axis=1) list_fact = list_mean2 / list_mean1 mat_fact = np.transpose(np.tile(list_fact, (win_width, 1))) mat1_roi = mat1_roi * mat_fact if use_overlap is True: mat1_roi_wei = mat1_roi_wei * mat_fact if use_overlap is True: mat_comb = mat1_roi_wei + mat2_roi_wei list_metric[i] = (self.correlation_metric(mat1_roi, mat2_roi) + self.correlation_metric(mat1_roi, mat_comb) + self.correlation_metric(mat2_roi, mat_comb)) / 3.0 else: list_metric[i] = self.correlation_metric(mat1_roi, mat2_roi) min_metric = np.min(list_metric) if min_metric != 0.0: list_metric = list_metric / min_metric return list_metric, offset
def search_overlap(self, mat1, mat2, win_width, side, denoise=True, norm=False, use_overlap=False): """ Calculate the correlation metrics between a rectangular region, defined by the window width, on the utmost left/right side of image 2 and the same size region in image 1 where the region is slided across image 1. Parameters ---------- mat1 : array_like 2D array. Projection image or sinogram image. mat2 : array_like 2D array. Projection image or sinogram image. win_width : int Width of the searching window. side : {0, 1} Only two options: 0 or 1. It is used to indicate the overlap side respects to image 1. "0" corresponds to the left side. "1" corresponds to the right side. denoise : bool, optional Apply the Gaussian filter if True. norm : bool, optional Apply the normalization if True. use_overlap : bool, optional Use the combination of images in the overlap area for calculating correlation coefficients if True. Returns ------- list_metric : array_like 1D array. List of the correlation metrics. offset : int Initial position of the searching window where the position corresponds to the center of the window. """ if denoise is True: mat1 = ndi.gaussian_filter(mat1, (2, 2), mode='reflect') mat2 = ndi.gaussian_filter(mat2, (2, 2), mode='reflect') (nrow1, ncol1) = mat1.shape (nrow2, ncol2) = mat2.shape if nrow1 != nrow2: raise ValueError("Two images are not at the same height!!!") win_width = np.int16(np.clip(win_width, 6, min(ncol1, ncol2) // 2 - 1)) offset = win_width // 2 win_width = 2 * offset # Make it even ramp_down = np.linspace(1.0, 0.0, win_width) ramp_up = 1.0 - ramp_down wei_down = np.tile(ramp_down, (nrow1, 1)) wei_up = np.tile(ramp_up, (nrow1, 1)) if side == 1: mat2_roi = mat2[:, 0:win_width] mat2_roi_wei = mat2_roi * wei_up else: mat2_roi = mat2[:, ncol2 - win_width:] mat2_roi_wei = mat2_roi * wei_down list_mean2 = np.mean(np.abs(mat2_roi), axis=1) list_pos = np.arange(offset, ncol1 - offset) num_metric = len(list_pos) list_metric = np.ones(num_metric, dtype=np.float32) for i, pos in enumerate(list_pos): mat1_roi = mat1[:, pos - offset:pos + offset] if use_overlap is True: if side == 1: mat1_roi_wei = mat1_roi * wei_down else: mat1_roi_wei = mat1_roi * wei_up if norm is True: list_mean1 = np.mean(np.abs(mat1_roi), axis=1) list_fact = list_mean2 / list_mean1 mat_fact = np.transpose(np.tile(list_fact, (win_width, 1))) mat1_roi = mat1_roi * mat_fact if use_overlap is True: mat1_roi_wei = mat1_roi_wei * mat_fact if use_overlap is True: mat_comb = mat1_roi_wei + mat2_roi_wei list_metric[i] = (self.correlation_metric(mat1_roi, mat2_roi) + self.correlation_metric(mat1_roi, mat_comb) + self.correlation_metric(mat2_roi, mat_comb)) / 3.0 else: list_metric[i] = self.correlation_metric(mat1_roi, mat2_roi) min_metric = np.min(list_metric) if min_metric != 0.0: list_metric = list_metric / min_metric return list_metric, offset
Python
def calculate_curvature(self, list_metric): """ Calculate the curvature of a fitted curve going through the minimum value of a metric list. Parameters ---------- list_metric : array_like 1D array. List of metrics. Returns ------- curvature : float Quadratic coefficient of the parabola fitting. min_pos : float Position of the minimum value with sub-pixel accuracy. """ radi = 2 num_metric = len(list_metric) min_pos = np.clip( np.argmin(list_metric), radi, num_metric - radi - 1) list1 = list_metric[min_pos - radi:min_pos + radi + 1] (afact1, _, _) = np.polyfit(np.arange(0, 2 * radi + 1), list1, 2) list2 = list_metric[min_pos - 1:min_pos + 2] (afact2, bfact2, _) = np.polyfit( np.arange(min_pos - 1, min_pos + 2), list2, 2) curvature = np.abs(afact1) if afact2 != 0.0: num = - bfact2 / (2 * afact2) if (num >= min_pos - 1) and (num <= min_pos + 1): min_pos = num return curvature, np.float32(min_pos)
def calculate_curvature(self, list_metric): """ Calculate the curvature of a fitted curve going through the minimum value of a metric list. Parameters ---------- list_metric : array_like 1D array. List of metrics. Returns ------- curvature : float Quadratic coefficient of the parabola fitting. min_pos : float Position of the minimum value with sub-pixel accuracy. """ radi = 2 num_metric = len(list_metric) min_pos = np.clip( np.argmin(list_metric), radi, num_metric - radi - 1) list1 = list_metric[min_pos - radi:min_pos + radi + 1] (afact1, _, _) = np.polyfit(np.arange(0, 2 * radi + 1), list1, 2) list2 = list_metric[min_pos - 1:min_pos + 2] (afact2, bfact2, _) = np.polyfit( np.arange(min_pos - 1, min_pos + 2), list2, 2) curvature = np.abs(afact1) if afact2 != 0.0: num = - bfact2 / (2 * afact2) if (num >= min_pos - 1) and (num <= min_pos + 1): min_pos = num return curvature, np.float32(min_pos)
Python
def _link_nexus_file(self, data_obj, name, plugin_list): """Link phantom + synthetic projection data h5 files to a single nexus file containing both.""" if name == 'phantom': data_obj.exp.meta_data.set(['group_name', 'phantom'], 'phantom') data_obj.exp.meta_data.set(['link_type', 'phantom'], 'final_result') data_obj.meta_data.set(["meta_data", "PLACEHOLDER", "VOLUME_XZ"], [10]) else: data_obj.exp.meta_data.set(['group_name', 'synth_proj_data'], 'entry1/tomo_entry/data') data_obj.exp.meta_data.set(['link_type', 'synth_proj_data'], 'entry1') self._populate_nexus_file(data_obj) self._link_datafile_to_nexus_file(data_obj)
def _link_nexus_file(self, data_obj, name, plugin_list): """Link phantom + synthetic projection data h5 files to a single nexus file containing both.""" if name == 'phantom': data_obj.exp.meta_data.set(['group_name', 'phantom'], 'phantom') data_obj.exp.meta_data.set(['link_type', 'phantom'], 'final_result') data_obj.meta_data.set(["meta_data", "PLACEHOLDER", "VOLUME_XZ"], [10]) else: data_obj.exp.meta_data.set(['group_name', 'synth_proj_data'], 'entry1/tomo_entry/data') data_obj.exp.meta_data.set(['link_type', 'synth_proj_data'], 'entry1') self._populate_nexus_file(data_obj) self._link_datafile_to_nexus_file(data_obj)
Python
def choices_from_queryset(queryset): """ Makes choices from a QuerySet in a format that is usable by the django.forms.widget.Select widget. queryset: An instance of django.db.models.query.QuerySet """ return chain( [EMPTY_CHOICE], [(o.pk, str(o)) for o in queryset], )
def choices_from_queryset(queryset): """ Makes choices from a QuerySet in a format that is usable by the django.forms.widget.Select widget. queryset: An instance of django.db.models.query.QuerySet """ return chain( [EMPTY_CHOICE], [(o.pk, str(o)) for o in queryset], )
Python
def choices_from_instance(instance, widget): """ Builds choices from a model instance using the widgets queryset() method. If any of the widgets trigger_field fields is not defined on the instance or the instance itself is None, None is returned. instance: An instance of the model used on the current admin page. widget: A widget instance given to the FlexSelectWidget. """ try: for trigger_field in widget.trigger_fields: getattr(instance, trigger_field) except (ObjectDoesNotExist, AttributeError): return [('', widget.empty_choices_text(instance))] return choices_from_queryset(widget.queryset(instance))
def choices_from_instance(instance, widget): """ Builds choices from a model instance using the widgets queryset() method. If any of the widgets trigger_field fields is not defined on the instance or the instance itself is None, None is returned. instance: An instance of the model used on the current admin page. widget: A widget instance given to the FlexSelectWidget. """ try: for trigger_field in widget.trigger_fields: getattr(instance, trigger_field) except (ObjectDoesNotExist, AttributeError): return [('', widget.empty_choices_text(instance))] return choices_from_queryset(widget.queryset(instance))
Python
def details_from_instance(instance, widget): """ Builds html from a model instance using the widgets details() method. If any of the widgets trigger_field fields is not defined on the instance or the instance itself is None, None is returned. instance: An instance of the model used on the current admin page. widget: A widget instance given to the FlexSelectWidget. """ try: for trigger_field in widget.trigger_fields: getattr(instance, trigger_field) related_instance = getattr(instance, widget.base_field.name) except (ObjectDoesNotExist, AttributeError): return '' return widget.details(related_instance, instance)
def details_from_instance(instance, widget): """ Builds html from a model instance using the widgets details() method. If any of the widgets trigger_field fields is not defined on the instance or the instance itself is None, None is returned. instance: An instance of the model used on the current admin page. widget: A widget instance given to the FlexSelectWidget. """ try: for trigger_field in widget.trigger_fields: getattr(instance, trigger_field) related_instance = getattr(instance, widget.base_field.name) except (ObjectDoesNotExist, AttributeError): return '' return widget.details(related_instance, instance)
Python
def instance_from_request(request, widget): """ Returns a partial instance of the widgets model loading it with values from a POST request. """ items = dict(request.POST.items()) values = {} for f in widget.base_field.model._meta.fields: if f.name in items: try: value = f.formfield().to_python(items[f.name]) if value is not None: values[f.name] = value except ValidationError: pass return widget.base_field.model(**values)
def instance_from_request(request, widget): """ Returns a partial instance of the widgets model loading it with values from a POST request. """ items = dict(request.POST.items()) values = {} for f in widget.base_field.model._meta.fields: if f.name in items: try: value = f.formfield().to_python(items[f.name]) if value is not None: values[f.name] = value except ValidationError: pass return widget.base_field.model(**values)
Python
def _hashed_name(self): """ Each widget will be unique by the name of the field and the class name of the model admin. """ salted_string = "".join([ settings.SECRET_KEY, self.base_field.name, self.modeladmin.__class__.__name__, ]).encode('utf-8') return "_%s" % hashlib.sha1(salted_string).hexdigest()
def _hashed_name(self): """ Each widget will be unique by the name of the field and the class name of the model admin. """ salted_string = "".join([ settings.SECRET_KEY, self.base_field.name, self.modeladmin.__class__.__name__, ]).encode('utf-8') return "_%s" % hashlib.sha1(salted_string).hexdigest()
Python
def _get_instance(self): """ Returns a model instance from the url in the admin page. """ if self.request.method == 'POST': return instance_from_request(self.request, self) else: try: path = self.request.META['PATH_INFO'].strip('/') object_id = int(path.split('/').pop()) return self.modeladmin.get_object(self.request, object_id) except ValueError: return None
def _get_instance(self): """ Returns a model instance from the url in the admin page. """ if self.request.method == 'POST': return instance_from_request(self.request, self) else: try: path = self.request.META['PATH_INFO'].strip('/') object_id = int(path.split('/').pop()) return self.modeladmin.get_object(self.request, object_id) except ValueError: return None
Python
def _build_js(self): """ Adds the widgets hashed_name as the key with an array of its trigger_fields as the value to flexselect.selects. """ return """\ <script> var flexselect = flexselect || {}; flexselect.fields = flexselect.fields || {}; flexselect.fields.%s = %s; </script>""" % ( self.hashed_name, json.dumps({ 'base_field': self.base_field.name, 'trigger_fields': self.trigger_fields, }) )
def _build_js(self): """ Adds the widgets hashed_name as the key with an array of its trigger_fields as the value to flexselect.selects. """ return """\ <script> var flexselect = flexselect || {}; flexselect.fields = flexselect.fields || {}; flexselect.fields.%s = %s; </script>""" % ( self.hashed_name, json.dumps({ 'base_field': self.base_field.name, 'trigger_fields': self.trigger_fields, }) )
Python
def render(self, name, value, attrs=None, choices=(), *args, **kwargs): """ Overrides. Reduces the choices by calling the widgets queryset() method and adds a details <span> that is filled with the widgets details() method. """ instance = self._get_instance() self.choices = choices_from_instance(instance, self) html = [] html.append(super(FlexSelectWidget, self).render( name, value, attrs=attrs, *args, **kwargs )) html.append(self._build_js()) html.append('<span class="flexselect_details">') html.append(details_from_instance(instance, self)) html.append('</span>') return mark_safe("".join(html))
def render(self, name, value, attrs=None, choices=(), *args, **kwargs): """ Overrides. Reduces the choices by calling the widgets queryset() method and adds a details <span> that is filled with the widgets details() method. """ instance = self._get_instance() self.choices = choices_from_instance(instance, self) html = [] html.append(super(FlexSelectWidget, self).render( name, value, attrs=attrs, *args, **kwargs )) html.append(self._build_js()) html.append('<span class="flexselect_details">') html.append(details_from_instance(instance, self)) html.append('</span>') return mark_safe("".join(html))
Python
def clean(self): """ Make sure that the company for client is the same as the company for the company contact person. """ if not self.client.company == self.company_contact_person.company: raise ValidationError('The clients and the contacts company does' ' not match.')
def clean(self): """ Make sure that the company for client is the same as the company for the company contact person. """ if not self.client.company == self.company_contact_person.company: raise ValidationError('The clients and the contacts company does' ' not match.')
Python
def details(self, base_field_instance, instance): """ HTML appended to the base_field. - base_field_instance: An instance of the field that this widget is applied to. - instance: A partial instance of the parent model loaded from the request. Returns a unicoded string. """ return """\ <div> <dl> <dt>%s</dt><dd>%s</dd> <dt>%s</dt><dd>%s</dd> </dl> </div> """ % ('Company', base_field_instance.company, 'Email', base_field_instance.email,)
def details(self, base_field_instance, instance): """ HTML appended to the base_field. - base_field_instance: An instance of the field that this widget is applied to. - instance: A partial instance of the parent model loaded from the request. Returns a unicoded string. """ return """\ <div> <dl> <dt>%s</dt><dd>%s</dd> <dt>%s</dt><dd>%s</dd> </dl> </div> """ % ('Company', base_field_instance.company, 'Email', base_field_instance.email,)
Python
def queryset(self, instance): """ Returns the QuerySet populating the base field. If either of the trigger_fields is None, this function will not be called. - instance: A partial instance of the parent model loaded from the request. """ company = instance.client.company return CompanyContactPerson.objects.filter(company=company)
def queryset(self, instance): """ Returns the QuerySet populating the base field. If either of the trigger_fields is None, this function will not be called. - instance: A partial instance of the parent model loaded from the request. """ company = instance.client.company return CompanyContactPerson.objects.filter(company=company)
Python
def empty_choices_text(self, instance): """ If either of the trigger_fields is None this function will be called to get the text for the empty choice in the select box of the base field. - instance: A partial instance of the parent model loaded from the request. """ return "Please update the client field"
def empty_choices_text(self, instance): """ If either of the trigger_fields is None this function will be called to get the text for the empty choice in the select box of the base field. - instance: A partial instance of the parent model loaded from the request. """ return "Please update the client field"
Python
def formfield_for_foreignkey(self, db_field, request, **kwargs): """ Alters the widget displayed for the base field. """ if db_field.name == "company_contact_person": kwargs['widget'] = CompanyContactPersonWidget( base_field=db_field, modeladmin=self, request=request, ) kwargs['label'] = 'Contact' return super(CaseAdmin, self).\ formfield_for_foreignkey(db_field, request, **kwargs)
def formfield_for_foreignkey(self, db_field, request, **kwargs): """ Alters the widget displayed for the base field. """ if db_field.name == "company_contact_person": kwargs['widget'] = CompanyContactPersonWidget( base_field=db_field, modeladmin=self, request=request, ) kwargs['label'] = 'Contact' return super(CaseAdmin, self).\ formfield_for_foreignkey(db_field, request, **kwargs)
Python
def _get_blobs(im, rois): """Convert an image and RoIs within that image into network inputs.""" blobs = {'data': None, 'rois': None} blobs['data'], im_scale_factors = _get_image_blob(im) if not cfg.TEST.HAS_RPN: blobs['rois'] = _get_rois_blob(rois, im_scale_factors) return blobs, im_scale_factors
def _get_blobs(im, rois): """Convert an image and RoIs within that image into network inputs.""" blobs = {'data': None, 'rois': None} blobs['data'], im_scale_factors = _get_image_blob(im) if not cfg.TEST.HAS_RPN: blobs['rois'] = _get_rois_blob(rois, im_scale_factors) return blobs, im_scale_factors
Python
def im_detect(net, im, boxes=None): """Detect object classes in an image given object proposals. Arguments: net (caffe.Net): Fast R-CNN network to use im (ndarray): color image to test (in BGR order) boxes (ndarray): R x 4 array of object proposals or None (for RPN) Returns: scores (ndarray): R x K array of object class scores (K includes background as object category 0) boxes (ndarray): R x (4*K) array of predicted bounding boxes """ blobs, im_scales = _get_blobs(im, boxes) # When mapping from image ROIs to feature map ROIs, there's some aliasing # (some distinct image ROIs get mapped to the same feature ROI). # Here, we identify duplicate feature ROIs, so we only compute features # on the unique subset. if cfg.DEDUP_BOXES > 0 and not cfg.TEST.HAS_RPN: v = np.array([1, 1e3, 1e6, 1e9, 1e12]) hashes = np.round(blobs['rois'] * cfg.DEDUP_BOXES).dot(v) _, index, inv_index = np.unique(hashes, return_index=True, return_inverse=True) blobs['rois'] = blobs['rois'][index, :] boxes = boxes[index, :] if cfg.TEST.HAS_RPN: im_blob = blobs['data'] blobs['im_info'] = np.array( [[im_blob.shape[2], im_blob.shape[3], im_scales[0]]], dtype=np.float32) # reshape network inputs net.blobs['data'].reshape(*(blobs['data'].shape)) if cfg.TEST.HAS_RPN: net.blobs['im_info'].reshape(*(blobs['im_info'].shape)) else: net.blobs['rois'].reshape(*(blobs['rois'].shape)) # do forward forward_kwargs = {'data': blobs['data'].astype(np.float32, copy=False)} if cfg.TEST.HAS_RPN: forward_kwargs['im_info'] = blobs['im_info'].astype(np.float32, copy=False) else: forward_kwargs['rois'] = blobs['rois'].astype(np.float32, copy=False) blobs_out = net.forward(**forward_kwargs) if cfg.TEST.HAS_RPN: assert len(im_scales) == 1, "Only single-image batch implemented" rois = net.blobs['rois'].data.copy() # unscale back to raw image space boxes = rois[:, 1:5] / im_scales[0] if cfg.TEST.SVM: # use the raw scores before softmax under the assumption they # were trained as linear SVMs scores = net.blobs['cls_score'].data else: # use softmax estimated probabilities scores = blobs_out['cls_prob'] # if cfg.TEST.BBOX_REG: if False: # Apply bounding-box regression deltas box_deltas = blobs_out['bbox_pred'] pred_boxes = bbox_transform_inv(boxes, box_deltas) pred_boxes = clip_boxes(pred_boxes, im.shape) else: # Simply repeat the boxes, once for each class pred_boxes = np.tile(boxes, (1, scores.shape[1])) if cfg.DEDUP_BOXES > 0 and not cfg.TEST.HAS_RPN: # Map scores and predictions back to the original set of boxes scores = scores[inv_index, :] pred_boxes = pred_boxes[inv_index, :] fc7 = None#net.blobs['fc7'].data return None, scores, None, pred_boxes
def im_detect(net, im, boxes=None): """Detect object classes in an image given object proposals. Arguments: net (caffe.Net): Fast R-CNN network to use im (ndarray): color image to test (in BGR order) boxes (ndarray): R x 4 array of object proposals or None (for RPN) Returns: scores (ndarray): R x K array of object class scores (K includes background as object category 0) boxes (ndarray): R x (4*K) array of predicted bounding boxes """ blobs, im_scales = _get_blobs(im, boxes) # When mapping from image ROIs to feature map ROIs, there's some aliasing # (some distinct image ROIs get mapped to the same feature ROI). # Here, we identify duplicate feature ROIs, so we only compute features # on the unique subset. if cfg.DEDUP_BOXES > 0 and not cfg.TEST.HAS_RPN: v = np.array([1, 1e3, 1e6, 1e9, 1e12]) hashes = np.round(blobs['rois'] * cfg.DEDUP_BOXES).dot(v) _, index, inv_index = np.unique(hashes, return_index=True, return_inverse=True) blobs['rois'] = blobs['rois'][index, :] boxes = boxes[index, :] if cfg.TEST.HAS_RPN: im_blob = blobs['data'] blobs['im_info'] = np.array( [[im_blob.shape[2], im_blob.shape[3], im_scales[0]]], dtype=np.float32) # reshape network inputs net.blobs['data'].reshape(*(blobs['data'].shape)) if cfg.TEST.HAS_RPN: net.blobs['im_info'].reshape(*(blobs['im_info'].shape)) else: net.blobs['rois'].reshape(*(blobs['rois'].shape)) # do forward forward_kwargs = {'data': blobs['data'].astype(np.float32, copy=False)} if cfg.TEST.HAS_RPN: forward_kwargs['im_info'] = blobs['im_info'].astype(np.float32, copy=False) else: forward_kwargs['rois'] = blobs['rois'].astype(np.float32, copy=False) blobs_out = net.forward(**forward_kwargs) if cfg.TEST.HAS_RPN: assert len(im_scales) == 1, "Only single-image batch implemented" rois = net.blobs['rois'].data.copy() # unscale back to raw image space boxes = rois[:, 1:5] / im_scales[0] if cfg.TEST.SVM: # use the raw scores before softmax under the assumption they # were trained as linear SVMs scores = net.blobs['cls_score'].data else: # use softmax estimated probabilities scores = blobs_out['cls_prob'] # if cfg.TEST.BBOX_REG: if False: # Apply bounding-box regression deltas box_deltas = blobs_out['bbox_pred'] pred_boxes = bbox_transform_inv(boxes, box_deltas) pred_boxes = clip_boxes(pred_boxes, im.shape) else: # Simply repeat the boxes, once for each class pred_boxes = np.tile(boxes, (1, scores.shape[1])) if cfg.DEDUP_BOXES > 0 and not cfg.TEST.HAS_RPN: # Map scores and predictions back to the original set of boxes scores = scores[inv_index, :] pred_boxes = pred_boxes[inv_index, :] fc7 = None#net.blobs['fc7'].data return None, scores, None, pred_boxes
Python
def forward(self, bottom, top): """Get blobs and copy them into this layer's top blob vector.""" blobs = self.get_minibatch() for blob_name, blob in blobs.iteritems(): top_ind = self._name_to_top_map[blob_name] # Reshape net's input blobs top[top_ind].reshape(*(blob.shape)) # Copy data into net's input blobs top[top_ind].data[...] = blob.astype(np.float32, copy=False)
def forward(self, bottom, top): """Get blobs and copy them into this layer's top blob vector.""" blobs = self.get_minibatch() for blob_name, blob in blobs.iteritems(): top_ind = self._name_to_top_map[blob_name] # Reshape net's input blobs top[top_ind].reshape(*(blob.shape)) # Copy data into net's input blobs top[top_ind].data[...] = blob.astype(np.float32, copy=False)
Python
def demo_orig(net, image_name): """Detect object classes in an image using pre-computed object proposals.""" # Load the demo image im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name) im = cv2.imread(im_file) # Detect all object classes and regress object bounds timer = Timer() timer.tic() im_detect(net, im) im_info = net.blobs['im_info'].data rois = net.blobs['rois'].data rois = rois/net.blobs['im_info'].data[0,2] roi_scores = net.blobs['rois_score'].data attention = net.blobs['attention'].data.squeeze() ind = np.argsort(attention)[::-1] attention = attention[ind] rois_all = np.hstack((rois[:,1:],roi_scores)) rois_all = rois_all[ind] for i in xrange(5): ascore = attention[i] roi = rois_all[i] cv2.rectangle(im,(roi[0],roi[1]),(roi[2],roi[3]),(255,0,0),1) cv2.imshow('im',im) cv2.waitKey(0) timer.toc()
def demo_orig(net, image_name): """Detect object classes in an image using pre-computed object proposals.""" # Load the demo image im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name) im = cv2.imread(im_file) # Detect all object classes and regress object bounds timer = Timer() timer.tic() im_detect(net, im) im_info = net.blobs['im_info'].data rois = net.blobs['rois'].data rois = rois/net.blobs['im_info'].data[0,2] roi_scores = net.blobs['rois_score'].data attention = net.blobs['attention'].data.squeeze() ind = np.argsort(attention)[::-1] attention = attention[ind] rois_all = np.hstack((rois[:,1:],roi_scores)) rois_all = rois_all[ind] for i in xrange(5): ascore = attention[i] roi = rois_all[i] cv2.rectangle(im,(roi[0],roi[1]),(roi[2],roi[3]),(255,0,0),1) cv2.imshow('im',im) cv2.waitKey(0) timer.toc()
Python
def demo(net, image_name): """Detect object classes in an image using pre-computed object proposals.""" # Load the demo image im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name) im = cv2.imread(im_file) # Detect all object classes and regress object bounds timer = Timer() timer.tic() im_detect(net, im) cls_score = net.blobs['cls_score'].data.copy() cls_score_reindexed_caffe= net.blobs['cls_score_reindexed'].data.copy() vatt_caffe = net.blobs['vatt'].data.copy() cls_score_tiled_caffe= net.blobs['cls_score_tiled'].data.copy() cls_score_tiled_transposed_caffe = net.blobs['cls_score_tiled_transposed'].data.copy() vatt_raw_caffe = net.blobs['vatt_raw'].data.copy() attention_caffe = net.blobs['attention'].data.copy() attention_tiled_caffe = net.blobs['attention_tiled'].data.copy() cls_score_tiled_caffe = net.blobs['cls_score_tiled'].data.copy() cls_score_transposed = cls_score.transpose((1,0,2,3)) cls_score_reindexed = cls_score_transposed[15,...] attention = softmax(cls_score_reindexed.squeeze()) rois = net.blobs['rois'].data rois = rois/net.blobs['im_info'].data[0,2] roi_scores = net.blobs['rois_score'].data vatt = np.zeros((rois.shape[0],21,1,1),np.float32) for i in xrange(vatt.shape[0]): vatt[i] += attention[i] * cls_score[i] #vatt = vatt.sum(axis=0) vatt_summed= vatt.sum(axis=0) attention = net.blobs['attention'].data[:,0].squeeze() ind = np.argsort(attention)[::-1] attention = attention[ind] rois_all = np.hstack((rois[:,1:],roi_scores)) rois_all = rois_all[ind] for i in xrange(5): ascore = attention[i] roi = rois_all[i] cv2.rectangle(im,(roi[0],roi[1]),(roi[2],roi[3]),(255,0,0),1) cv2.imshow('im',im) cv2.waitKey(0) timer.toc()
def demo(net, image_name): """Detect object classes in an image using pre-computed object proposals.""" # Load the demo image im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name) im = cv2.imread(im_file) # Detect all object classes and regress object bounds timer = Timer() timer.tic() im_detect(net, im) cls_score = net.blobs['cls_score'].data.copy() cls_score_reindexed_caffe= net.blobs['cls_score_reindexed'].data.copy() vatt_caffe = net.blobs['vatt'].data.copy() cls_score_tiled_caffe= net.blobs['cls_score_tiled'].data.copy() cls_score_tiled_transposed_caffe = net.blobs['cls_score_tiled_transposed'].data.copy() vatt_raw_caffe = net.blobs['vatt_raw'].data.copy() attention_caffe = net.blobs['attention'].data.copy() attention_tiled_caffe = net.blobs['attention_tiled'].data.copy() cls_score_tiled_caffe = net.blobs['cls_score_tiled'].data.copy() cls_score_transposed = cls_score.transpose((1,0,2,3)) cls_score_reindexed = cls_score_transposed[15,...] attention = softmax(cls_score_reindexed.squeeze()) rois = net.blobs['rois'].data rois = rois/net.blobs['im_info'].data[0,2] roi_scores = net.blobs['rois_score'].data vatt = np.zeros((rois.shape[0],21,1,1),np.float32) for i in xrange(vatt.shape[0]): vatt[i] += attention[i] * cls_score[i] #vatt = vatt.sum(axis=0) vatt_summed= vatt.sum(axis=0) attention = net.blobs['attention'].data[:,0].squeeze() ind = np.argsort(attention)[::-1] attention = attention[ind] rois_all = np.hstack((rois[:,1:],roi_scores)) rois_all = rois_all[ind] for i in xrange(5): ascore = attention[i] roi = rois_all[i] cv2.rectangle(im,(roi[0],roi[1]),(roi[2],roi[3]),(255,0,0),1) cv2.imshow('im',im) cv2.waitKey(0) timer.toc()
Python
def forward(self, bottom, top): """Get blobs and copy them into this layer's top blob vector.""" # todo: modify mini_batch blobs = self.get_minibatch() labels = blobs['labels'] sub_boxes = blobs['sub_boxes'] obj_boxes = blobs['obj_boxes'] union_boxes = blobs['union_boxes'] #rlp_labels = blobs['rlp_labels'] top[0].reshape(*blobs['conv_new_1'].shape) top[0].data[...] = blobs['conv_new_1'] top[1].reshape(sub_boxes.shape[0],5,1,1) top[1].data[...] = sub_boxes.reshape((-1,5,1,1)) top[2].reshape(obj_boxes.shape[0],5,1,1) top[2].data[...] = obj_boxes.reshape((-1,5,1,1)) top[3].reshape(union_boxes.shape[0],5,1,1) top[3].data[...] = union_boxes.reshape((-1,5,1,1)) top[4].reshape(labels.shape[0]) top[4].data[...] = labels.astype(np.float32)
def forward(self, bottom, top): """Get blobs and copy them into this layer's top blob vector.""" # todo: modify mini_batch blobs = self.get_minibatch() labels = blobs['labels'] sub_boxes = blobs['sub_boxes'] obj_boxes = blobs['obj_boxes'] union_boxes = blobs['union_boxes'] #rlp_labels = blobs['rlp_labels'] top[0].reshape(*blobs['conv_new_1'].shape) top[0].data[...] = blobs['conv_new_1'] top[1].reshape(sub_boxes.shape[0],5,1,1) top[1].data[...] = sub_boxes.reshape((-1,5,1,1)) top[2].reshape(obj_boxes.shape[0],5,1,1) top[2].data[...] = obj_boxes.reshape((-1,5,1,1)) top[3].reshape(union_boxes.shape[0],5,1,1) top[3].data[...] = union_boxes.reshape((-1,5,1,1)) top[4].reshape(labels.shape[0]) top[4].data[...] = labels.astype(np.float32)
Python
def _shuffle_roidb_inds(self): """Randomly permute the training roidb.""" if cfg.TRAIN.ASPECT_GROUPING: widths = np.array([r['width'] for r in self._roidb]) heights = np.array([r['height'] for r in self._roidb]) horz = (widths >= heights) vert = np.logical_not(horz) horz_inds = np.where(horz)[0] vert_inds = np.where(vert)[0] inds = np.hstack(( np.random.permutation(horz_inds), np.random.permutation(vert_inds))) print inds.shape inds = np.reshape(inds, (-1, 2)) print inds.shape row_perm = np.random.permutation(np.arange(inds.shape[0])) inds = np.reshape(inds[row_perm, :], (-1,)) self._perm = inds else: self._perm = np.random.permutation(np.arange(len(self._roidb))) self._cur = 0
def _shuffle_roidb_inds(self): """Randomly permute the training roidb.""" if cfg.TRAIN.ASPECT_GROUPING: widths = np.array([r['width'] for r in self._roidb]) heights = np.array([r['height'] for r in self._roidb]) horz = (widths >= heights) vert = np.logical_not(horz) horz_inds = np.where(horz)[0] vert_inds = np.where(vert)[0] inds = np.hstack(( np.random.permutation(horz_inds), np.random.permutation(vert_inds))) print inds.shape inds = np.reshape(inds, (-1, 2)) print inds.shape row_perm = np.random.permutation(np.arange(inds.shape[0])) inds = np.reshape(inds[row_perm, :], (-1,)) self._perm = inds else: self._perm = np.random.permutation(np.arange(len(self._roidb))) self._cur = 0
Python
def _get_next_minibatch(self): """Return the blobs to be used for the next minibatch. If cfg.TRAIN.USE_PREFETCH is True, then blobs will be computed in a separate process and made available through self._blob_queue. """ if cfg.TRAIN.USE_PREFETCH: return self._blob_queue.get() else: #db_inds = self._get_next_minibatch_inds() #minibatch_db = [self._roidb[i] for i in db_inds] minibatch_db=[] if 'ilsvrc' in self._roidb[0]['db_name']: while len(minibatch_db)<cfg.TRAIN.IMS_PER_BATCH: if not cfg.TRAIN.USE_PERF_PROB: #uniform distribution c = random.choice(self._roidb_class.keys()) else: #distribution based on performance c = np.random.choice(self._roidb_class.keys(),p=self._p) #print 'grabbing class %i'%c if len(self._roidb_class[c])>0: minibatch_db.append(random.choice(self._roidb_class[c])) else: db_inds = self._get_next_minibatch_inds() minibatch_db = [self._roidb[i] for i in db_inds] return get_minibatch(minibatch_db, self._num_classes)
def _get_next_minibatch(self): """Return the blobs to be used for the next minibatch. If cfg.TRAIN.USE_PREFETCH is True, then blobs will be computed in a separate process and made available through self._blob_queue. """ if cfg.TRAIN.USE_PREFETCH: return self._blob_queue.get() else: #db_inds = self._get_next_minibatch_inds() #minibatch_db = [self._roidb[i] for i in db_inds] minibatch_db=[] if 'ilsvrc' in self._roidb[0]['db_name']: while len(minibatch_db)<cfg.TRAIN.IMS_PER_BATCH: if not cfg.TRAIN.USE_PERF_PROB: #uniform distribution c = random.choice(self._roidb_class.keys()) else: #distribution based on performance c = np.random.choice(self._roidb_class.keys(),p=self._p) #print 'grabbing class %i'%c if len(self._roidb_class[c])>0: minibatch_db.append(random.choice(self._roidb_class[c])) else: db_inds = self._get_next_minibatch_inds() minibatch_db = [self._roidb[i] for i in db_inds] return get_minibatch(minibatch_db, self._num_classes)
Python
def forward(self, bottom, top): """Get blobs and copy them into this layer's top blob vector.""" # todo: modify mini_batch blobs = self.get_minibatch() labels = blobs['labels'] sub_boxes = blobs['sub_boxes'] obj_boxes = blobs['obj_boxes'] top[0].reshape(*blobs['conv_new_1'].shape) top[0].data[...] = blobs['conv_new_1'] top[1].reshape(sub_boxes.shape[0],5,1,1) top[1].data[...] = sub_boxes.reshape((-1,5,1,1)) top[2].reshape(obj_boxes.shape[0],5,1,1) top[2].data[...] = obj_boxes.reshape((-1,5,1,1)) top[3].reshape(*labels.shape) top[3].data[...] = labels
def forward(self, bottom, top): """Get blobs and copy them into this layer's top blob vector.""" # todo: modify mini_batch blobs = self.get_minibatch() labels = blobs['labels'] sub_boxes = blobs['sub_boxes'] obj_boxes = blobs['obj_boxes'] top[0].reshape(*blobs['conv_new_1'].shape) top[0].data[...] = blobs['conv_new_1'] top[1].reshape(sub_boxes.shape[0],5,1,1) top[1].data[...] = sub_boxes.reshape((-1,5,1,1)) top[2].reshape(obj_boxes.shape[0],5,1,1) top[2].data[...] = obj_boxes.reshape((-1,5,1,1)) top[3].reshape(*labels.shape) top[3].data[...] = labels
Python
def run_single(imid): caffe.set_mode_gpu() caffe.set_device(0) m = h5py.File('/home/zawlin/Dropbox/proj/sg_vrd_meta.h5', 'r', 'core') net = caffe.Net('models/sg_vrd/vgg16/faster_rcnn_end2end/test.prototxt', 'output/faster_rcnn_end2end/sg_vrd_2016_train/vgg16_faster_rcnn_iter_80000.caffemodel', caffe.TEST) net2 = caffe.Net('models/sg_vrd/vgg16/faster_rcnn_end2end/test.prototxt', 'output/faster_rcnn_end2end/sg_vrd_2016_train/vgg16_faster_rcnn_finetune_iter_95000.caffemodel', caffe.TEST) # net.name = os.path.splitext(os.path.basename(args.caffemodel))[0] net.name = 'sgvrd' imdb = get_imdb('sg_vrd_2016_test') imdb.competition_mode(0) if not cfg.TEST.HAS_RPN: imdb.set_proposal_method(cfg.TEST.PROPOSAL_METHOD) """Test a Fast R-CNN network on an image database.""" num_images = len(imdb.image_index) # all detections are collected into: # all_boxes[cls][image] = N x 5 array of detections in # (x1, y1, x2, y2, score) all_boxes = [[[] for _ in xrange(num_images)] for _ in xrange(imdb.num_classes)] root = 'data/sg_vrd_2016/Data/sg_test_images/' cnt = 0 fpath = root+imid+'.jpg' im_orig = cv2.imread(fpath) if im_orig == None: print fpath cv2.namedWindow('ctrl') cv2.createTrackbar('t1','ctrl',200,1000,nothing) cv2.createTrackbar('t2','ctrl',200,1000,nothing) dets1 = detect(im_orig,net,0.1,imid,m) dets2 = detect(im_orig,net2,0.1,imid,m) print_text = True while True: im = im_orig.copy() t1 = cv2.getTrackbarPos('t1','ctrl')/1000. t2 = cv2.getTrackbarPos('t2','ctrl')/1000. # t1idx = [] # t2idx = [] t1idx = [2,10] t2idx = [1,9] for i in xrange(len(dets1)): #if t1idx != -1 and t1idx!=i: continue if len(t1idx)>0 and i not in t1idx:continue d = dets1[i] score = d['score'] if score <t1:continue cls_name = d['cls_name']+'.'+str(i) di = [d['x1'],d['y1'],d['x2'],d['y2']] x, y = int(di[0]), int(di[1]) if x < 10: x = 15 if y < 10: y = 15 if print_text: cv2.putText(im, cls_name, (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 1) cv2.rectangle(im, (di[0], di[1]), (di[2], di[3]), (0, 0, 255), 1) #print '%s %f %d %d %d %f\n' % (imid, score, di[0], di[1], di[2], di[3]) for i in xrange(len(dets2)): if len(t2idx)>0 and i not in t2idx:continue d = dets2[i] score = d['score'] if score <t2:continue cls_name = d['cls_name']+'.'+str(i) di = [d['x1'],d['y1'],d['x2'],d['y2']] x, y = int(di[0]), int(di[1]) if x < 10: x = 15 if y < 10: y = 15 if print_text: cv2.putText(im, cls_name, (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 1) cv2.rectangle(im, (di[0], di[1]), (di[2], di[3]), (0, 255, 0), 1) #print '%s %f %d %d %d %f\n' % (imid, score, di[0], di[1], di[2], di[3]) cv2.imshow('im',im) c = cv2.waitKey(100)&0xFF if c == ord('s'): cv2.imwrite('output/results/'+imid+'.jpg',im) print 'written' elif c == ord('b'): print_text=not print_text elif c== ord(' '): break elif c == 27: exit(0)
def run_single(imid): caffe.set_mode_gpu() caffe.set_device(0) m = h5py.File('/home/zawlin/Dropbox/proj/sg_vrd_meta.h5', 'r', 'core') net = caffe.Net('models/sg_vrd/vgg16/faster_rcnn_end2end/test.prototxt', 'output/faster_rcnn_end2end/sg_vrd_2016_train/vgg16_faster_rcnn_iter_80000.caffemodel', caffe.TEST) net2 = caffe.Net('models/sg_vrd/vgg16/faster_rcnn_end2end/test.prototxt', 'output/faster_rcnn_end2end/sg_vrd_2016_train/vgg16_faster_rcnn_finetune_iter_95000.caffemodel', caffe.TEST) # net.name = os.path.splitext(os.path.basename(args.caffemodel))[0] net.name = 'sgvrd' imdb = get_imdb('sg_vrd_2016_test') imdb.competition_mode(0) if not cfg.TEST.HAS_RPN: imdb.set_proposal_method(cfg.TEST.PROPOSAL_METHOD) """Test a Fast R-CNN network on an image database.""" num_images = len(imdb.image_index) # all detections are collected into: # all_boxes[cls][image] = N x 5 array of detections in # (x1, y1, x2, y2, score) all_boxes = [[[] for _ in xrange(num_images)] for _ in xrange(imdb.num_classes)] root = 'data/sg_vrd_2016/Data/sg_test_images/' cnt = 0 fpath = root+imid+'.jpg' im_orig = cv2.imread(fpath) if im_orig == None: print fpath cv2.namedWindow('ctrl') cv2.createTrackbar('t1','ctrl',200,1000,nothing) cv2.createTrackbar('t2','ctrl',200,1000,nothing) dets1 = detect(im_orig,net,0.1,imid,m) dets2 = detect(im_orig,net2,0.1,imid,m) print_text = True while True: im = im_orig.copy() t1 = cv2.getTrackbarPos('t1','ctrl')/1000. t2 = cv2.getTrackbarPos('t2','ctrl')/1000. # t1idx = [] # t2idx = [] t1idx = [2,10] t2idx = [1,9] for i in xrange(len(dets1)): #if t1idx != -1 and t1idx!=i: continue if len(t1idx)>0 and i not in t1idx:continue d = dets1[i] score = d['score'] if score <t1:continue cls_name = d['cls_name']+'.'+str(i) di = [d['x1'],d['y1'],d['x2'],d['y2']] x, y = int(di[0]), int(di[1]) if x < 10: x = 15 if y < 10: y = 15 if print_text: cv2.putText(im, cls_name, (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 1) cv2.rectangle(im, (di[0], di[1]), (di[2], di[3]), (0, 0, 255), 1) #print '%s %f %d %d %d %f\n' % (imid, score, di[0], di[1], di[2], di[3]) for i in xrange(len(dets2)): if len(t2idx)>0 and i not in t2idx:continue d = dets2[i] score = d['score'] if score <t2:continue cls_name = d['cls_name']+'.'+str(i) di = [d['x1'],d['y1'],d['x2'],d['y2']] x, y = int(di[0]), int(di[1]) if x < 10: x = 15 if y < 10: y = 15 if print_text: cv2.putText(im, cls_name, (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 1) cv2.rectangle(im, (di[0], di[1]), (di[2], di[3]), (0, 255, 0), 1) #print '%s %f %d %d %d %f\n' % (imid, score, di[0], di[1], di[2], di[3]) cv2.imshow('im',im) c = cv2.waitKey(100)&0xFF if c == ord('s'): cv2.imwrite('output/results/'+imid+'.jpg',im) print 'written' elif c == ord('b'): print_text=not print_text elif c== ord(' '): break elif c == 27: exit(0)
Python
def forward(self, bottom, top): """Get blobs and copy them into this layer's top blob vector.""" # todo: modify mini_batch blobs = self._get_next_minibatch() labels = blobs['labels'] gt_boxes = blobs['gt_boxes'] im_info = blobs['im_info'] #gt_boxes = gt_boxes #blobs['labels']=blobs['gt_boxes'] #blobs['word_embeddings'] = np.zeros((1,1,1,1),np.float32) #blobs['regression_targets'] = np.zeros((1,20,1,1),np.float32) #for blob_name, blob in blobs.iteritems(): # top_ind = self._name_to_top_map[blob_name] # shape = blob.shape # top[top_ind].reshape(*(blob.shape)) # # Copy data into net's input blobs # top[top_ind].data[...] = blob.astype(np.float32, copy=False) top[0].reshape(*blobs['data'].shape) top[0].data[...] = blobs['data'] gt_boxes = gt_boxes.reshape((gt_boxes.shape[0],gt_boxes.shape[1],1,1)) zeros = np.zeros((gt_boxes.shape[0],1,1, 1), dtype=gt_boxes.dtype) all_rois = np.concatenate((zeros, gt_boxes),axis=1) top[1].reshape(*all_rois.shape) top[1].data[...] = all_rois #labels = np.concatenate((labels,np.array([0,0,0]))) labels = np.unique(labels) labels_v = np.zeros((20)) labels_v[...]=-1 labels_v[labels.astype(np.int32)-1]=1 #labels_v = np.tile(labels_v,labels.shape[0]) labels_v = labels_v.reshape((1,20)) #for i in xrange(labels.shape[0]): # labels_v[i,labels[i]]=1 labels = labels.reshape((labels.shape[0],1,1,1)) #labels[-1,0,0,0]=0 top[2].reshape(*labels.shape) top[2].data[...] = labels top[3].reshape(*labels_v.shape) top[3].data[...] =labels_v
def forward(self, bottom, top): """Get blobs and copy them into this layer's top blob vector.""" # todo: modify mini_batch blobs = self._get_next_minibatch() labels = blobs['labels'] gt_boxes = blobs['gt_boxes'] im_info = blobs['im_info'] #gt_boxes = gt_boxes #blobs['labels']=blobs['gt_boxes'] #blobs['word_embeddings'] = np.zeros((1,1,1,1),np.float32) #blobs['regression_targets'] = np.zeros((1,20,1,1),np.float32) #for blob_name, blob in blobs.iteritems(): # top_ind = self._name_to_top_map[blob_name] # shape = blob.shape # top[top_ind].reshape(*(blob.shape)) # # Copy data into net's input blobs # top[top_ind].data[...] = blob.astype(np.float32, copy=False) top[0].reshape(*blobs['data'].shape) top[0].data[...] = blobs['data'] gt_boxes = gt_boxes.reshape((gt_boxes.shape[0],gt_boxes.shape[1],1,1)) zeros = np.zeros((gt_boxes.shape[0],1,1, 1), dtype=gt_boxes.dtype) all_rois = np.concatenate((zeros, gt_boxes),axis=1) top[1].reshape(*all_rois.shape) top[1].data[...] = all_rois #labels = np.concatenate((labels,np.array([0,0,0]))) labels = np.unique(labels) labels_v = np.zeros((20)) labels_v[...]=-1 labels_v[labels.astype(np.int32)-1]=1 #labels_v = np.tile(labels_v,labels.shape[0]) labels_v = labels_v.reshape((1,20)) #for i in xrange(labels.shape[0]): # labels_v[i,labels[i]]=1 labels = labels.reshape((labels.shape[0],1,1,1)) #labels[-1,0,0,0]=0 top[2].reshape(*labels.shape) top[2].data[...] = labels top[3].reshape(*labels_v.shape) top[3].data[...] =labels_v
Python
def forward(self, bottom, top): """Get blobs and copy them into this layer's top blob vector.""" # todo: modify mini_batch blobs = self.get_minibatch() labels = blobs['labels'] sub_boxes = blobs['sub_boxes'] obj_boxes = blobs['obj_boxes'] rlp_labels = blobs['rlp_labels'] top[0].reshape(*blobs['data'].shape) top[0].data[...] = blobs['data'] top[1].reshape(sub_boxes.shape[0],5,1,1) top[1].data[...] = sub_boxes.reshape((-1,5,1,1)) top[2].reshape(obj_boxes.shape[0],5,1,1) top[2].data[...] = obj_boxes.reshape((-1,5,1,1)) top[3].reshape(labels.shape[0],1) top[3].data[...] = labels.reshape((-1,1)) top[4].reshape(*rlp_labels.shape) top[4].data[...] =rlp_labels
def forward(self, bottom, top): """Get blobs and copy them into this layer's top blob vector.""" # todo: modify mini_batch blobs = self.get_minibatch() labels = blobs['labels'] sub_boxes = blobs['sub_boxes'] obj_boxes = blobs['obj_boxes'] rlp_labels = blobs['rlp_labels'] top[0].reshape(*blobs['data'].shape) top[0].data[...] = blobs['data'] top[1].reshape(sub_boxes.shape[0],5,1,1) top[1].data[...] = sub_boxes.reshape((-1,5,1,1)) top[2].reshape(obj_boxes.shape[0],5,1,1) top[2].data[...] = obj_boxes.reshape((-1,5,1,1)) top[3].reshape(labels.shape[0],1) top[3].data[...] = labels.reshape((-1,1)) top[4].reshape(*rlp_labels.shape) top[4].data[...] =rlp_labels
Python
def im_detect(net, im, boxes=None): """Detect object classes in an image given object proposals. Arguments: net (caffe.Net): Fast R-CNN network to use im (ndarray): color image to test (in BGR order) boxes (ndarray): R x 4 array of object proposals or None (for RPN) Returns: scores (ndarray): R x K array of object class scores (K includes background as object category 0) boxes (ndarray): R x (4*K) array of predicted bounding boxes """ blobs, im_scales = _get_blobs(im, boxes) # When mapping from image ROIs to feature map ROIs, there's some aliasing # (some distinct image ROIs get mapped to the same feature ROI). # Here, we identify duplicate feature ROIs, so we only compute features # on the unique subset. # if cfg.DEDUP_BOXES > 0 and not cfg.TEST.HAS_RPN: # v = np.array([1, 1e3, 1e6, 1e9, 1e12]) # hashes = np.round(blobs['rois'] * cfg.DEDUP_BOXES).dot(v) # _, index, inv_index = np.unique(hashes, return_index=True, # return_inverse=True) # blobs['rois'] = blobs['rois'][index, :] # boxes = boxes[index, :] if cfg.TEST.HAS_RPN: im_blob = blobs['data'] blobs['im_info'] = np.array( [[im_blob.shape[2], im_blob.shape[3], im_scales[0]]], dtype=np.float32) # reshape network inputs net.blobs['data'].reshape(*(blobs['data'].shape)) if cfg.TEST.HAS_RPN: net.blobs['im_info'].reshape(*(blobs['im_info'].shape)) else: net.blobs['rois'].reshape(*(blobs['rois'].shape)) # do forward forward_kwargs = {'data': blobs['data'].astype(np.float32, copy=False)} if cfg.TEST.HAS_RPN: forward_kwargs['im_info'] = blobs['im_info'].astype(np.float32, copy=False) else: forward_kwargs['rois'] = blobs['rois'].astype(np.float32, copy=False) blobs_out = net.forward(**forward_kwargs) if cfg.TEST.HAS_RPN: assert len(im_scales) == 1, "Only single-image batch implemented" rois = net.blobs['rois'].data.copy() # unscale back to raw image space boxes = rois[:, 1:5] / im_scales[0] if cfg.TEST.SVM: # use the raw scores before softmax under the assumption they # were trained as linear SVMs scores = net.blobs['cls_score'].data else: # use softmax estimated probabilities scores = blobs_out['cls_prob'] # if cfg.TEST.BBOX_REG: if False: # Apply bounding-box regression deltas box_deltas = blobs_out['bbox_pred'] pred_boxes = bbox_transform_inv(boxes, box_deltas) pred_boxes = clip_boxes(pred_boxes, im.shape) else: # Simply repeat the boxes, once for each class pred_boxes = np.tile(boxes, (1, scores.shape[1])) # if cfg.DEDUP_BOXES > 0 and not cfg.TEST.HAS_RPN: # # Map scores and predictions back to the original set of boxes # scores = scores[inv_index, :] # pred_boxes = pred_boxes[inv_index, :] fc7 = net.blobs['fc7'].data return net.blobs['cls_score'].data[:, :], scores, fc7, pred_boxes
def im_detect(net, im, boxes=None): """Detect object classes in an image given object proposals. Arguments: net (caffe.Net): Fast R-CNN network to use im (ndarray): color image to test (in BGR order) boxes (ndarray): R x 4 array of object proposals or None (for RPN) Returns: scores (ndarray): R x K array of object class scores (K includes background as object category 0) boxes (ndarray): R x (4*K) array of predicted bounding boxes """ blobs, im_scales = _get_blobs(im, boxes) # When mapping from image ROIs to feature map ROIs, there's some aliasing # (some distinct image ROIs get mapped to the same feature ROI). # Here, we identify duplicate feature ROIs, so we only compute features # on the unique subset. # if cfg.DEDUP_BOXES > 0 and not cfg.TEST.HAS_RPN: # v = np.array([1, 1e3, 1e6, 1e9, 1e12]) # hashes = np.round(blobs['rois'] * cfg.DEDUP_BOXES).dot(v) # _, index, inv_index = np.unique(hashes, return_index=True, # return_inverse=True) # blobs['rois'] = blobs['rois'][index, :] # boxes = boxes[index, :] if cfg.TEST.HAS_RPN: im_blob = blobs['data'] blobs['im_info'] = np.array( [[im_blob.shape[2], im_blob.shape[3], im_scales[0]]], dtype=np.float32) # reshape network inputs net.blobs['data'].reshape(*(blobs['data'].shape)) if cfg.TEST.HAS_RPN: net.blobs['im_info'].reshape(*(blobs['im_info'].shape)) else: net.blobs['rois'].reshape(*(blobs['rois'].shape)) # do forward forward_kwargs = {'data': blobs['data'].astype(np.float32, copy=False)} if cfg.TEST.HAS_RPN: forward_kwargs['im_info'] = blobs['im_info'].astype(np.float32, copy=False) else: forward_kwargs['rois'] = blobs['rois'].astype(np.float32, copy=False) blobs_out = net.forward(**forward_kwargs) if cfg.TEST.HAS_RPN: assert len(im_scales) == 1, "Only single-image batch implemented" rois = net.blobs['rois'].data.copy() # unscale back to raw image space boxes = rois[:, 1:5] / im_scales[0] if cfg.TEST.SVM: # use the raw scores before softmax under the assumption they # were trained as linear SVMs scores = net.blobs['cls_score'].data else: # use softmax estimated probabilities scores = blobs_out['cls_prob'] # if cfg.TEST.BBOX_REG: if False: # Apply bounding-box regression deltas box_deltas = blobs_out['bbox_pred'] pred_boxes = bbox_transform_inv(boxes, box_deltas) pred_boxes = clip_boxes(pred_boxes, im.shape) else: # Simply repeat the boxes, once for each class pred_boxes = np.tile(boxes, (1, scores.shape[1])) # if cfg.DEDUP_BOXES > 0 and not cfg.TEST.HAS_RPN: # # Map scores and predictions back to the original set of boxes # scores = scores[inv_index, :] # pred_boxes = pred_boxes[inv_index, :] fc7 = net.blobs['fc7'].data return net.blobs['cls_score'].data[:, :], scores, fc7, pred_boxes
Python
def prep_jointbox_train(): caffe.set_mode_gpu() caffe.set_device(0) rdata = sio.loadmat('data/meta/vrd/annotation_train.mat', struct_as_record=False,squeeze_me=True) # map im_id to annotation r_annos = {} for i in xrange(len(rdata['annotation_train'])): anno = rdata['annotation_train'][i] im_id = anno.filename.split('.')[0] r_annos[im_id] = anno m = h5py.File('/home/zawlin/Dropbox/proj/sg_vrd_meta.h5', 'r', 'core') net = caffe.Net('models/sg_vrd/vgg16/faster_rcnn_end2end/test_jointbox.prototxt', 'output/faster_rcnn_end2end/sg_vrd_2016_train/vgg16_faster_rcnn_finetune_iter_40000.caffemodel',caffe.TEST) # net.name = os.path.splitext(os.path.basename(args.caffemodel))[0] net.name = 'sgvrd' imdb = get_imdb('sg_vrd_2016_train') imdb.competition_mode(0) cfg.TEST.HAS_RPN=False if not cfg.TEST.HAS_RPN: imdb.set_proposal_method(cfg.TEST.PROPOSAL_METHOD) h5path = 'output/' + imdb.name + '_predicate_exp_train.hdf5' h5f = h5py.File(h5path) """Test a Fast R-CNN network on an image database.""" num_images = len(imdb.image_index) all_boxes = [[[] for _ in xrange(num_images)] for _ in xrange(imdb.num_classes)] root = 'data/sg_vrd_2016/Data/sg_train_images/' _t = {'im_detect': Timer(), 'misc': Timer()} cnt = 0 thresh = .01 for path, subdirs, files in os.walk(root): for name in files: cnt += 1 if cnt %100==0: print cnt im_id = name.split('.')[0] fpath = os.path.join(path, name) im = cv2.imread(fpath) if im == None: print fpath r_anno = r_annos[im_id] sub_boxes = [] obj_boxes = [] joint_boxes = [] boxes_batch = [] b_type = {} b_idx = 0 sub_visual = [] obj_visual = [] joint_visual = [] pre_label = [] if hasattr(r_anno, 'relationship'): if not isinstance(r_anno.relationship, np.ndarray): r_anno.relationship = [r_anno.relationship] for r in xrange(len(r_anno.relationship)): if not hasattr(r_anno.relationship[r], 'phrase'): continue predicate = r_anno.relationship[r].phrase[1] pre_idx = int(str(m['meta/pre/name2idx/' + predicate][...])) pre_label.append(pre_idx) sub_lbl = r_anno.relationship[r].phrase[0] obj_lbl = r_anno.relationship[r].phrase[2] #print sub_lbl,predicate,obj_lbl ymin, ymax, xmin, xmax = r_anno.relationship[r].subBox sub_bbox = [xmin, ymin, xmax, ymax] ymin, ymax, xmin, xmax = r_anno.relationship[r].objBox obj_bbox= [xmin, ymin, xmax, ymax] joint_bbox = [min(sub_bbox[0],obj_bbox[0]), min(sub_bbox[1],obj_bbox[1]),max(sub_bbox[2],obj_bbox[2]),max(sub_bbox[3],obj_bbox[3])] joint_boxes.append(joint_bbox) sub_boxes.append(sub_bbox) obj_boxes.append(obj_bbox) # cv2.rectangle(im,(joint_bbox[0],joint_bbox[1]),(joint_bbox[2],joint_bbox[3]),(255,255,255),4) # cv2.rectangle(im,(sub_bbox[0],sub_bbox[1]),(sub_bbox[2],sub_bbox[3]),(0,0,255),2) # cv2.rectangle(im,(obj_bbox[0],obj_bbox[1]),(obj_bbox[2],obj_bbox[3]),(255,0,0),2) for i in xrange(len(sub_boxes)): boxes_batch.append(sub_boxes[i]) b_type[b_idx]='s' b_idx += 1 for i in xrange(len(obj_boxes)): boxes_batch.append(obj_boxes[i]) b_type[b_idx]='o' b_idx += 1 for i in xrange(len(joint_boxes)): boxes_batch.append(joint_boxes[i]) b_type[b_idx]='j' b_idx += 1 box_proposals = None _t['im_detect'].tic() score_raw, scores, fc7, boxes = im_detect(net, im, np.array(boxes_batch)) for i in xrange(scores.shape[0]): s_idx = np.argmax(scores[i,1:])+1 cls_box=None cls_box = boxes[i, s_idx * 4:(s_idx + 1) * 4] if b_type[i] == 's': sub_visual.append(fc7[i]) if b_type[i] == 'o': obj_visual.append(fc7[i]) if b_type[i] == 'j': joint_visual.append(fc7[i]) # cls_name = str(m['meta/cls/idx2name/' + str(s_idx)][...]) # if b_type[i] == 's': # print str(m['meta/pre/idx2name/'+str(pre_label[i])][...]) # cv2.rectangle(im,(cls_box[0],cls_box[1]),(cls_box[2],cls_box[3]),(255,0,0),2) # cv2.imshow('im',im) _t['im_detect'].toc() _t['misc'].tic() sub_visual= np.array(sub_visual).astype(np.float16) obj_visual= np.array(obj_visual).astype(np.float16) joint_visual= np.array(joint_visual).astype(np.float16) pre_label = np.array(pre_label).astype(np.int32) h5f.create_dataset(im_id + '/sub_visual', dtype='float16', data=sub_visual) h5f.create_dataset(im_id + '/obj_visual', dtype='float16', data=obj_visual) h5f.create_dataset(im_id + '/joint_visual', dtype='float16', data=joint_visual) h5f.create_dataset(im_id + '/pre_label', dtype='float16', data=pre_label) _t['misc'].toc() # rpn_rois = net.blobs['rois'].data # pool5 = net.blobs['pool5'].data # _t['misc'].tic() # cnt += 1 print 'im_detect: {:d} {:.3f}s {:.3f}s' \ .format(cnt, _t['im_detect'].average_time, _t['misc'].average_time)
def prep_jointbox_train(): caffe.set_mode_gpu() caffe.set_device(0) rdata = sio.loadmat('data/meta/vrd/annotation_train.mat', struct_as_record=False,squeeze_me=True) # map im_id to annotation r_annos = {} for i in xrange(len(rdata['annotation_train'])): anno = rdata['annotation_train'][i] im_id = anno.filename.split('.')[0] r_annos[im_id] = anno m = h5py.File('/home/zawlin/Dropbox/proj/sg_vrd_meta.h5', 'r', 'core') net = caffe.Net('models/sg_vrd/vgg16/faster_rcnn_end2end/test_jointbox.prototxt', 'output/faster_rcnn_end2end/sg_vrd_2016_train/vgg16_faster_rcnn_finetune_iter_40000.caffemodel',caffe.TEST) # net.name = os.path.splitext(os.path.basename(args.caffemodel))[0] net.name = 'sgvrd' imdb = get_imdb('sg_vrd_2016_train') imdb.competition_mode(0) cfg.TEST.HAS_RPN=False if not cfg.TEST.HAS_RPN: imdb.set_proposal_method(cfg.TEST.PROPOSAL_METHOD) h5path = 'output/' + imdb.name + '_predicate_exp_train.hdf5' h5f = h5py.File(h5path) """Test a Fast R-CNN network on an image database.""" num_images = len(imdb.image_index) all_boxes = [[[] for _ in xrange(num_images)] for _ in xrange(imdb.num_classes)] root = 'data/sg_vrd_2016/Data/sg_train_images/' _t = {'im_detect': Timer(), 'misc': Timer()} cnt = 0 thresh = .01 for path, subdirs, files in os.walk(root): for name in files: cnt += 1 if cnt %100==0: print cnt im_id = name.split('.')[0] fpath = os.path.join(path, name) im = cv2.imread(fpath) if im == None: print fpath r_anno = r_annos[im_id] sub_boxes = [] obj_boxes = [] joint_boxes = [] boxes_batch = [] b_type = {} b_idx = 0 sub_visual = [] obj_visual = [] joint_visual = [] pre_label = [] if hasattr(r_anno, 'relationship'): if not isinstance(r_anno.relationship, np.ndarray): r_anno.relationship = [r_anno.relationship] for r in xrange(len(r_anno.relationship)): if not hasattr(r_anno.relationship[r], 'phrase'): continue predicate = r_anno.relationship[r].phrase[1] pre_idx = int(str(m['meta/pre/name2idx/' + predicate][...])) pre_label.append(pre_idx) sub_lbl = r_anno.relationship[r].phrase[0] obj_lbl = r_anno.relationship[r].phrase[2] #print sub_lbl,predicate,obj_lbl ymin, ymax, xmin, xmax = r_anno.relationship[r].subBox sub_bbox = [xmin, ymin, xmax, ymax] ymin, ymax, xmin, xmax = r_anno.relationship[r].objBox obj_bbox= [xmin, ymin, xmax, ymax] joint_bbox = [min(sub_bbox[0],obj_bbox[0]), min(sub_bbox[1],obj_bbox[1]),max(sub_bbox[2],obj_bbox[2]),max(sub_bbox[3],obj_bbox[3])] joint_boxes.append(joint_bbox) sub_boxes.append(sub_bbox) obj_boxes.append(obj_bbox) # cv2.rectangle(im,(joint_bbox[0],joint_bbox[1]),(joint_bbox[2],joint_bbox[3]),(255,255,255),4) # cv2.rectangle(im,(sub_bbox[0],sub_bbox[1]),(sub_bbox[2],sub_bbox[3]),(0,0,255),2) # cv2.rectangle(im,(obj_bbox[0],obj_bbox[1]),(obj_bbox[2],obj_bbox[3]),(255,0,0),2) for i in xrange(len(sub_boxes)): boxes_batch.append(sub_boxes[i]) b_type[b_idx]='s' b_idx += 1 for i in xrange(len(obj_boxes)): boxes_batch.append(obj_boxes[i]) b_type[b_idx]='o' b_idx += 1 for i in xrange(len(joint_boxes)): boxes_batch.append(joint_boxes[i]) b_type[b_idx]='j' b_idx += 1 box_proposals = None _t['im_detect'].tic() score_raw, scores, fc7, boxes = im_detect(net, im, np.array(boxes_batch)) for i in xrange(scores.shape[0]): s_idx = np.argmax(scores[i,1:])+1 cls_box=None cls_box = boxes[i, s_idx * 4:(s_idx + 1) * 4] if b_type[i] == 's': sub_visual.append(fc7[i]) if b_type[i] == 'o': obj_visual.append(fc7[i]) if b_type[i] == 'j': joint_visual.append(fc7[i]) # cls_name = str(m['meta/cls/idx2name/' + str(s_idx)][...]) # if b_type[i] == 's': # print str(m['meta/pre/idx2name/'+str(pre_label[i])][...]) # cv2.rectangle(im,(cls_box[0],cls_box[1]),(cls_box[2],cls_box[3]),(255,0,0),2) # cv2.imshow('im',im) _t['im_detect'].toc() _t['misc'].tic() sub_visual= np.array(sub_visual).astype(np.float16) obj_visual= np.array(obj_visual).astype(np.float16) joint_visual= np.array(joint_visual).astype(np.float16) pre_label = np.array(pre_label).astype(np.int32) h5f.create_dataset(im_id + '/sub_visual', dtype='float16', data=sub_visual) h5f.create_dataset(im_id + '/obj_visual', dtype='float16', data=obj_visual) h5f.create_dataset(im_id + '/joint_visual', dtype='float16', data=joint_visual) h5f.create_dataset(im_id + '/pre_label', dtype='float16', data=pre_label) _t['misc'].toc() # rpn_rois = net.blobs['rois'].data # pool5 = net.blobs['pool5'].data # _t['misc'].tic() # cnt += 1 print 'im_detect: {:d} {:.3f}s {:.3f}s' \ .format(cnt, _t['im_detect'].average_time, _t['misc'].average_time)
Python
def insert_srv6_header(pkt, sid_list): """Applies SRv6 insert transformation to the given packet. """ # Set IPv6 dst to first SID... pkt[IPv6].dst = sid_list[0] # Insert SRv6 header between IPv6 header and payload sid_len = len(sid_list) srv6_hdr = IPv6ExtHdrSegmentRouting( nh=pkt[IPv6].nh, addresses=sid_list[::-1], len=sid_len * 2, segleft=sid_len - 1, lastentry=sid_len - 1) pkt[IPv6].nh = 43 # next IPv6 header is SR header pkt[IPv6].payload = srv6_hdr / pkt[IPv6].payload return pkt
def insert_srv6_header(pkt, sid_list): """Applies SRv6 insert transformation to the given packet. """ # Set IPv6 dst to first SID... pkt[IPv6].dst = sid_list[0] # Insert SRv6 header between IPv6 header and payload sid_len = len(sid_list) srv6_hdr = IPv6ExtHdrSegmentRouting( nh=pkt[IPv6].nh, addresses=sid_list[::-1], len=sid_len * 2, segleft=sid_len - 1, lastentry=sid_len - 1) pkt[IPv6].nh = 43 # next IPv6 header is SR header pkt[IPv6].payload = srv6_hdr / pkt[IPv6].payload return pkt
Python
def pop_srv6_header(pkt): """Removes SRv6 header from the given packet. """ pkt[IPv6].nh = pkt[IPv6ExtHdrSegmentRouting].nh pkt[IPv6].payload = pkt[IPv6ExtHdrSegmentRouting].payload
def pop_srv6_header(pkt): """Removes SRv6 header from the given packet. """ pkt[IPv6].nh = pkt[IPv6ExtHdrSegmentRouting].nh pkt[IPv6].payload = pkt[IPv6ExtHdrSegmentRouting].payload
Python
def generate_min_card_cost_arrangement(self): """Generate a ensemble with minimum cost_cards_only takes entries with lowest index. Assumes cards are sorted by price in ascending order""" return [np.argmin(np.sum(np.array(e),1)) for e in self.ensembles]
def generate_min_card_cost_arrangement(self): """Generate a ensemble with minimum cost_cards_only takes entries with lowest index. Assumes cards are sorted by price in ascending order""" return [np.argmin(np.sum(np.array(e),1)) for e in self.ensembles]