language
stringclasses 6
values | original_string
stringlengths 25
887k
| text
stringlengths 25
887k
|
---|---|---|
Python | def _MAD(array, weights=None):
'''
Compute the mean absolute deviation of a 1-d array
Args:
array: A 1-d array or list
weights: weights corresponding to each element of the
array
Returns:
the weighted mean absolute deviation of the 1-d array
'''
mean = np.mean(array)
# mean absolute deviation
return np.average(np.abs(np.subtract(array, mean)), weights=weights) | def _MAD(array, weights=None):
'''
Compute the mean absolute deviation of a 1-d array
Args:
array: A 1-d array or list
weights: weights corresponding to each element of the
array
Returns:
the weighted mean absolute deviation of the 1-d array
'''
mean = np.mean(array)
# mean absolute deviation
return np.average(np.abs(np.subtract(array, mean)), weights=weights) |
Python | def _get_all_nearest_neighbors(method, crystal):
'''
Get the nearest neighbor list of a structure
Args:
method: method used to compute nearest_neighbors
crystal: pymatgen structure
Returns:
nearest neighbors
'''
# check that the passed crystal is a pymatgen structure object
if isinstance(crystal, Structure):
# make the structure an immutable object
crystal = IStructure.from_sites(crystal)
# get the voronoi info of the crystal
return method.get_all_nn_info(crystal) | def _get_all_nearest_neighbors(method, crystal):
'''
Get the nearest neighbor list of a structure
Args:
method: method used to compute nearest_neighbors
crystal: pymatgen structure
Returns:
nearest neighbors
'''
# check that the passed crystal is a pymatgen structure object
if isinstance(crystal, Structure):
# make the structure an immutable object
crystal = IStructure.from_sites(crystal)
# get the voronoi info of the crystal
return method.get_all_nn_info(crystal) |
Python | def _get_chemical_descriptors_from_file(elm, weight):
'''
Calls certain elemental properties from the Elements.json file
to use as weighted chemical environment attributes
Args:
elm: a pymatgen element object
weight: a numerical value to be used as a weight for
these attributes
Returns:
an array of chemical environment attributes
'''
# convert the element object to a string for indexing of the json file
elm = str(elm)
# compute the below elemental properties
properties = ['nsvalence', 'npvalence', 'ndvalence', 'nfvalence',
'nsunfill', 'npunfill', 'ndunfill', 'nfunfill',
'first_ion_en']
# the current json file has only 82 elements, some are missing
if elm in ['Pa', 'Ac', 'Pu', 'Np', 'Am', 'Bk', 'Cf', 'Cm', 'Es',
'Fm', 'Lr', 'Md', 'No']:
elm = 'Th'
elif elm in ['Eu', 'Pm']:
elm = 'La'
elif elm in ['Xe', 'Rn']:
elm = 'Kr'
elif elm in ['At']:
elm = 'I'
elif elm in ['Fr']:
elm = 'Cs'
elif elm in ['Ra']:
elm = 'Ba'
# call the elemental specfic dictionary
data = ele_data[elm]
# populate an empty list with the above elemental properties
arr = []
for prop in properties:
# gather the property and multiply by the weight
arr.append(data[prop] * weight)
# items 0-3 correspond to the occupancies of the valence structure
arr += [np.sum(arr[0:4])] # total valence
# items 4-7 correspond to the vacancies of the valence structure
arr += [np.sum(arr[4:8])] # total unfilled
return arr | def _get_chemical_descriptors_from_file(elm, weight):
'''
Calls certain elemental properties from the Elements.json file
to use as weighted chemical environment attributes
Args:
elm: a pymatgen element object
weight: a numerical value to be used as a weight for
these attributes
Returns:
an array of chemical environment attributes
'''
# convert the element object to a string for indexing of the json file
elm = str(elm)
# compute the below elemental properties
properties = ['nsvalence', 'npvalence', 'ndvalence', 'nfvalence',
'nsunfill', 'npunfill', 'ndunfill', 'nfunfill',
'first_ion_en']
# the current json file has only 82 elements, some are missing
if elm in ['Pa', 'Ac', 'Pu', 'Np', 'Am', 'Bk', 'Cf', 'Cm', 'Es',
'Fm', 'Lr', 'Md', 'No']:
elm = 'Th'
elif elm in ['Eu', 'Pm']:
elm = 'La'
elif elm in ['Xe', 'Rn']:
elm = 'Kr'
elif elm in ['At']:
elm = 'I'
elif elm in ['Fr']:
elm = 'Cs'
elif elm in ['Ra']:
elm = 'Ba'
# call the elemental specfic dictionary
data = ele_data[elm]
# populate an empty list with the above elemental properties
arr = []
for prop in properties:
# gather the property and multiply by the weight
arr.append(data[prop] * weight)
# items 0-3 correspond to the occupancies of the valence structure
arr += [np.sum(arr[0:4])] # total valence
# items 4-7 correspond to the vacancies of the valence structure
arr += [np.sum(arr[4:8])] # total unfilled
return arr |
Python | def _get_chemical_descriptors_from_pymatgen(elm, weight):
'''
Calls certain elemental properties from Pymatgen to use
as weighted chemical environment attributes
Args:
elm: a pymatgen element object
weight: a numerical value to be used as a weight
for these attributes
Returns:
an array of chemical environment attributes
'''
element = elm.data
properties = ['Atomic no', 'Atomic mass', 'row', 'col',
'Mendeleev no', 'Atomic radius']
arr = []
for prop in properties:
if prop == 'row':
arr.append(elm.row * weight)
continue
if prop == 'col':
arr.append(elm.group * weight)
continue
else:
arr.append(element[prop] * weight)
return arr | def _get_chemical_descriptors_from_pymatgen(elm, weight):
'''
Calls certain elemental properties from Pymatgen to use
as weighted chemical environment attributes
Args:
elm: a pymatgen element object
weight: a numerical value to be used as a weight
for these attributes
Returns:
an array of chemical environment attributes
'''
element = elm.data
properties = ['Atomic no', 'Atomic mass', 'row', 'col',
'Mendeleev no', 'Atomic radius']
arr = []
for prop in properties:
if prop == 'row':
arr.append(elm.row * weight)
continue
if prop == 'col':
arr.append(elm.group * weight)
continue
else:
arr.append(element[prop] * weight)
return arr |
Python | def _get_descr(self, elm, weight):
'''
Calls chemical attributes from pymatgen and a json file
Args:
elm: a pymatgen element object
weight: a numerical value to be used as a weight
for these attributes
Returns:
an array of weighted chemical envronment attributes
'''
return (np.hstack((self._get_chemical_descriptors_from_file(elm, weight),
self._get_chemical_descriptors_from_pymatgen(elm, weight)))) | def _get_descr(self, elm, weight):
'''
Calls chemical attributes from pymatgen and a json file
Args:
elm: a pymatgen element object
weight: a numerical value to be used as a weight
for these attributes
Returns:
an array of weighted chemical envronment attributes
'''
return (np.hstack((self._get_chemical_descriptors_from_file(elm, weight),
self._get_chemical_descriptors_from_pymatgen(elm, weight)))) |
Python | def _Get_stats(self, array, weights=None):
'''
Compute the min, max, range, mean, and mean absolute deviation
over a 1-d array
Args:
Array: a 1-d float array
weights: a numerical value to be used as a weight
for the chemical environment attributes
Returns:
the stats described above
'''
return [np.amin(array), np.amax(array), np.ptp(array),
self._weighted_average(array, weights), self._MAD(array, weights)] | def _Get_stats(self, array, weights=None):
'''
Compute the min, max, range, mean, and mean absolute deviation
over a 1-d array
Args:
Array: a 1-d float array
weights: a numerical value to be used as a weight
for the chemical environment attributes
Returns:
the stats described above
'''
return [np.amin(array), np.amax(array), np.ptp(array),
self._weighted_average(array, weights), self._MAD(array, weights)] |
Python | def _compute_polyhedra(self):
'''
Compute the voronoi polyhedron and specie of each atomic site,
format as a tuple (polyhedron, specie), and store those tuples in
a list as an attribute
'''
# call the voronoi object
voronoi = VoronoiNN()
self._polyhedra = [] # declare polyhedra attribute
# populate the attribute with the polyhedron associated with each
# atomic site
for i, _ in enumerate(self._crystal):
self._polyhedra.append((voronoi.get_voronoi_polyhedra(self._crystal, i),
self._crystal[i].specie)) | def _compute_polyhedra(self):
'''
Compute the voronoi polyhedron and specie of each atomic site,
format as a tuple (polyhedron, specie), and store those tuples in
a list as an attribute
'''
# call the voronoi object
voronoi = VoronoiNN()
self._polyhedra = [] # declare polyhedra attribute
# populate the attribute with the polyhedron associated with each
# atomic site
for i, _ in enumerate(self._crystal):
self._polyhedra.append((voronoi.get_voronoi_polyhedra(self._crystal, i),
self._crystal[i].specie)) |
Python | def _check_sanity(self, G_parameters, G_keywords):
"""
Check if any of the parameters in the keywords.
"""
for key, value in G_parameters.items():
if key in G_keywords:
pass
else:
raise NotImplementedError(
f"Unknown parameter: {key}. "\
f"The available parameters are {self.G5_keywords}.") | def _check_sanity(self, G_parameters, G_keywords):
"""
Check if any of the parameters in the keywords.
"""
for key, value in G_parameters.items():
if key in G_keywords:
pass
else:
raise NotImplementedError(
f"Unknown parameter: {key}. "\
f"The available parameters are {self.G5_keywords}.") |
Python | def dcos_dRpq(a, b, c, Ra, Rb, Rc, p, q):
"""
Calculate the derivative of cosine dot product function with respect to
the radius of an atom m in a particular direction l.
Parameters
----------
a: int
Index of the center atom.
b: int
Index of the first neighbor atom.
c: int
Index of the second neighbor atom.
Ra: list of floats
Position of the center atom.
Rb: list of floats
Position of the first atom.
Rc: list of floats
Postition of the second atom.
p: int
Atom that is experiencing force.
q: int
Direction of force. x = 0, y = 1, and z = 2.
Returns
-------
Derivative of cosine dot product w.r.t. the radius of an atom m in a
particular direction l.
"""
Rab_vector = Rb - Ra
Rac_vector = Rc - Ra
Rab = np.linalg.norm(Rab_vector)
Rac = np.linalg.norm(Rac_vector)
f_term = 1 / (Rab * Rac) * \
np.dot(dRab_dRpq_vector(a, b, p, q), Rac_vector)
s_term = 1 / (Rab * Rac) * \
np.dot(Rab_vector, dRab_dRpq_vector(a, c, p, q))
t_term = np.dot(Rab_vector, Rac_vector) / Rab ** 2 / Rac * \
dRab_dRpq(a, b, Ra, Rb, p, q)
fo_term = np.dot(Rab_vector, Rac_vector) / Rab / Rac ** 2 * \
dRab_dRpq(a, c, Ra, Rc, p, q)
return (f_term + s_term - t_term - fo_term) | def dcos_dRpq(a, b, c, Ra, Rb, Rc, p, q):
"""
Calculate the derivative of cosine dot product function with respect to
the radius of an atom m in a particular direction l.
Parameters
----------
a: int
Index of the center atom.
b: int
Index of the first neighbor atom.
c: int
Index of the second neighbor atom.
Ra: list of floats
Position of the center atom.
Rb: list of floats
Position of the first atom.
Rc: list of floats
Postition of the second atom.
p: int
Atom that is experiencing force.
q: int
Direction of force. x = 0, y = 1, and z = 2.
Returns
-------
Derivative of cosine dot product w.r.t. the radius of an atom m in a
particular direction l.
"""
Rab_vector = Rb - Ra
Rac_vector = Rc - Ra
Rab = np.linalg.norm(Rab_vector)
Rac = np.linalg.norm(Rac_vector)
f_term = 1 / (Rab * Rac) * \
np.dot(dRab_dRpq_vector(a, b, p, q), Rac_vector)
s_term = 1 / (Rab * Rac) * \
np.dot(Rab_vector, dRab_dRpq_vector(a, c, p, q))
t_term = np.dot(Rab_vector, Rac_vector) / Rab ** 2 / Rac * \
dRab_dRpq(a, b, Ra, Rb, p, q)
fo_term = np.dot(Rab_vector, Rac_vector) / Rab / Rac ** 2 * \
dRab_dRpq(a, c, Ra, Rc, p, q)
return (f_term + s_term - t_term - fo_term) |
Python | def derivative(self, Rij):
"""
Calculate derivative (dF/dRij) of the Cosine functional with respect
to Rij.
Args:
Rij(float): distance between pair atoms.
Returns:
The derivative (float) of the Cosine functional.
"""
if Rij > self.Rc:
return 0.0
else:
return (-0.5 * np.pi / self.Rc * np.sin(np.pi * Rij / self.Rc)) | def derivative(self, Rij):
"""
Calculate derivative (dF/dRij) of the Cosine functional with respect
to Rij.
Args:
Rij(float): distance between pair atoms.
Returns:
The derivative (float) of the Cosine functional.
"""
if Rij > self.Rc:
return 0.0
else:
return (-0.5 * np.pi / self.Rc * np.sin(np.pi * Rij / self.Rc)) |
Python | def derivative(self, Rij):
"""
Derivative (dF/dRij) of the Polynomial functional with respect to Rij.
Args:
Rij(float): distance between pair atoms.
Returns:
The derivative (float) of the cutoff functional.
"""
if Rij > self.Rc:
return 0.0
else:
ratio = Rij / self.Rc
value = (self.gamma * (self.gamma + 1) / self.Rc) * \
(ratio ** self.gamma - ratio ** (self.gamma - 1))
return value | def derivative(self, Rij):
"""
Derivative (dF/dRij) of the Polynomial functional with respect to Rij.
Args:
Rij(float): distance between pair atoms.
Returns:
The derivative (float) of the cutoff functional.
"""
if Rij > self.Rc:
return 0.0
else:
ratio = Rij / self.Rc
value = (self.gamma * (self.gamma + 1) / self.Rc) * \
(ratio ** self.gamma - ratio ** (self.gamma - 1))
return value |
Python | def derivative(self, Rij):
"""
Calculate derivative (dF/dRij) of the hyperbolic Tangent functional
with respect to Rij.
Args:
Rij(float): distance between pair atoms.
Returns:
The derivative (float) of the hyberbolic tangent functional.
"""
if Rij > self.Rc:
return 0.0
else:
return (-3.0 / self.Rc * ((np.tanh(1.0 - (Rij / self.Rc))) ** 2 - \
(np.tanh(1.0 - (Rij / self.Rc))) ** 4)) | def derivative(self, Rij):
"""
Calculate derivative (dF/dRij) of the hyperbolic Tangent functional
with respect to Rij.
Args:
Rij(float): distance between pair atoms.
Returns:
The derivative (float) of the hyberbolic tangent functional.
"""
if Rij > self.Rc:
return 0.0
else:
return (-3.0 / self.Rc * ((np.tanh(1.0 - (Rij / self.Rc))) ** 2 - \
(np.tanh(1.0 - (Rij / self.Rc))) ** 4)) |
Python | def G1_prime(crystal, i, e_type, ni, functional='Cosine', Rc=6.5, p=1, q=0):
"""
Calculate the derivative of the G1 symmetry function.
Parameters
----------
crystal: object
Pymatgen crystal structure object.
i: int
The index of core element.
e_types: str
The allowed element presents in the symmetry function calculation.
ni: array of neighbors information
Neighbors information of the core element.
functional: str
Cutoff functional. Default is Cosine functional.
Rc: float
Cutoff radius which the symmetry function will be calculated.
Default value is 6.5 as suggested by Behler.
p: int
The atom that the force is acting on.
q: int
Direction of force.
Returns
-------
G1p: float
The derivative of G1 symmetry value.
"""
# Cutoff functional
if functional == 'Cosine':
func = Cosine(Rc=Rc)
elif functional == 'Polynomial':
func = Polynomial(Rc=Rc)
elif functional == 'TangentH':
func = TangentH(Rc=Rc)
else:
raise NotImplementedError('Unknown cutoff functional: %s' %functional)
# Get core atoms information
Ri = crystal.cart_coords[i]
G1p = 0
for count in range(len(ni)):
symbol = ni[count][0].species_string
Rj = ni[count][0]._coords
j = ni[count][2]
if e_type == symbol:
Rij = np.linalg.norm(Rj - Ri)
G1p += func.derivative(Rij) * \
dRab_dRpq(i, j, Ri, Rj, p, q)
return G1p | def G1_prime(crystal, i, e_type, ni, functional='Cosine', Rc=6.5, p=1, q=0):
"""
Calculate the derivative of the G1 symmetry function.
Parameters
----------
crystal: object
Pymatgen crystal structure object.
i: int
The index of core element.
e_types: str
The allowed element presents in the symmetry function calculation.
ni: array of neighbors information
Neighbors information of the core element.
functional: str
Cutoff functional. Default is Cosine functional.
Rc: float
Cutoff radius which the symmetry function will be calculated.
Default value is 6.5 as suggested by Behler.
p: int
The atom that the force is acting on.
q: int
Direction of force.
Returns
-------
G1p: float
The derivative of G1 symmetry value.
"""
# Cutoff functional
if functional == 'Cosine':
func = Cosine(Rc=Rc)
elif functional == 'Polynomial':
func = Polynomial(Rc=Rc)
elif functional == 'TangentH':
func = TangentH(Rc=Rc)
else:
raise NotImplementedError('Unknown cutoff functional: %s' %functional)
# Get core atoms information
Ri = crystal.cart_coords[i]
G1p = 0
for count in range(len(ni)):
symbol = ni[count][0].species_string
Rj = ni[count][0]._coords
j = ni[count][2]
if e_type == symbol:
Rij = np.linalg.norm(Rj - Ri)
G1p += func.derivative(Rij) * \
dRab_dRpq(i, j, Ri, Rj, p, q)
return G1p |
Python | def G2_prime(crystal, i, e_type, ni, functional='Cosine',
Rc=6.5, eta=2, Rs=0.0, p=1, q=0):
"""
Calculate the derivative of the G2 symmetry function.
Parameters
----------
crystal: object
Pymatgen crystal structure object.
i: int
The index of core element.
e_types: str
The allowed element presents in the symmetry function calculation.
ni: array of neighbors information
Neighbors information of the core element.
functional: str
Cutoff functional. Default is Cosine functional.
Rc: float
Cutoff radius which the symmetry function will be calculated.
Default value is 6.5 as suggested by Behler.
eta: float
The parameter of G2 symmetry function.
Rs: float
Determine the shift from the center of the Gaussian.
Default value is zero.
p: int
The atom that the force is acting on.
q: int
Direction of force.
Returns
-------
G2p: float
The derivative of G2 symmetry value.
"""
# Cutoff functional
if functional == 'Cosine':
func = Cosine(Rc=Rc)
elif functional == 'Polynomial':
func = Polynomial(Rc=Rc)
elif functional == 'TangentH':
func = TangentH(Rc=Rc)
else:
raise NotImplementedError('Unknown cutoff functional: %s' %functional)
# Get positions of core atoms
Ri = crystal.cart_coords[i]
G2p = 0
for count in range(len(ni)):
symbol = ni[count][0].species_string
Rj = ni[count][0]._coords
j = ni[count][2]
if e_type == symbol:
dRabdRpq = dRab_dRpq(i, j, Ri, Rj, p, q)
if dRabdRpq != 0:
Rij = np.linalg.norm(Rj - Ri)
G2p += np.exp(-eta * (Rij - Rs)**2. / Rc**2.) * \
dRabdRpq * \
(-2. * eta * (Rij - Rs) * func(Rij) / Rc**2. +
func.derivative(Rij))
return G2p | def G2_prime(crystal, i, e_type, ni, functional='Cosine',
Rc=6.5, eta=2, Rs=0.0, p=1, q=0):
"""
Calculate the derivative of the G2 symmetry function.
Parameters
----------
crystal: object
Pymatgen crystal structure object.
i: int
The index of core element.
e_types: str
The allowed element presents in the symmetry function calculation.
ni: array of neighbors information
Neighbors information of the core element.
functional: str
Cutoff functional. Default is Cosine functional.
Rc: float
Cutoff radius which the symmetry function will be calculated.
Default value is 6.5 as suggested by Behler.
eta: float
The parameter of G2 symmetry function.
Rs: float
Determine the shift from the center of the Gaussian.
Default value is zero.
p: int
The atom that the force is acting on.
q: int
Direction of force.
Returns
-------
G2p: float
The derivative of G2 symmetry value.
"""
# Cutoff functional
if functional == 'Cosine':
func = Cosine(Rc=Rc)
elif functional == 'Polynomial':
func = Polynomial(Rc=Rc)
elif functional == 'TangentH':
func = TangentH(Rc=Rc)
else:
raise NotImplementedError('Unknown cutoff functional: %s' %functional)
# Get positions of core atoms
Ri = crystal.cart_coords[i]
G2p = 0
for count in range(len(ni)):
symbol = ni[count][0].species_string
Rj = ni[count][0]._coords
j = ni[count][2]
if e_type == symbol:
dRabdRpq = dRab_dRpq(i, j, Ri, Rj, p, q)
if dRabdRpq != 0:
Rij = np.linalg.norm(Rj - Ri)
G2p += np.exp(-eta * (Rij - Rs)**2. / Rc**2.) * \
dRabdRpq * \
(-2. * eta * (Rij - Rs) * func(Rij) / Rc**2. +
func.derivative(Rij))
return G2p |
Python | def G3(crystal, i, e_type, functional='Cosine', Rc=6.5, k=10):
"""
Calculate G3 symmetry function.
G3 function is a damped cosine functions with a period length described by
K. For example, a Fourier series expansion a suitable description of the
radial atomic environment can be obtained by comibning several G3
functions with different values for K.
Note: due to the distances of atoms, G3 can cancel each other out depending
on the positive and negative value.
One can refer to equation 7 in:
Behler, J. (2011). Atom-centered symmetry functions for constructing
high-dimensional neural network potentials.
The Journal of chemical physics, 134(7), 074106.
Parameters
----------
crystal: object
Pymatgen crystal structure object.
i: int
The index of core element.
e_type: str
The allowed element presents in the symmetry function calculation.
functional: str
Cutoff functional. Default is Cosine functional.
Rc: float
Cutoff radius which the symmetry function will be calculated.
Default value is 6.5 as suggested by Behler.
k: float
The Kappa value as G3 parameter.
Returns
-------
G3: float
G3 symmetry value.
"""
if functional == 'Cosine':
func = Cosine(Rc=Rc)
elif functional == 'Polynomial':
func = Polynomial(Rc=Rc)
elif functional == 'TangentH':
func = TangentH(Rc=Rc)
else:
raise NotImplementedError('Unknown cutoff functional: %s' %functional)
# Get positions of core atoms
Ri = crystal.cart_coords[i]
# Get neighbors information
neighbors = crystal.get_all_neighbors(Rc)
G3 = 0
for j in range(len(neighbors[i])):
if e_type == neighbors[i][j][0].species_string:
Rj = neighbors[i][j][0]._coords
Rij = np.linalg.norm(Ri - Rj)
G3 += np.cos(k * Rij / Rc) * func(Rij)
return G3 | def G3(crystal, i, e_type, functional='Cosine', Rc=6.5, k=10):
"""
Calculate G3 symmetry function.
G3 function is a damped cosine functions with a period length described by
K. For example, a Fourier series expansion a suitable description of the
radial atomic environment can be obtained by comibning several G3
functions with different values for K.
Note: due to the distances of atoms, G3 can cancel each other out depending
on the positive and negative value.
One can refer to equation 7 in:
Behler, J. (2011). Atom-centered symmetry functions for constructing
high-dimensional neural network potentials.
The Journal of chemical physics, 134(7), 074106.
Parameters
----------
crystal: object
Pymatgen crystal structure object.
i: int
The index of core element.
e_type: str
The allowed element presents in the symmetry function calculation.
functional: str
Cutoff functional. Default is Cosine functional.
Rc: float
Cutoff radius which the symmetry function will be calculated.
Default value is 6.5 as suggested by Behler.
k: float
The Kappa value as G3 parameter.
Returns
-------
G3: float
G3 symmetry value.
"""
if functional == 'Cosine':
func = Cosine(Rc=Rc)
elif functional == 'Polynomial':
func = Polynomial(Rc=Rc)
elif functional == 'TangentH':
func = TangentH(Rc=Rc)
else:
raise NotImplementedError('Unknown cutoff functional: %s' %functional)
# Get positions of core atoms
Ri = crystal.cart_coords[i]
# Get neighbors information
neighbors = crystal.get_all_neighbors(Rc)
G3 = 0
for j in range(len(neighbors[i])):
if e_type == neighbors[i][j][0].species_string:
Rj = neighbors[i][j][0]._coords
Rij = np.linalg.norm(Ri - Rj)
G3 += np.cos(k * Rij / Rc) * func(Rij)
return G3 |
Python | def G3_prime(crystal, i, e_type, ni, functional='Cosine',
Rc=6.5, k=10, p=1, q=0):
"""
Calculate derivative of the G3 symmetry function.
Parameters
----------
crystal: object
Pymatgen crystal structure object.
i: int
The index of core element.
e_types: str
The allowed element presents in the symmetry function calculation.
ni: array of neighbors information
Neighbors information of the core element.
functional: str
Cutoff functional. Default is Cosine functional.
Rc: float
Cutoff radius which the symmetry function will be calculated.
Default value is 6.5 as suggested by Behler.
k: float
The Kappa value as G3 parameter.
p: int
The atom that the force is acting on.
q: int
Direction of force.
Returns
-------
G3p : float
The derivative of G3 symmetry value.
"""
if functional == 'Cosine':
func = Cosine(Rc=Rc)
elif functional == 'Polynomial':
func = Polynomial(Rc=Rc)
elif functional == 'TangentH':
func = TangentH(Rc=Rc)
else:
raise NotImplementedError('Unknown cutoff functional: %s' %functional)
# Get positions of core atoms
Ri = crystal.cart_coords[i]
G3p = 0
for count in range(len(ni)):
Rj = ni[count][0]._coords
symbol = ni[count][0].species_string
j = ni[count][2]
if e_type == symbol:
dRabdRpq = dRab_dRpq(i, j, Ri, Rj, p, q)
if dRabdRpq != 0:
Rij = np.linalg.norm(Rj - Ri)
G3p += (np.cos(k * Rij) * func.derivative(Rij) - \
k * np.sin(k * Rij) * func(Rij)) * \
dRab_dRpq(i, j, Ri, Rj, p, q)
return G3p | def G3_prime(crystal, i, e_type, ni, functional='Cosine',
Rc=6.5, k=10, p=1, q=0):
"""
Calculate derivative of the G3 symmetry function.
Parameters
----------
crystal: object
Pymatgen crystal structure object.
i: int
The index of core element.
e_types: str
The allowed element presents in the symmetry function calculation.
ni: array of neighbors information
Neighbors information of the core element.
functional: str
Cutoff functional. Default is Cosine functional.
Rc: float
Cutoff radius which the symmetry function will be calculated.
Default value is 6.5 as suggested by Behler.
k: float
The Kappa value as G3 parameter.
p: int
The atom that the force is acting on.
q: int
Direction of force.
Returns
-------
G3p : float
The derivative of G3 symmetry value.
"""
if functional == 'Cosine':
func = Cosine(Rc=Rc)
elif functional == 'Polynomial':
func = Polynomial(Rc=Rc)
elif functional == 'TangentH':
func = TangentH(Rc=Rc)
else:
raise NotImplementedError('Unknown cutoff functional: %s' %functional)
# Get positions of core atoms
Ri = crystal.cart_coords[i]
G3p = 0
for count in range(len(ni)):
Rj = ni[count][0]._coords
symbol = ni[count][0].species_string
j = ni[count][2]
if e_type == symbol:
dRabdRpq = dRab_dRpq(i, j, Ri, Rj, p, q)
if dRabdRpq != 0:
Rij = np.linalg.norm(Rj - Ri)
G3p += (np.cos(k * Rij) * func.derivative(Rij) - \
k * np.sin(k * Rij) * func(Rij)) * \
dRab_dRpq(i, j, Ri, Rj, p, q)
return G3p |
Python | def G4(crystal, i, ep_type, functional='Cosine',
Rc=6.5, eta=2, lamBda=1, zeta=1):
"""
Calculate G4 symmetry function.
G4 function is an angular function utilizing the cosine funtion of the
angle theta_ijk centered at atom i.
One can refer to equation 8 in:
Behler, J. (2011). Atom-centered symmetry functions for constructing
high-dimensional neural network potentials.
The Journal of chemical physics, 134(7), 074106.
Parameters
----------
crystal: object
Pymatgen crystal structure object.
i: int
The index of core element.
ep_types: str
The allowed element pair presents in the symmetry function calculation.
functional: str
Cutoff functional. Default is Cosine functional.
Rc: float
Cutoff radius which the symmetry function will be calculated.
Default value is 6.5 as suggested by Behler.
eta: float
The parameter of G4 symmetry function.
lamBda: float
LamBda take values from -1 to +1 shifting the maxima of the cosine
function to 0 to 180 degree.
zeta: float
The angular resolution. Zeta with high values give a narrower range of
the nonzero G4 values. Different zeta values is preferrable for
distribution of angles centered at each reference atom. In some sense,
zeta is illustrated as the eta value.
Returns
-------
G4: float
G4 symmetry value.
"""
# Cutoff functional
if functional == 'Cosine':
func = Cosine(Rc=Rc)
elif functional == 'Polynomial':
func = Polynomial(Rc=Rc)
elif functional == 'TangentH':
func = TangentH(Rc=Rc)
else:
raise NotImplementedError('Unknown cutoff functional: %s' %functional)
# Get core atoms information
Ri = crystal.cart_coords[i]
# Get neighbors information
neighbors = crystal.get_all_neighbors(Rc)
G4 = 0.0
for j in range(len(neighbors[i])-1):
for k in range(j+1, len(neighbors[i])):
n1 = neighbors[i][j][0].species_string
n2 = neighbors[i][k][0].species_string
if (ep_type[0] == n1 and ep_type[1] == n2) or \
(ep_type[1] == n1 and ep_type[0] == n2):
Rj = neighbors[i][j][0].coords
Rk = neighbors[i][k][0].coords
Rij_vector = Rj - Ri
Rij = np.linalg.norm(Rij_vector)
Rik_vector = Rk - Ri
Rik = np.linalg.norm(Rik_vector)
Rjk_vector = Rk - Rj
Rjk = np.linalg.norm(Rjk_vector)
cos_ijk = np.dot(Rij_vector, Rik_vector)/ Rij / Rik
term = (1. + lamBda * cos_ijk) ** zeta
term *= np.exp(-eta *
(Rij ** 2. + Rik ** 2. + Rjk ** 2.) /
Rc ** 2.)
term *= func(Rij) * func(Rik) * func(Rjk)
G4 += term
G4 *= 2. ** (1. - zeta)
return G4 | def G4(crystal, i, ep_type, functional='Cosine',
Rc=6.5, eta=2, lamBda=1, zeta=1):
"""
Calculate G4 symmetry function.
G4 function is an angular function utilizing the cosine funtion of the
angle theta_ijk centered at atom i.
One can refer to equation 8 in:
Behler, J. (2011). Atom-centered symmetry functions for constructing
high-dimensional neural network potentials.
The Journal of chemical physics, 134(7), 074106.
Parameters
----------
crystal: object
Pymatgen crystal structure object.
i: int
The index of core element.
ep_types: str
The allowed element pair presents in the symmetry function calculation.
functional: str
Cutoff functional. Default is Cosine functional.
Rc: float
Cutoff radius which the symmetry function will be calculated.
Default value is 6.5 as suggested by Behler.
eta: float
The parameter of G4 symmetry function.
lamBda: float
LamBda take values from -1 to +1 shifting the maxima of the cosine
function to 0 to 180 degree.
zeta: float
The angular resolution. Zeta with high values give a narrower range of
the nonzero G4 values. Different zeta values is preferrable for
distribution of angles centered at each reference atom. In some sense,
zeta is illustrated as the eta value.
Returns
-------
G4: float
G4 symmetry value.
"""
# Cutoff functional
if functional == 'Cosine':
func = Cosine(Rc=Rc)
elif functional == 'Polynomial':
func = Polynomial(Rc=Rc)
elif functional == 'TangentH':
func = TangentH(Rc=Rc)
else:
raise NotImplementedError('Unknown cutoff functional: %s' %functional)
# Get core atoms information
Ri = crystal.cart_coords[i]
# Get neighbors information
neighbors = crystal.get_all_neighbors(Rc)
G4 = 0.0
for j in range(len(neighbors[i])-1):
for k in range(j+1, len(neighbors[i])):
n1 = neighbors[i][j][0].species_string
n2 = neighbors[i][k][0].species_string
if (ep_type[0] == n1 and ep_type[1] == n2) or \
(ep_type[1] == n1 and ep_type[0] == n2):
Rj = neighbors[i][j][0].coords
Rk = neighbors[i][k][0].coords
Rij_vector = Rj - Ri
Rij = np.linalg.norm(Rij_vector)
Rik_vector = Rk - Ri
Rik = np.linalg.norm(Rik_vector)
Rjk_vector = Rk - Rj
Rjk = np.linalg.norm(Rjk_vector)
cos_ijk = np.dot(Rij_vector, Rik_vector)/ Rij / Rik
term = (1. + lamBda * cos_ijk) ** zeta
term *= np.exp(-eta *
(Rij ** 2. + Rik ** 2. + Rjk ** 2.) /
Rc ** 2.)
term *= func(Rij) * func(Rik) * func(Rjk)
G4 += term
G4 *= 2. ** (1. - zeta)
return G4 |
Python | def G4_prime(crystal, i, ep_type, ni, functional='Cosine',
Rc=6.5, eta=2, lamBda=1, zeta=1, p=1, q=0):
"""
Calculate the derivative of the G4 symmetry function.
Parameters
----------
crystal: object
Pymatgen crystal structure object.
i: int
The index of core element.
ep_types: str
The allowed element pair presents in the symmetry function calculation.
ni: array of neighbors information
Neighbors information of the core element.
functional: str
Cutoff functional. Default is Cosine functional.
Rc: float
Cutoff radius which the symmetry function will be calculated.
Default value is 6.5 as suggested by Behler.
eta: float
The parameter of G4 symmetry function.
lamBda: float
LamBda take values from -1 to +1 shifting the maxima of the cosine
function to 0 to 180 degree.
zeta: float
The angular resolution. Zeta with high values give a narrower range of
the nonzero G4 values. Different zeta values is preferrable for
distribution of angles centered at each reference atom. In some sense,
zeta is illustrated as the eta value.
p: int
The atom that the force is acting on.
q: int
Direction of force.
Returns
-------
G4p: float
The derivative of G4 symmetry function.
"""
# Cutoff functional
if functional == 'Cosine':
func = Cosine(Rc=Rc)
elif functional == 'Polynomial':
func = Polynomial(Rc=Rc)
elif functional == 'TangentH':
func = TangentH(Rc=Rc)
else:
raise NotImplementedError('Unknown cutoff functional: %s' %functional)
# Get positions of core atoms
Ri = crystal.cart_coords[i]
counts = range(len(ni))
G4p = 0
for j in counts:
for k in counts[(j+1):]:
n1 = ni[j][0].species_string
n2 = ni[k][0].species_string
if (ep_type[0] == n1 and ep_type[1] == n2) or \
(ep_type[1] == n1 and ep_type[0] == n2):
Rj = ni[j][0].coords
Rk = ni[k][0].coords
Rij_vector = Rj - Ri
Rij = np.linalg.norm(Rij_vector)
Rik_vector = Rk - Ri
Rik = np.linalg.norm(Rik_vector)
Rjk_vector = Rk - Rj
Rjk = np.linalg.norm(Rjk_vector)
cos_ijk = np.dot(Rij_vector, Rik_vector)/ Rij / Rik
dcos_ijk = dcos_dRpq(i, ni[j][2], ni[k][2], Ri, Rj, Rk, p, q)
cutoff = func(Rij) * func(Rik) * func(Rjk)
cutoff_Rik_Rjk = func(Rik) * func(Rjk)
cutoff_Rij_Rjk = func(Rij) * func(Rjk)
cutoff_Rij_Rik = func(Rij) * func(Rik)
dRij = dRab_dRpq(i, ni[j][2], Ri, Rj, p, q)
dRik = dRab_dRpq(i, ni[k][2], Ri, Rk, p, q)
dRjk = dRab_dRpq(ni[j][2], ni[k][2], Rj, Rk, p, q)
cutoff_Rij_derivative = func.derivative(Rij) * dRij
cutoff_Rik_derivative = func.derivative(Rik) * dRik
cutoff_Rjk_derivative = func.derivative(Rjk) * dRjk
lamBda_term = 1. + lamBda * cos_ijk
first_term = lamBda * zeta * dcos_ijk
first_term += (-2. * eta * lamBda_term / (Rc ** 2)) * \
(Rij * dRij + Rik * dRik + Rjk * dRjk)
first_term *= cutoff
second_term = cutoff_Rij_derivative * cutoff_Rik_Rjk + \
cutoff_Rik_derivative * cutoff_Rij_Rjk + \
cutoff_Rjk_derivative * cutoff_Rij_Rik
second_term *= lamBda_term
term = first_term + second_term
term *= lamBda_term ** (zeta - 1.)
term *= np.exp(-eta * (Rij ** 2. + Rik ** 2. + Rjk ** 2.) /
Rc ** 2.)
G4p += term
G4p *= 2. ** (1. - zeta)
return G4p | def G4_prime(crystal, i, ep_type, ni, functional='Cosine',
Rc=6.5, eta=2, lamBda=1, zeta=1, p=1, q=0):
"""
Calculate the derivative of the G4 symmetry function.
Parameters
----------
crystal: object
Pymatgen crystal structure object.
i: int
The index of core element.
ep_types: str
The allowed element pair presents in the symmetry function calculation.
ni: array of neighbors information
Neighbors information of the core element.
functional: str
Cutoff functional. Default is Cosine functional.
Rc: float
Cutoff radius which the symmetry function will be calculated.
Default value is 6.5 as suggested by Behler.
eta: float
The parameter of G4 symmetry function.
lamBda: float
LamBda take values from -1 to +1 shifting the maxima of the cosine
function to 0 to 180 degree.
zeta: float
The angular resolution. Zeta with high values give a narrower range of
the nonzero G4 values. Different zeta values is preferrable for
distribution of angles centered at each reference atom. In some sense,
zeta is illustrated as the eta value.
p: int
The atom that the force is acting on.
q: int
Direction of force.
Returns
-------
G4p: float
The derivative of G4 symmetry function.
"""
# Cutoff functional
if functional == 'Cosine':
func = Cosine(Rc=Rc)
elif functional == 'Polynomial':
func = Polynomial(Rc=Rc)
elif functional == 'TangentH':
func = TangentH(Rc=Rc)
else:
raise NotImplementedError('Unknown cutoff functional: %s' %functional)
# Get positions of core atoms
Ri = crystal.cart_coords[i]
counts = range(len(ni))
G4p = 0
for j in counts:
for k in counts[(j+1):]:
n1 = ni[j][0].species_string
n2 = ni[k][0].species_string
if (ep_type[0] == n1 and ep_type[1] == n2) or \
(ep_type[1] == n1 and ep_type[0] == n2):
Rj = ni[j][0].coords
Rk = ni[k][0].coords
Rij_vector = Rj - Ri
Rij = np.linalg.norm(Rij_vector)
Rik_vector = Rk - Ri
Rik = np.linalg.norm(Rik_vector)
Rjk_vector = Rk - Rj
Rjk = np.linalg.norm(Rjk_vector)
cos_ijk = np.dot(Rij_vector, Rik_vector)/ Rij / Rik
dcos_ijk = dcos_dRpq(i, ni[j][2], ni[k][2], Ri, Rj, Rk, p, q)
cutoff = func(Rij) * func(Rik) * func(Rjk)
cutoff_Rik_Rjk = func(Rik) * func(Rjk)
cutoff_Rij_Rjk = func(Rij) * func(Rjk)
cutoff_Rij_Rik = func(Rij) * func(Rik)
dRij = dRab_dRpq(i, ni[j][2], Ri, Rj, p, q)
dRik = dRab_dRpq(i, ni[k][2], Ri, Rk, p, q)
dRjk = dRab_dRpq(ni[j][2], ni[k][2], Rj, Rk, p, q)
cutoff_Rij_derivative = func.derivative(Rij) * dRij
cutoff_Rik_derivative = func.derivative(Rik) * dRik
cutoff_Rjk_derivative = func.derivative(Rjk) * dRjk
lamBda_term = 1. + lamBda * cos_ijk
first_term = lamBda * zeta * dcos_ijk
first_term += (-2. * eta * lamBda_term / (Rc ** 2)) * \
(Rij * dRij + Rik * dRik + Rjk * dRjk)
first_term *= cutoff
second_term = cutoff_Rij_derivative * cutoff_Rik_Rjk + \
cutoff_Rik_derivative * cutoff_Rij_Rjk + \
cutoff_Rjk_derivative * cutoff_Rij_Rik
second_term *= lamBda_term
term = first_term + second_term
term *= lamBda_term ** (zeta - 1.)
term *= np.exp(-eta * (Rij ** 2. + Rik ** 2. + Rjk ** 2.) /
Rc ** 2.)
G4p += term
G4p *= 2. ** (1. - zeta)
return G4p |
Python | def G5(crystal, i, ep_type, functional='Cosine',
Rc=6.5, eta=2, lamBda=1, zeta=1):
"""
Calculate G5 symmetry function.
G5 function is also an angular function utilizing the cosine funtion of the
angle theta_ijk centered at atom i. The difference between G5 and G4 is
that G5 does not depend on the Rjk value. Hence, the G5 will generate a
greater value after the summation compared to G4.
One can refer to equation 9 in:
Behler, J. (2011). Atom-centered symmetry functions for constructing
high-dimensional neural network potentials.
The Journal of chemical physics, 134(7), 074106.
Parameters
----------
crystal: object
Pymatgen crystal structure object.
i: int
The index of core element.
ep_types: str
The allowed element pair presents in the symmetry function calculation.
functional: str
Cutoff functional. Default is Cosine functional.
Rc: float
Cutoff radius which the symmetry function will be calculated.
Default value is 6.5 as suggested by Behler.
eta: float
The parameter of G4 symmetry function.
lamBda: float
LamBda take values from -1 to +1 shifting the maxima of the cosine
function to 0 to 180 degree.
zeta: float
The angular resolution. Zeta with high values give a narrower range of
the nonzero G4 values. Different zeta values is preferrable for
distribution of angles centered at each reference atom. In some sense,
zeta is illustrated as the eta value.
Returns
-------
G5: float
G5 symmetry value.
"""
# Cutoff functional
if functional == 'Cosine':
func = Cosine(Rc=Rc)
elif functional == 'Polynomial':
func = Polynomial(Rc=Rc)
elif functional == 'TangentH':
func = TangentH(Rc=Rc)
else:
raise NotImplementedError('Unknown cutoff functional: %s' %functional)
# Get core atoms information
Ri = crystal.cart_coords[i]
# Get neighbors information
neighbors = crystal.get_all_neighbors(Rc)
G5 = 0.0
for j in range(len(neighbors[i])-1):
for k in range(j+1, len(neighbors[i])):
n1 = neighbors[i][j][0]
n2 = neighbors[i][k][0]
if (ep_type[0] == n1.species_string \
and ep_type[1] == n2.species_string) or \
(ep_type[1] == n1.species_string and \
ep_type[0] == n2.species_string):
Rij_vector = Ri - n1.coords
Rij = np.linalg.norm(Rij_vector)
Rik_vector = Ri - n2.coords
Rik = np.linalg.norm(Rik_vector)
cos_ijk = np.dot(Rij_vector, Rik_vector)/ Rij / Rik
term = (1. + lamBda * cos_ijk) ** zeta
term *= np.exp(-eta *
(Rij ** 2. + Rik ** 2.) / Rc ** 2.)
term *= func(Rij) * func(Rik)
G5 += term
G5 *= 2. ** (1. - zeta)
return G5 | def G5(crystal, i, ep_type, functional='Cosine',
Rc=6.5, eta=2, lamBda=1, zeta=1):
"""
Calculate G5 symmetry function.
G5 function is also an angular function utilizing the cosine funtion of the
angle theta_ijk centered at atom i. The difference between G5 and G4 is
that G5 does not depend on the Rjk value. Hence, the G5 will generate a
greater value after the summation compared to G4.
One can refer to equation 9 in:
Behler, J. (2011). Atom-centered symmetry functions for constructing
high-dimensional neural network potentials.
The Journal of chemical physics, 134(7), 074106.
Parameters
----------
crystal: object
Pymatgen crystal structure object.
i: int
The index of core element.
ep_types: str
The allowed element pair presents in the symmetry function calculation.
functional: str
Cutoff functional. Default is Cosine functional.
Rc: float
Cutoff radius which the symmetry function will be calculated.
Default value is 6.5 as suggested by Behler.
eta: float
The parameter of G4 symmetry function.
lamBda: float
LamBda take values from -1 to +1 shifting the maxima of the cosine
function to 0 to 180 degree.
zeta: float
The angular resolution. Zeta with high values give a narrower range of
the nonzero G4 values. Different zeta values is preferrable for
distribution of angles centered at each reference atom. In some sense,
zeta is illustrated as the eta value.
Returns
-------
G5: float
G5 symmetry value.
"""
# Cutoff functional
if functional == 'Cosine':
func = Cosine(Rc=Rc)
elif functional == 'Polynomial':
func = Polynomial(Rc=Rc)
elif functional == 'TangentH':
func = TangentH(Rc=Rc)
else:
raise NotImplementedError('Unknown cutoff functional: %s' %functional)
# Get core atoms information
Ri = crystal.cart_coords[i]
# Get neighbors information
neighbors = crystal.get_all_neighbors(Rc)
G5 = 0.0
for j in range(len(neighbors[i])-1):
for k in range(j+1, len(neighbors[i])):
n1 = neighbors[i][j][0]
n2 = neighbors[i][k][0]
if (ep_type[0] == n1.species_string \
and ep_type[1] == n2.species_string) or \
(ep_type[1] == n1.species_string and \
ep_type[0] == n2.species_string):
Rij_vector = Ri - n1.coords
Rij = np.linalg.norm(Rij_vector)
Rik_vector = Ri - n2.coords
Rik = np.linalg.norm(Rik_vector)
cos_ijk = np.dot(Rij_vector, Rik_vector)/ Rij / Rik
term = (1. + lamBda * cos_ijk) ** zeta
term *= np.exp(-eta *
(Rij ** 2. + Rik ** 2.) / Rc ** 2.)
term *= func(Rij) * func(Rik)
G5 += term
G5 *= 2. ** (1. - zeta)
return G5 |
Python | def G5_prime(crystal, i, ep_type, ni, functional='Cosine',
Rc=6.5, eta=2, lamBda=1, zeta=1, p=1, q=0):
"""
Calculate the derivative of the G5 symmetry function.
Parameters
----------
crystal: object
Pymatgen crystal structure object.
i: int
The index of core element.
ep_types: str
The allowed element pair presents in the symmetry function calculation.
ni: array of neighbors information
Neighbors information of the core element.
functional: str
Cutoff functional. Default is Cosine functional.
Rc: float
Cutoff radius which the symmetry function will be calculated.
Default value is 6.5 as suggested by Behler.
eta: float
The parameter of G4 symmetry function.
lamBda: float
LamBda take values from -1 to +1 shifting the maxima of the cosine
function to 0 to 180 degree.
zeta: float
The angular resolution. Zeta with high values give a narrower range of
the nonzero G4 values. Different zeta values is preferrable for
distribution of angles centered at each reference atom. In some sense,
zeta is illustrated as the eta value.
p: int
The atom that the force is acting on.
q: int
Direction of force.
Returns
-------
G5p: float
The derivative of G5 symmetry function.
"""
if functional == 'Cosine':
func = Cosine(Rc=Rc)
elif functional == 'Polynomial':
func = Polynomial(Rc=Rc)
elif functional == 'TangentH':
func = TangentH(Rc=Rc)
else:
raise NotImplementedError('Unknown cutoff functional: %s' %functional)
# Get positions of core atoms
Ri = crystal.cart_coords[i]
counts = range(len(ni))
G5p = 0
for j in counts:
for k in counts[(j+1):]:
n1 = ni[j][0].species_string
n2 = ni[k][0].species_string
if (ep_type[0] == n1 and ep_type[1] == n2) or \
(ep_type[1] == n1 and ep_type[0] == n2):
Rj = ni[j][0].coords
Rk = ni[k][0].coords
Rij_vector = Rj - Ri
Rik_vector = Rk - Ri
Rij = np.linalg.norm(Rij_vector)
Rik = np.linalg.norm(Rik_vector)
cos_ijk = np.dot(Rij_vector, Rik_vector) / Rij / Rik
dcos_ijk = dcos_dRpq(i, ni[j][2], ni[k][2], Ri, Rj, Rk, p, q)
cutoff = func(Rij) * func(Rik)
cutoff_Rij_derivative = func.derivative(Rij) * \
dRab_dRpq(i, ni[j][2], Ri, Rj, p, q)
cutoff_Rik_derivative = func.derivative(Rik) * \
dRab_dRpq(i, ni[k][2], Ri, Rk, p, q)
lamBda_term = 1. + lamBda * cos_ijk
first_term = -2 * eta / Rc ** 2 * lamBda_term * \
(Rij * dRab_dRpq(i, ni[j][2], Ri, Rj, p, q) +
Rik * dRab_dRpq(i, ni[k][2], Ri, Rk, p, q))
first_term += lamBda * zeta * dcos_ijk
first_term *= cutoff
second_term = lamBda_term * \
(cutoff_Rij_derivative * func(Rik) +
cutoff_Rik_derivative * func(Rij))
term = first_term + second_term
term *= lamBda_term ** (zeta - 1.)
term *= np.exp(-eta * (Rij ** 2. + Rik ** 2.) /
Rc ** 2.)
G5p += term
G5p *= 2. ** (1. - zeta)
return G5p | def G5_prime(crystal, i, ep_type, ni, functional='Cosine',
Rc=6.5, eta=2, lamBda=1, zeta=1, p=1, q=0):
"""
Calculate the derivative of the G5 symmetry function.
Parameters
----------
crystal: object
Pymatgen crystal structure object.
i: int
The index of core element.
ep_types: str
The allowed element pair presents in the symmetry function calculation.
ni: array of neighbors information
Neighbors information of the core element.
functional: str
Cutoff functional. Default is Cosine functional.
Rc: float
Cutoff radius which the symmetry function will be calculated.
Default value is 6.5 as suggested by Behler.
eta: float
The parameter of G4 symmetry function.
lamBda: float
LamBda take values from -1 to +1 shifting the maxima of the cosine
function to 0 to 180 degree.
zeta: float
The angular resolution. Zeta with high values give a narrower range of
the nonzero G4 values. Different zeta values is preferrable for
distribution of angles centered at each reference atom. In some sense,
zeta is illustrated as the eta value.
p: int
The atom that the force is acting on.
q: int
Direction of force.
Returns
-------
G5p: float
The derivative of G5 symmetry function.
"""
if functional == 'Cosine':
func = Cosine(Rc=Rc)
elif functional == 'Polynomial':
func = Polynomial(Rc=Rc)
elif functional == 'TangentH':
func = TangentH(Rc=Rc)
else:
raise NotImplementedError('Unknown cutoff functional: %s' %functional)
# Get positions of core atoms
Ri = crystal.cart_coords[i]
counts = range(len(ni))
G5p = 0
for j in counts:
for k in counts[(j+1):]:
n1 = ni[j][0].species_string
n2 = ni[k][0].species_string
if (ep_type[0] == n1 and ep_type[1] == n2) or \
(ep_type[1] == n1 and ep_type[0] == n2):
Rj = ni[j][0].coords
Rk = ni[k][0].coords
Rij_vector = Rj - Ri
Rik_vector = Rk - Ri
Rij = np.linalg.norm(Rij_vector)
Rik = np.linalg.norm(Rik_vector)
cos_ijk = np.dot(Rij_vector, Rik_vector) / Rij / Rik
dcos_ijk = dcos_dRpq(i, ni[j][2], ni[k][2], Ri, Rj, Rk, p, q)
cutoff = func(Rij) * func(Rik)
cutoff_Rij_derivative = func.derivative(Rij) * \
dRab_dRpq(i, ni[j][2], Ri, Rj, p, q)
cutoff_Rik_derivative = func.derivative(Rik) * \
dRab_dRpq(i, ni[k][2], Ri, Rk, p, q)
lamBda_term = 1. + lamBda * cos_ijk
first_term = -2 * eta / Rc ** 2 * lamBda_term * \
(Rij * dRab_dRpq(i, ni[j][2], Ri, Rj, p, q) +
Rik * dRab_dRpq(i, ni[k][2], Ri, Rk, p, q))
first_term += lamBda * zeta * dcos_ijk
first_term *= cutoff
second_term = lamBda_term * \
(cutoff_Rij_derivative * func(Rik) +
cutoff_Rik_derivative * func(Rij))
term = first_term + second_term
term *= lamBda_term ** (zeta - 1.)
term *= np.exp(-eta * (Rij ** 2. + Rik ** 2.) /
Rc ** 2.)
G5p += term
G5p *= 2. ** (1. - zeta)
return G5p |
Python | def angle_from_ijkl(p1, p2, p3, p4):
"""
compute dihedral angle from four points, we consider only -90 to 90 for simplicity
"""
if angle_from_ijk(p1, p2, p3) == 180 or angle_from_ijk(p2, p3, p4) == 180:
return 0.0
else:
v1, v2, v3 = p3-p4, p2-p3, p1-p2
v23 = np.cross(v2, v3)
v12 = np.cross(v1, v2)
angle = np.degrees(math.atan(np.linalg.norm(v2) * np.dot(v1, v23)/np.dot(v12, v23)))
#if angle < 0: print(np.linalg.norm(v2) * np.dot(v1, v23)/np.dot(v12, v23), angle)
if abs(angle+90.0) < 5e-1: angle = 90
return angle | def angle_from_ijkl(p1, p2, p3, p4):
"""
compute dihedral angle from four points, we consider only -90 to 90 for simplicity
"""
if angle_from_ijk(p1, p2, p3) == 180 or angle_from_ijk(p2, p3, p4) == 180:
return 0.0
else:
v1, v2, v3 = p3-p4, p2-p3, p1-p2
v23 = np.cross(v2, v3)
v12 = np.cross(v1, v2)
angle = np.degrees(math.atan(np.linalg.norm(v2) * np.dot(v1, v23)/np.dot(v12, v23)))
#if angle < 0: print(np.linalg.norm(v2) * np.dot(v1, v23)/np.dot(v12, v23), angle)
if abs(angle+90.0) < 5e-1: angle = 90
return angle |
Python | def read_chunk(f, start, count):
""" move around inside gigantor file and return the gzip'd embed """
#print("read_chunk start,count= ",start,count)
f.seek(start+256) # offset plus header ## SKIP: nothing of value in header?
chunk = BytesIO(f.read(count-256))
return gzip.GzipFile(fileobj=chunk) | def read_chunk(f, start, count):
""" move around inside gigantor file and return the gzip'd embed """
#print("read_chunk start,count= ",start,count)
f.seek(start+256) # offset plus header ## SKIP: nothing of value in header?
chunk = BytesIO(f.read(count-256))
return gzip.GzipFile(fileobj=chunk) |
Python | def all_pdn_moves():
"""
returns a list with all possible moves that can occur in a game situation. the notation is like pdn, the start and
the destination square are separated by a minus for normal moves and by a x for a capture. capture sequences are
not considered in this list. only one capture step is defined. if multiple captures are possible they are executed
until the player needs to make a new decision. this is a special game state where the player needs
to make two moves in a row.
:return:
"""
# create the board with the move notation on it
board = np.zeros((8, 8))
count = 1
for row in range(7, -1, -1):
for col in range(7, -1, -1):
if row % 2 == 0 and col % 2 == 1:
board[row][col] = count
count += 1
if row % 2 == 1 and col % 2 == 0:
board[row][col] = count
count += 1
# find all moves with no captures
moves = []
for row in range(7, -1, -1):
for col in range(7, -1, -1):
# skip squares that are not part of the state space
if board[row][col] < 1:
continue
for direction in directions:
# create the new index
from_pos = (row, col)
to_pos = add_tuples(from_pos, direction)
if not is_valid_index(to_pos):
continue
moves.append("{}-{}".format(int(board[from_pos]), int(board[to_pos])))
# all capture moves
for row in range(7, -1, -1):
for col in range(7, -1, -1):
# skip squares that are not part of the state space
if board[row][col] < 1:
continue
for direction in capture_dirs:
# create the new index
from_pos = (row, col)
to_pos = add_tuples(from_pos, direction)
if not is_valid_index(to_pos):
continue
moves.append("{}x{}".format(int(board[from_pos]), int(board[to_pos])))
return moves | def all_pdn_moves():
"""
returns a list with all possible moves that can occur in a game situation. the notation is like pdn, the start and
the destination square are separated by a minus for normal moves and by a x for a capture. capture sequences are
not considered in this list. only one capture step is defined. if multiple captures are possible they are executed
until the player needs to make a new decision. this is a special game state where the player needs
to make two moves in a row.
:return:
"""
# create the board with the move notation on it
board = np.zeros((8, 8))
count = 1
for row in range(7, -1, -1):
for col in range(7, -1, -1):
if row % 2 == 0 and col % 2 == 1:
board[row][col] = count
count += 1
if row % 2 == 1 and col % 2 == 0:
board[row][col] = count
count += 1
# find all moves with no captures
moves = []
for row in range(7, -1, -1):
for col in range(7, -1, -1):
# skip squares that are not part of the state space
if board[row][col] < 1:
continue
for direction in directions:
# create the new index
from_pos = (row, col)
to_pos = add_tuples(from_pos, direction)
if not is_valid_index(to_pos):
continue
moves.append("{}-{}".format(int(board[from_pos]), int(board[to_pos])))
# all capture moves
for row in range(7, -1, -1):
for col in range(7, -1, -1):
# skip squares that are not part of the state space
if board[row][col] < 1:
continue
for direction in capture_dirs:
# create the new index
from_pos = (row, col)
to_pos = add_tuples(from_pos, direction)
if not is_valid_index(to_pos):
continue
moves.append("{}x{}".format(int(board[from_pos]), int(board[to_pos])))
return moves |
Python | def all_moves(pdn_moves):
"""
returns a list of moves in the bit board representation. a move is defined by an integer that has two bits turned
on, the start and the end square. if it is a backwards move (from the white perspective) the backwards bit
is set as well in order to have a unique move definition
:param pdn_moves: list of all pdn moves
:return:
"""
moves = []
for pdn_move in pdn_moves:
# convert normal moves to the integer representation
if "-" in pdn_move:
pos_str = pdn_move.split("-")
from_square = int(pos_str[0]) - 1
from_square = from_square + from_square // 8
to_square = int(pos_str[1]) - 1
to_square = to_square + to_square // 8
move = (1 << from_square) + (1 << to_square)
if from_square > to_square:
move += BAKWARDS_BIT
moves.append(move)
# convert capture moves to the integer representation
if "x" in pdn_move:
pos_str = pdn_move.split("x")
from_square = int(pos_str[0]) - 1
from_square = from_square + from_square // 8
to_square = int(pos_str[1]) - 1
to_square = to_square + to_square // 8
move = (1 << from_square) + (1 << to_square)
if from_square > to_square:
move += BAKWARDS_BIT
move *= -1
moves.append(move)
return moves | def all_moves(pdn_moves):
"""
returns a list of moves in the bit board representation. a move is defined by an integer that has two bits turned
on, the start and the end square. if it is a backwards move (from the white perspective) the backwards bit
is set as well in order to have a unique move definition
:param pdn_moves: list of all pdn moves
:return:
"""
moves = []
for pdn_move in pdn_moves:
# convert normal moves to the integer representation
if "-" in pdn_move:
pos_str = pdn_move.split("-")
from_square = int(pos_str[0]) - 1
from_square = from_square + from_square // 8
to_square = int(pos_str[1]) - 1
to_square = to_square + to_square // 8
move = (1 << from_square) + (1 << to_square)
if from_square > to_square:
move += BAKWARDS_BIT
moves.append(move)
# convert capture moves to the integer representation
if "x" in pdn_move:
pos_str = pdn_move.split("x")
from_square = int(pos_str[0]) - 1
from_square = from_square + from_square // 8
to_square = int(pos_str[1]) - 1
to_square = to_square + to_square // 8
move = (1 << from_square) + (1 << to_square)
if from_square > to_square:
move += BAKWARDS_BIT
move *= -1
moves.append(move)
return moves |
Python | def create_move_dicts(pdn_moves, moves):
"""
creates two dictionaries to convert pdn_moves to moves. the pdn_moves and the moves need to have the same order
:param pdn_moves: a list of pdn-moves
:param moves: a list of moves
:return:
"""
pdn_dict = {}
move_dict = {}
for pdn_move, move in zip(pdn_moves, moves):
pdn_dict[pdn_move] = move
move_dict[move] = pdn_move
return pdn_dict, move_dict | def create_move_dicts(pdn_moves, moves):
"""
creates two dictionaries to convert pdn_moves to moves. the pdn_moves and the moves need to have the same order
:param pdn_moves: a list of pdn-moves
:param moves: a list of moves
:return:
"""
pdn_dict = {}
move_dict = {}
for pdn_move, move in zip(pdn_moves, moves):
pdn_dict[pdn_move] = move
move_dict[move] = pdn_move
return pdn_dict, move_dict |
Python | def move_action_dict(moves):
"""
returns a lookup table with the move as key and the policy index as value
:param moves: all possible moves
:return:
"""
lookup_table = {}
for i, label in enumerate(moves):
lookup_table[label] = i
return lookup_table | def move_action_dict(moves):
"""
returns a lookup table with the move as key and the policy index as value
:param moves: all possible moves
:return:
"""
lookup_table = {}
for i, label in enumerate(moves):
lookup_table[label] = i
return lookup_table |
Python | def reverse_bits(n, bit_count):
"""
reversed the order of the bits in the passed number
:param n: number of which the bits are reversed
:param bit_count: the number of bits that are used for the passed number
:return:
"""
rev = 0
# traversing bits of 'n' from the right
for _ in range(bit_count):
rev <<= 1
if n & 1:
rev = rev ^ 1
n >>= 1
return rev | def reverse_bits(n, bit_count):
"""
reversed the order of the bits in the passed number
:param n: number of which the bits are reversed
:param bit_count: the number of bits that are used for the passed number
:return:
"""
rev = 0
# traversing bits of 'n' from the right
for _ in range(bit_count):
rev <<= 1
if n & 1:
rev = rev ^ 1
n >>= 1
return rev |
Python | def mirror_move(move):
"""
converts a move for one player to a move for the other player
:param move: the move to convert
:return:
"""
# change the sign to a positive sign
is_capture = move < 0
if is_capture:
move *= -1
# remove the backwards bit
is_backwards = move & BAKWARDS_BIT
move &= ALL_BITS
# reverse the bits of the move
reversed_move = reverse_bits(move, 35)
# forward move become backwards move and vice versa
if not is_backwards:
reversed_move += BAKWARDS_BIT
# set the capture information
if is_capture:
reversed_move *= -1
return reversed_move | def mirror_move(move):
"""
converts a move for one player to a move for the other player
:param move: the move to convert
:return:
"""
# change the sign to a positive sign
is_capture = move < 0
if is_capture:
move *= -1
# remove the backwards bit
is_backwards = move & BAKWARDS_BIT
move &= ALL_BITS
# reverse the bits of the move
reversed_move = reverse_bits(move, 35)
# forward move become backwards move and vice versa
if not is_backwards:
reversed_move += BAKWARDS_BIT
# set the capture information
if is_capture:
reversed_move *= -1
return reversed_move |
Python | def action_to_move(action, player):
"""
converts the passed action to a checkers move. as the action is always defined from the white perspective
it needs to be mirrored for the black player
:param action: move policy vector
:param player: the current player
:return: move that can be played on the board
"""
# convert the action to a checkers move
move = MOVES[action]
# mirror the move for the black player
if player == CONST.BLACK:
move = mirror_move(move)
return move | def action_to_move(action, player):
"""
converts the passed action to a checkers move. as the action is always defined from the white perspective
it needs to be mirrored for the black player
:param action: move policy vector
:param player: the current player
:return: move that can be played on the board
"""
# convert the action to a checkers move
move = MOVES[action]
# mirror the move for the black player
if player == CONST.BLACK:
move = mirror_move(move)
return move |
Python | def move_to_action(move, player):
"""
returns the action that corresponds to the passed move to play
:param move: checkers move
:param player: current player
:return:
"""
# mirror the the moves for the black player since the board is always viewed from the white perspective
if player == CONST.BLACK:
move = mirror_move(move)
action = MOVE_ACTION_DICT[move]
return action | def move_to_action(move, player):
"""
returns the action that corresponds to the passed move to play
:param move: checkers move
:param player: current player
:return:
"""
# mirror the the moves for the black player since the board is always viewed from the white perspective
if player == CONST.BLACK:
move = mirror_move(move)
action = MOVE_ACTION_DICT[move]
return action |
Python | def execute_action(self, action):
"""
executes the passed move on the baord, a move is represented by an integer
that has the start and the end bit turned on
:param action: the action to play on the checkers board
"""
# create a move from the passed action
move = action_to_move(action, self.player)
# increment the no progress count, it will be set to 0 later on if either a man moved or a piece as captured
self.no_progress_count += 1
# execute the capture
if move < 0:
self.no_progress_count = 0 # reset the no progress count as a piece was captured
is_capture = True
# remove the backwards bit
move *= -1
move &= ALL_BITS
# the average of the bit position is the captured piece
captured_disk = int(1 << sum(i for (i, b) in enumerate(bin(move)[::-1]) if b == '1')//2)
if self.player == CONST.WHITE:
# remove the captured opponent disk
if self.black_disks & captured_disk:
self.black_disks ^= captured_disk
if self.black_kings & captured_disk:
self.black_kings ^= captured_disk
else:
# remove the captured opponent disk
if self.white_disks & captured_disk:
self.white_disks ^= captured_disk
if self.white_kings & captured_disk:
self.white_kings ^= captured_disk
else:
is_capture = False
move &= ALL_BITS # remove the backwards bit
# execute the move
if self.player == CONST.WHITE:
# set the disk at the new position
if self.white_disks & move:
self.white_disks ^= move
if self.white_kings & move:
self.white_kings ^= move
# reset the no progress count if a man moved
if (self.white_disks ^ self.white_kings) & move:
self.no_progress_count = 0
# check if white made a king
to_square = move & self.white_disks
if to_square & BLACK_BACKRANK_BITS:
self.white_kings |= to_square
else:
# set the disk at the new position
if self.black_disks & move:
self.black_disks ^= move
if self.black_kings & move:
self.black_kings ^= move
# reset the no progress count if a man moved
if (self.black_disks ^ self.black_kings) & move:
self.no_progress_count = 0
# check if black made a king
to_square = move & self.black_disks
if to_square & WHITE_BACKRANK_BITS:
self.black_kings |= to_square
# update the empty squares
self.empty = SKIP_BITS ^ ALL_BITS ^ (self.white_disks | self.black_disks)
# check if there are still possible capture moves
if is_capture:
self.mandatory_captures = self.captures_from_position(to_square)
capture_count = len(self.mandatory_captures)
# only one mandatory capture, execute it
if capture_count == 1:
capture_action = move_to_action(self.mandatory_captures[0], self.player)
self.execute_action(capture_action)
return
# more than one capture, the same player needs to decide which capture to execute
elif capture_count > 1:
return
# no mandatory captures, change the player
self.move_count += 1
self.player = self.move_count % 2
# find the new capture moves
self.mandatory_captures = self.all_captures()
# check if the game has ended
self.check_terminal() | def execute_action(self, action):
"""
executes the passed move on the baord, a move is represented by an integer
that has the start and the end bit turned on
:param action: the action to play on the checkers board
"""
# create a move from the passed action
move = action_to_move(action, self.player)
# increment the no progress count, it will be set to 0 later on if either a man moved or a piece as captured
self.no_progress_count += 1
# execute the capture
if move < 0:
self.no_progress_count = 0 # reset the no progress count as a piece was captured
is_capture = True
# remove the backwards bit
move *= -1
move &= ALL_BITS
# the average of the bit position is the captured piece
captured_disk = int(1 << sum(i for (i, b) in enumerate(bin(move)[::-1]) if b == '1')//2)
if self.player == CONST.WHITE:
# remove the captured opponent disk
if self.black_disks & captured_disk:
self.black_disks ^= captured_disk
if self.black_kings & captured_disk:
self.black_kings ^= captured_disk
else:
# remove the captured opponent disk
if self.white_disks & captured_disk:
self.white_disks ^= captured_disk
if self.white_kings & captured_disk:
self.white_kings ^= captured_disk
else:
is_capture = False
move &= ALL_BITS # remove the backwards bit
# execute the move
if self.player == CONST.WHITE:
# set the disk at the new position
if self.white_disks & move:
self.white_disks ^= move
if self.white_kings & move:
self.white_kings ^= move
# reset the no progress count if a man moved
if (self.white_disks ^ self.white_kings) & move:
self.no_progress_count = 0
# check if white made a king
to_square = move & self.white_disks
if to_square & BLACK_BACKRANK_BITS:
self.white_kings |= to_square
else:
# set the disk at the new position
if self.black_disks & move:
self.black_disks ^= move
if self.black_kings & move:
self.black_kings ^= move
# reset the no progress count if a man moved
if (self.black_disks ^ self.black_kings) & move:
self.no_progress_count = 0
# check if black made a king
to_square = move & self.black_disks
if to_square & WHITE_BACKRANK_BITS:
self.black_kings |= to_square
# update the empty squares
self.empty = SKIP_BITS ^ ALL_BITS ^ (self.white_disks | self.black_disks)
# check if there are still possible capture moves
if is_capture:
self.mandatory_captures = self.captures_from_position(to_square)
capture_count = len(self.mandatory_captures)
# only one mandatory capture, execute it
if capture_count == 1:
capture_action = move_to_action(self.mandatory_captures[0], self.player)
self.execute_action(capture_action)
return
# more than one capture, the same player needs to decide which capture to execute
elif capture_count > 1:
return
# no mandatory captures, change the player
self.move_count += 1
self.player = self.move_count % 2
# find the new capture moves
self.mandatory_captures = self.all_captures()
# check if the game has ended
self.check_terminal() |
Python | def legal_actions(self):
"""
returns a list with all legal actions
:return:
"""
# check if there are some captures
if len(self.mandatory_captures) > 0:
if self.player == CONST.WHITE:
actions = [MOVE_ACTION_DICT[move] for move in self.mandatory_captures]
else:
actions = [MOVE_ACTION_DICT[mirror_move(move)] for move in self.mandatory_captures]
return actions
# no captures possible, find normal moves
if self.player == CONST.WHITE:
rf = (self.empty >> 4) & self.white_disks # right forward move
lf = (self.empty >> 5) & self.white_disks # left forward move
rb = (self.empty << 4) & self.white_kings # right backwards move
lb = (self.empty << 5) & self.white_kings # left backwards move
else:
rf = (self.empty >> 4) & self.black_kings # right forward move
lf = (self.empty >> 5) & self.black_kings # left forward move
rb = (self.empty << 4) & self.black_disks # right backwards move
lb = (self.empty << 5) & self.black_disks # left backwards move
moves = [0x11 << i for (i, bit) in enumerate(bin(rf)[::-1]) if bit == '1']
moves += [0x21 << i for (i, bit) in enumerate(bin(lf)[::-1]) if bit == '1']
moves += [BAKWARDS_BIT + (0x11 << (i - 4)) for (i, bit) in enumerate(bin(rb)[::-1]) if bit == '1']
moves += [BAKWARDS_BIT + (0x21 << (i - 5)) for (i, bit) in enumerate(bin(lb)[::-1]) if bit == '1']
if self.player == CONST.WHITE:
actions = [MOVE_ACTION_DICT[move] for move in moves]
else:
actions = [MOVE_ACTION_DICT[mirror_move(move)] for move in moves] # mirror the moves for black
return actions | def legal_actions(self):
"""
returns a list with all legal actions
:return:
"""
# check if there are some captures
if len(self.mandatory_captures) > 0:
if self.player == CONST.WHITE:
actions = [MOVE_ACTION_DICT[move] for move in self.mandatory_captures]
else:
actions = [MOVE_ACTION_DICT[mirror_move(move)] for move in self.mandatory_captures]
return actions
# no captures possible, find normal moves
if self.player == CONST.WHITE:
rf = (self.empty >> 4) & self.white_disks # right forward move
lf = (self.empty >> 5) & self.white_disks # left forward move
rb = (self.empty << 4) & self.white_kings # right backwards move
lb = (self.empty << 5) & self.white_kings # left backwards move
else:
rf = (self.empty >> 4) & self.black_kings # right forward move
lf = (self.empty >> 5) & self.black_kings # left forward move
rb = (self.empty << 4) & self.black_disks # right backwards move
lb = (self.empty << 5) & self.black_disks # left backwards move
moves = [0x11 << i for (i, bit) in enumerate(bin(rf)[::-1]) if bit == '1']
moves += [0x21 << i for (i, bit) in enumerate(bin(lf)[::-1]) if bit == '1']
moves += [BAKWARDS_BIT + (0x11 << (i - 4)) for (i, bit) in enumerate(bin(rb)[::-1]) if bit == '1']
moves += [BAKWARDS_BIT + (0x21 << (i - 5)) for (i, bit) in enumerate(bin(lb)[::-1]) if bit == '1']
if self.player == CONST.WHITE:
actions = [MOVE_ACTION_DICT[move] for move in moves]
else:
actions = [MOVE_ACTION_DICT[mirror_move(move)] for move in moves] # mirror the moves for black
return actions |
Python | def illegal_actions(self):
"""
returns a list of illegal actions
:return:
"""
legal_actions = self.legal_actions()
illegal_actions = [a for a in range(Config.tot_actions)]
for legal_action in legal_actions:
illegal_actions.remove(legal_action)
return illegal_actions | def illegal_actions(self):
"""
returns a list of illegal actions
:return:
"""
legal_actions = self.legal_actions()
illegal_actions = [a for a in range(Config.tot_actions)]
for legal_action in legal_actions:
illegal_actions.remove(legal_action)
return illegal_actions |
Python | def check_terminal(self):
"""
checks if the game is terminal
:return:
"""
# check if the current player can move
if len(self.legal_actions()) == 0:
self.score = 1 if self.player == CONST.BLACK else -1
self.terminal = True
return
# if there are some captures the game is not drawn
if len(self.mandatory_captures) > 0:
return
# the game is drawn if during the last 40 moves no men was moved or no piece was captured
if self.no_progress_count >= 80:
self.score = 0
self.terminal = True
return
# rule out some basic endgames to shorten the games
popcount_kings_w = utils.popcount(self.white_kings)
popcount_kings_b = utils.popcount(self.black_kings)
# no men
if (self.white_disks ^ self.white_kings) == 0 and (self.black_disks ^ self.black_kings) == 0:
# same king count which is not larger than 3 is a draw
if popcount_kings_w <= 3 and popcount_kings_w == popcount_kings_b:
self.score = 0
self.terminal = True
return
if popcount_kings_w <= 3 and popcount_kings_b <= 3:
if popcount_kings_w > popcount_kings_b:
self.score = 1
self.terminal = True
return
if popcount_kings_b > popcount_kings_w:
self.score = -1
self.terminal = True
return | def check_terminal(self):
"""
checks if the game is terminal
:return:
"""
# check if the current player can move
if len(self.legal_actions()) == 0:
self.score = 1 if self.player == CONST.BLACK else -1
self.terminal = True
return
# if there are some captures the game is not drawn
if len(self.mandatory_captures) > 0:
return
# the game is drawn if during the last 40 moves no men was moved or no piece was captured
if self.no_progress_count >= 80:
self.score = 0
self.terminal = True
return
# rule out some basic endgames to shorten the games
popcount_kings_w = utils.popcount(self.white_kings)
popcount_kings_b = utils.popcount(self.black_kings)
# no men
if (self.white_disks ^ self.white_kings) == 0 and (self.black_disks ^ self.black_kings) == 0:
# same king count which is not larger than 3 is a draw
if popcount_kings_w <= 3 and popcount_kings_w == popcount_kings_b:
self.score = 0
self.terminal = True
return
if popcount_kings_w <= 3 and popcount_kings_b <= 3:
if popcount_kings_w > popcount_kings_b:
self.score = 1
self.terminal = True
return
if popcount_kings_b > popcount_kings_w:
self.score = -1
self.terminal = True
return |
Python | def captures_from_position(self, position_mask):
"""
returns a list of all possible captures form the passed position
:param position_mask: disk position to analyze
:return: list of all possible capture moves
"""
# the rules for a successful capture are empty at the destination and an opponent disk inbetween
# the start and the end square
if self.player == CONST.WHITE:
# captures for men
rfc = (self.empty >> 8) & (self.black_disks >> 4) & position_mask # right forward capture
lfc = (self.empty >> 10) & (self.black_disks >> 5) & position_mask # left forward capture
# captures for kings
if position_mask & self.black_kings:
rbc = (self.empty << 8) & (self.black_disks << 4) & position_mask # right backwards capture
lbc = (self.empty << 10) & (self.black_disks << 5) & position_mask # left backwards capture
else:
rbc = 0
lbc = 0
else:
# captures for men
rbc = (self.empty << 8) & (self.white_disks << 4) & position_mask # right backwards capture
lbc = (self.empty << 10) & (self.white_disks << 5) & position_mask # left backwards capture
# captures for kings
if position_mask & self.white_kings:
rfc = (self.empty >> 8) & (self.white_disks >> 4) & position_mask # right forward capture
lfc = (self.empty >> 10) & (self.white_disks >> 5) & position_mask # left forward capture
else:
rfc = 0
lfc = 0
capture_moves = []
if (rfc | lfc | rbc | lbc) != 0:
capture_moves += [-0x101 << i for (i, bit) in enumerate(bin(rfc)[::-1]) if bit == '1']
capture_moves += [-0x401 << i for (i, bit) in enumerate(bin(lfc)[::-1]) if bit == '1']
capture_moves += [-BAKWARDS_BIT - (0x101 << (i - 8)) for (i, bit) in enumerate(bin(rbc)[::-1]) if bit == '1']
capture_moves += [-BAKWARDS_BIT - (0x401 << (i - 10)) for (i, bit) in enumerate(bin(lbc)[::-1]) if bit == '1']
return capture_moves | def captures_from_position(self, position_mask):
"""
returns a list of all possible captures form the passed position
:param position_mask: disk position to analyze
:return: list of all possible capture moves
"""
# the rules for a successful capture are empty at the destination and an opponent disk inbetween
# the start and the end square
if self.player == CONST.WHITE:
# captures for men
rfc = (self.empty >> 8) & (self.black_disks >> 4) & position_mask # right forward capture
lfc = (self.empty >> 10) & (self.black_disks >> 5) & position_mask # left forward capture
# captures for kings
if position_mask & self.black_kings:
rbc = (self.empty << 8) & (self.black_disks << 4) & position_mask # right backwards capture
lbc = (self.empty << 10) & (self.black_disks << 5) & position_mask # left backwards capture
else:
rbc = 0
lbc = 0
else:
# captures for men
rbc = (self.empty << 8) & (self.white_disks << 4) & position_mask # right backwards capture
lbc = (self.empty << 10) & (self.white_disks << 5) & position_mask # left backwards capture
# captures for kings
if position_mask & self.white_kings:
rfc = (self.empty >> 8) & (self.white_disks >> 4) & position_mask # right forward capture
lfc = (self.empty >> 10) & (self.white_disks >> 5) & position_mask # left forward capture
else:
rfc = 0
lfc = 0
capture_moves = []
if (rfc | lfc | rbc | lbc) != 0:
capture_moves += [-0x101 << i for (i, bit) in enumerate(bin(rfc)[::-1]) if bit == '1']
capture_moves += [-0x401 << i for (i, bit) in enumerate(bin(lfc)[::-1]) if bit == '1']
capture_moves += [-BAKWARDS_BIT - (0x101 << (i - 8)) for (i, bit) in enumerate(bin(rbc)[::-1]) if bit == '1']
capture_moves += [-BAKWARDS_BIT - (0x401 << (i - 10)) for (i, bit) in enumerate(bin(lbc)[::-1]) if bit == '1']
return capture_moves |
Python | def all_captures(self):
"""
returns a list of all captures of the current position
:return:
"""
if self.player == CONST.WHITE:
rfc = (self.empty >> 8) & (self.black_disks >> 4) & self.white_disks # right forward capture
lfc = (self.empty >> 10) & (self.black_disks >> 5) & self.white_disks # left forward capture
rbc = (self.empty << 8) & (self.black_disks << 4) & self.white_kings # right backwards capture
lbc = (self.empty << 10) & (self.black_disks << 5) & self.white_kings # left backwards capture
else:
rfc = (self.empty >> 8) & (self.white_disks >> 4) & self.black_kings # right forward capture
lfc = (self.empty >> 10) & (self.white_disks >> 5) & self.black_kings # left forward capture
rbc = (self.empty << 8) & (self.white_disks << 4) & self.black_disks # right backwards capture
lbc = (self.empty << 10) & (self.white_disks << 5) & self.black_disks # left backwards capture
capture_moves = []
if (rfc | lfc | rbc | lbc) != 0:
capture_moves += [-0x101 << i for (i, bit) in enumerate(bin(rfc)[::-1]) if bit == '1']
capture_moves += [-0x401 << i for (i, bit) in enumerate(bin(lfc)[::-1]) if bit == '1']
capture_moves += [-BAKWARDS_BIT - (0x101 << (i - 8)) for (i, bit) in enumerate(bin(rbc)[::-1]) if bit == '1']
capture_moves += [-BAKWARDS_BIT - (0x401 << (i - 10)) for (i, bit) in enumerate(bin(lbc)[::-1]) if bit == '1']
return capture_moves | def all_captures(self):
"""
returns a list of all captures of the current position
:return:
"""
if self.player == CONST.WHITE:
rfc = (self.empty >> 8) & (self.black_disks >> 4) & self.white_disks # right forward capture
lfc = (self.empty >> 10) & (self.black_disks >> 5) & self.white_disks # left forward capture
rbc = (self.empty << 8) & (self.black_disks << 4) & self.white_kings # right backwards capture
lbc = (self.empty << 10) & (self.black_disks << 5) & self.white_kings # left backwards capture
else:
rfc = (self.empty >> 8) & (self.white_disks >> 4) & self.black_kings # right forward capture
lfc = (self.empty >> 10) & (self.white_disks >> 5) & self.black_kings # left forward capture
rbc = (self.empty << 8) & (self.white_disks << 4) & self.black_disks # right backwards capture
lbc = (self.empty << 10) & (self.white_disks << 5) & self.black_disks # left backwards capture
capture_moves = []
if (rfc | lfc | rbc | lbc) != 0:
capture_moves += [-0x101 << i for (i, bit) in enumerate(bin(rfc)[::-1]) if bit == '1']
capture_moves += [-0x401 << i for (i, bit) in enumerate(bin(lfc)[::-1]) if bit == '1']
capture_moves += [-BAKWARDS_BIT - (0x101 << (i - 8)) for (i, bit) in enumerate(bin(rbc)[::-1]) if bit == '1']
capture_moves += [-BAKWARDS_BIT - (0x401 << (i - 10)) for (i, bit) in enumerate(bin(lbc)[::-1]) if bit == '1']
return capture_moves |
Python | def print(self):
"""
prints out the board in human readable form
:return:
"""
print(self.to_string()) | def print(self):
"""
prints out the board in human readable form
:return:
"""
print(self.to_string()) |
Python | def int_to_board(number):
"""
converts the passed integer to the board representation
:param number: integer to convert to one channel of the neural network input
:return:
"""
board = np.zeros((8, 8))
pos = -1
for row in range(7, -1, -1):
for col in range(7, -1, -1):
if row % 2 == 0 and col % 2 == 1:
pos += 1
elif row % 2 == 1 and col % 2 == 0:
pos += 1
else:
continue # field not used
shift = pos + pos // 8
cell = 1 << shift
if cell & number:
board[row][col] = 1
return board | def int_to_board(number):
"""
converts the passed integer to the board representation
:param number: integer to convert to one channel of the neural network input
:return:
"""
board = np.zeros((8, 8))
pos = -1
for row in range(7, -1, -1):
for col in range(7, -1, -1):
if row % 2 == 0 and col % 2 == 1:
pos += 1
elif row % 2 == 1 and col % 2 == 0:
pos += 1
else:
continue # field not used
shift = pos + pos // 8
cell = 1 << shift
if cell & number:
board[row][col] = 1
return board |
Python | def int_to_mirrored_board(number):
"""
converts the passed integer to the board representation that is rotated
:param number: integer to convert to one channel of the neural network input
:return:
"""
board = np.zeros((8, 8))
pos = -1
for row in range(8):
for col in range(8):
if row % 2 == 0 and col % 2 == 1:
pos += 1
elif row % 2 == 1 and col % 2 == 0:
pos += 1
else:
continue # field not used
shift = pos + pos // 8
cell = 1 << shift
if cell & number:
board[row][col] = 1
return board | def int_to_mirrored_board(number):
"""
converts the passed integer to the board representation that is rotated
:param number: integer to convert to one channel of the neural network input
:return:
"""
board = np.zeros((8, 8))
pos = -1
for row in range(8):
for col in range(8):
if row % 2 == 0 and col % 2 == 1:
pos += 1
elif row % 2 == 1 and col % 2 == 0:
pos += 1
else:
continue # field not used
shift = pos + pos // 8
cell = 1 << shift
if cell & number:
board[row][col] = 1
return board |
Python | def play_self_play_games(self, game_class, network_path):
"""
plays some games against itself and adds the experience into the experience buffer
:param game_class the class of the implemented games
:param network_path the path of the current network
:return: the average nu,ber of moves played in a games
"""
# execute the self-play
self_play_results = __self_play_worker__(game_class, network_path, config.episodes)
# add the training examples to the experience buffer
self.experience_buffer.add_new_cycle()
tot_moves_played = len(self_play_results) / game_class.symmetry_count() # account for symmetric boards,
self.experience_buffer.add_data(self_play_results)
avg_game_length = tot_moves_played / config.episodes
return avg_game_length | def play_self_play_games(self, game_class, network_path):
"""
plays some games against itself and adds the experience into the experience buffer
:param game_class the class of the implemented games
:param network_path the path of the current network
:return: the average nu,ber of moves played in a games
"""
# execute the self-play
self_play_results = __self_play_worker__(game_class, network_path, config.episodes)
# add the training examples to the experience buffer
self.experience_buffer.add_new_cycle()
tot_moves_played = len(self_play_results) / game_class.symmetry_count() # account for symmetric boards,
self.experience_buffer.add_data(self_play_results)
avg_game_length = tot_moves_played / config.episodes
return avg_game_length |
Python | def nn_update(self, generation):
"""
updates the neural network by picking a random batch form the experience replay
:param generation: the network generation (number of iterations so far)
:return: average policy and value loss over all mini batches
"""
# setup the data set
training_generator = self.experience_buffer.prepare_data(generation)
step_size = training_generator.dataset.__len__() // (2 * config.batch_size)
logger.info("training data prepared, step size: {}".format(step_size))
# activate the training mode
self.network = data_storage.net_to_device(self.network, config.training_device)
if config.cyclic_learning:
self.network.update_scheduler(step_size) # update the scheduler
self.network.train()
avg_loss_p = 0
avg_loss_v = 0
tot_batch_count = 0
for epoch in range(config.epochs):
# training
for state_batch, value_batch, policy_batch in training_generator:
# send the data to the gpu
state_batch = state_batch.to(config.training_device, dtype=torch.float)
value_batch = value_batch.unsqueeze(1).to(config.training_device, dtype=torch.float)
policy_batch = policy_batch.to(config.training_device, dtype=torch.float)
# execute the training step with one batch
if config.cyclic_learning:
loss_p, loss_v = self.network.train_cyclical_step(state_batch, policy_batch, value_batch)
else:
loss_p, loss_v = self.network.train_step(state_batch, policy_batch, value_batch)
avg_loss_p += loss_p
avg_loss_v += loss_v
tot_batch_count += 1
# calculate the mean of the loss
avg_loss_p /= tot_batch_count
avg_loss_v /= tot_batch_count
# activate the evaluation mode
self.network = data_storage.net_to_device(self.network, config.evaluation_device)
self.network.eval()
return avg_loss_p.item(), avg_loss_v.item() | def nn_update(self, generation):
"""
updates the neural network by picking a random batch form the experience replay
:param generation: the network generation (number of iterations so far)
:return: average policy and value loss over all mini batches
"""
# setup the data set
training_generator = self.experience_buffer.prepare_data(generation)
step_size = training_generator.dataset.__len__() // (2 * config.batch_size)
logger.info("training data prepared, step size: {}".format(step_size))
# activate the training mode
self.network = data_storage.net_to_device(self.network, config.training_device)
if config.cyclic_learning:
self.network.update_scheduler(step_size) # update the scheduler
self.network.train()
avg_loss_p = 0
avg_loss_v = 0
tot_batch_count = 0
for epoch in range(config.epochs):
# training
for state_batch, value_batch, policy_batch in training_generator:
# send the data to the gpu
state_batch = state_batch.to(config.training_device, dtype=torch.float)
value_batch = value_batch.unsqueeze(1).to(config.training_device, dtype=torch.float)
policy_batch = policy_batch.to(config.training_device, dtype=torch.float)
# execute the training step with one batch
if config.cyclic_learning:
loss_p, loss_v = self.network.train_cyclical_step(state_batch, policy_batch, value_batch)
else:
loss_p, loss_v = self.network.train_step(state_batch, policy_batch, value_batch)
avg_loss_p += loss_p
avg_loss_v += loss_v
tot_batch_count += 1
# calculate the mean of the loss
avg_loss_p /= tot_batch_count
avg_loss_v /= tot_batch_count
# activate the evaluation mode
self.network = data_storage.net_to_device(self.network, config.evaluation_device)
self.network.eval()
return avg_loss_p.item(), avg_loss_v.item() |
Python | def fill_with_initial_data(self):
"""
fills the experience buffer with initial training data from an untrained network
this helps to prevents early overfitting of the network
:return:
"""
with open("initial_training_data.pkl", 'rb') as input:
initial_data = pickle.load(input)
for i in range(config.min_window_size):
self.add_new_cycle()
start_idx = i*config.episode_count*config.initial_game_length
end_idx = (i+1)*config.episode_count*config.initial_game_length
data = initial_data[start_idx:end_idx]
self.add_data(data) | def fill_with_initial_data(self):
"""
fills the experience buffer with initial training data from an untrained network
this helps to prevents early overfitting of the network
:return:
"""
with open("initial_training_data.pkl", 'rb') as input:
initial_data = pickle.load(input)
for i in range(config.min_window_size):
self.add_new_cycle()
start_idx = i*config.episode_count*config.initial_game_length
end_idx = (i+1)*config.episode_count*config.initial_game_length
data = initial_data[start_idx:end_idx]
self.add_data(data) |
Python | def add_new_cycle(self):
"""
adds a new training cycle to the training cycle list
:return:
"""
self.training_cycles.append([]) | def add_new_cycle(self):
"""
adds a new training cycle to the training cycle list
:return:
"""
self.training_cycles.append([]) |
Python | def add_data(self, training_examples):
"""
adds the passed training examples to the experience buffer
:param training_examples: list containing the training examples
:return:
"""
self.training_cycles[-1] += training_examples | def add_data(self, training_examples):
"""
adds the passed training examples to the experience buffer
:param training_examples: list containing the training examples
:return:
"""
self.training_cycles[-1] += training_examples |
Python | def window_size_from_generation(self, generation):
"""
returns the size of the window that is used for training
:param generation: the network generation
:return: the size of the training window
"""
# some initilal data is used
if config.use_initial_data:
window_size = config.min_window_size + generation // 2
if window_size > config.max_window_size:
window_size = config.max_window_size
return window_size
# no initial data is used
window_size = max(config.min_window_size + (generation - config.min_window_size + 1) // 2, config.min_window_size)
if window_size > config.max_window_size:
window_size = config.max_window_size
return window_size | def window_size_from_generation(self, generation):
"""
returns the size of the window that is used for training
:param generation: the network generation
:return: the size of the training window
"""
# some initilal data is used
if config.use_initial_data:
window_size = config.min_window_size + generation // 2
if window_size > config.max_window_size:
window_size = config.max_window_size
return window_size
# no initial data is used
window_size = max(config.min_window_size + (generation - config.min_window_size + 1) // 2, config.min_window_size)
if window_size > config.max_window_size:
window_size = config.max_window_size
return window_size |
Python | def prepare_data(self, generation):
"""
prepares the training data for training
:param generation: the generation of the network (number of iterations so far)
:return: torch training generator for training
"""
# calculate the size of the window
window_size = self.window_size_from_generation(generation)
logger.debug("window_size: {}".format(window_size))
# get rid of old data
while len(self.training_cycles) > window_size:
self.training_cycles.pop(0)
# get the whole training data
training_data = []
for sample in self.training_cycles:
training_data += sample
# average the positions (early positions are overrepresented)
if config.average_positions:
training_data = self.__average_positions__(training_data)
# create the training set
training_set = SelfPlayDataSet(training_data)
training_generator = data.DataLoader(training_set, **config.data_set_params)
return training_generator | def prepare_data(self, generation):
"""
prepares the training data for training
:param generation: the generation of the network (number of iterations so far)
:return: torch training generator for training
"""
# calculate the size of the window
window_size = self.window_size_from_generation(generation)
logger.debug("window_size: {}".format(window_size))
# get rid of old data
while len(self.training_cycles) > window_size:
self.training_cycles.pop(0)
# get the whole training data
training_data = []
for sample in self.training_cycles:
training_data += sample
# average the positions (early positions are overrepresented)
if config.average_positions:
training_data = self.__average_positions__(training_data)
# create the training set
training_set = SelfPlayDataSet(training_data)
training_generator = data.DataLoader(training_set, **config.data_set_params)
return training_generator |
Python | def main_lr():
"""
finds the min and the max learning rate. train the network for a few epochs and plot the
prediction accuracy vs the learning rate. min learning rate is the rate where the prediction accuracy
starts to increase and the max learning rate is the lr where the prediction accuracy slows down
or even deteriorates. The batch size and all other hyperparameters should be the same for
this test and the actual training. This test can be done with a smaller subset of the data set
if the full data set is too large.
:return:
"""
# The logger
utils.init_logger(logging.DEBUG, file_name="log/connect4.log")
logger = logging.getLogger('find_lr')
np.set_printoptions(suppress=True, precision=6)
# set the random seed
random.seed(a=None, version=2)
np.random.seed(seed=None)
# parameters
config.batch_size = 256
config.weight_decay = 1e-4
config.n_blocks = 10
config.n_filters = 128
epochs = 8
csv_training_set_path = "../data_sets/training_set.csv"
csv_test_set_path = "../data_sets/training_set.csv"
# load the test set
csv_test_set = pd.read_csv(csv_test_set_path, sep=",")
# load the training set
csv_training_set = pd.read_csv(csv_training_set_path, sep=",")
sample_count = supervised.weak_sample_size(csv_training_set)
logger.info("the training set contains {} weak training examples".format(sample_count))
# create the training data
training_set = supervised.create_training_set(csv_training_set)
logger.info("finished parsing the training set, size: {}".format(training_set.__len__()))
# define the parameters for the training
params = {
'batch_size': config.batch_size,
'shuffle': True,
'num_workers': 2,
'pin_memory': True,
'drop_last': True,
}
# generators
training_generator = data.DataLoader(training_set, **params)
# train the neural network
learning_rates = []
prediction_errors = []
value_errors = []
for power in np.arange(-6, 0.1, 0.25):
config.learning_rate = 10**power
prediction_error, value_error = train_net(epochs, training_generator, csv_test_set)
learning_rates.append(config.learning_rate)
prediction_errors.append(prediction_error)
value_errors.append(value_error)
# save the results
np.save("learning_rates.npy", np.array(learning_rates))
np.save("lr_policy_error.npy", np.array(prediction_errors))
np.save("lr_value_error.npy", np.array(value_errors))
# set the style of the plot
plt.style.use('seaborn-dark-palette')
# policy prediction error
fig1 = plt.figure(1)
plt.semilogx(learning_rates, prediction_errors)
axes = plt.gca()
axes.grid(True, color=(0.9, 0.9, 0.9))
plt.title("Move Prediction Error")
plt.xlabel("Learning Rate")
plt.ylabel("Prediciton Error")
fig1.show()
# value prediction error
fig2 = plt.figure(2)
plt.semilogx(learning_rates, value_errors)
axes = plt.gca()
axes.grid(True, color=(0.9, 0.9, 0.9))
plt.title("Position Value Error")
plt.xlabel("Learning Rate")
plt.ylabel("Value Error")
fig2.show()
plt.show() | def main_lr():
"""
finds the min and the max learning rate. train the network for a few epochs and plot the
prediction accuracy vs the learning rate. min learning rate is the rate where the prediction accuracy
starts to increase and the max learning rate is the lr where the prediction accuracy slows down
or even deteriorates. The batch size and all other hyperparameters should be the same for
this test and the actual training. This test can be done with a smaller subset of the data set
if the full data set is too large.
:return:
"""
# The logger
utils.init_logger(logging.DEBUG, file_name="log/connect4.log")
logger = logging.getLogger('find_lr')
np.set_printoptions(suppress=True, precision=6)
# set the random seed
random.seed(a=None, version=2)
np.random.seed(seed=None)
# parameters
config.batch_size = 256
config.weight_decay = 1e-4
config.n_blocks = 10
config.n_filters = 128
epochs = 8
csv_training_set_path = "../data_sets/training_set.csv"
csv_test_set_path = "../data_sets/training_set.csv"
# load the test set
csv_test_set = pd.read_csv(csv_test_set_path, sep=",")
# load the training set
csv_training_set = pd.read_csv(csv_training_set_path, sep=",")
sample_count = supervised.weak_sample_size(csv_training_set)
logger.info("the training set contains {} weak training examples".format(sample_count))
# create the training data
training_set = supervised.create_training_set(csv_training_set)
logger.info("finished parsing the training set, size: {}".format(training_set.__len__()))
# define the parameters for the training
params = {
'batch_size': config.batch_size,
'shuffle': True,
'num_workers': 2,
'pin_memory': True,
'drop_last': True,
}
# generators
training_generator = data.DataLoader(training_set, **params)
# train the neural network
learning_rates = []
prediction_errors = []
value_errors = []
for power in np.arange(-6, 0.1, 0.25):
config.learning_rate = 10**power
prediction_error, value_error = train_net(epochs, training_generator, csv_test_set)
learning_rates.append(config.learning_rate)
prediction_errors.append(prediction_error)
value_errors.append(value_error)
# save the results
np.save("learning_rates.npy", np.array(learning_rates))
np.save("lr_policy_error.npy", np.array(prediction_errors))
np.save("lr_value_error.npy", np.array(value_errors))
# set the style of the plot
plt.style.use('seaborn-dark-palette')
# policy prediction error
fig1 = plt.figure(1)
plt.semilogx(learning_rates, prediction_errors)
axes = plt.gca()
axes.grid(True, color=(0.9, 0.9, 0.9))
plt.title("Move Prediction Error")
plt.xlabel("Learning Rate")
plt.ylabel("Prediciton Error")
fig1.show()
# value prediction error
fig2 = plt.figure(2)
plt.semilogx(learning_rates, value_errors)
axes = plt.gca()
axes.grid(True, color=(0.9, 0.9, 0.9))
plt.title("Position Value Error")
plt.xlabel("Learning Rate")
plt.ylabel("Value Error")
fig2.show()
plt.show() |
Python | def train_net(epoch_count, training_generator, csv_test_set):
"""
trains the neural network a few times and returns the value and prediciton error
:param epoch_count: the number of epochs to train the neural network
:param training_generator: the torch training generator
:param csv_test_set: the test set on which the network is tested
:return: prediction error, value error
"""
logger = logging.getLogger('Sup Learning')
# create a new network to train
network = networks.ResNet(config.learning_rate, config.n_blocks, config.n_filters, config.weight_decay)
network = data_storage.net_to_device(network, config.training_device)
# execute the training by looping over all epochs
network.train()
for epoch in range(epoch_count):
# training
for state_batch, value_batch, policy_batch in training_generator:
# send the data to the gpu
state_batch = state_batch.to(config.training_device)
value_batch = value_batch.to(config.training_device)
policy_batch = policy_batch.to(config.training_device)
# execute one training step
_, _ = network.train_step(state_batch, policy_batch, value_batch)
# evaluation
pred_error, val_error = evaluation.net_prediction_error(network, csv_test_set)
logger.debug("learning rate {}, prediction error: {}, value-error: {}".format(config.learning_rate, pred_error, val_error))
return pred_error, val_error | def train_net(epoch_count, training_generator, csv_test_set):
"""
trains the neural network a few times and returns the value and prediciton error
:param epoch_count: the number of epochs to train the neural network
:param training_generator: the torch training generator
:param csv_test_set: the test set on which the network is tested
:return: prediction error, value error
"""
logger = logging.getLogger('Sup Learning')
# create a new network to train
network = networks.ResNet(config.learning_rate, config.n_blocks, config.n_filters, config.weight_decay)
network = data_storage.net_to_device(network, config.training_device)
# execute the training by looping over all epochs
network.train()
for epoch in range(epoch_count):
# training
for state_batch, value_batch, policy_batch in training_generator:
# send the data to the gpu
state_batch = state_batch.to(config.training_device)
value_batch = value_batch.to(config.training_device)
policy_batch = policy_batch.to(config.training_device)
# execute one training step
_, _ = network.train_step(state_batch, policy_batch, value_batch)
# evaluation
pred_error, val_error = evaluation.net_prediction_error(network, csv_test_set)
logger.debug("learning rate {}, prediction error: {}, value-error: {}".format(config.learning_rate, pred_error, val_error))
return pred_error, val_error |
Python | def create_state_dict():
"""
fills the state dict with the white score values
:return:
"""
global state_dict
if len(state_dict) > 0:
return
# load the state dict form file if it is already present
if os.path.exists(state_dict_path):
with open(state_dict_path, 'rb') as input:
state_dict = pickle.load(input)
logger.debug("loaded the state dict from file")
return
logger.debug("start to fill the minimax state dict")
start_time = time.time()
board = tic_tac_toe.TicTacToeBoard()
# fill in the first state
state = board.state_id()
# go through the whole game
score = minimax(board, board.player, True)
state_dict[state] = score
end_time = time.time()
elapsed_time = end_time - start_time
logger.debug("elapsed time to fill the state dict: {}".format(elapsed_time))
logger.debug("size of the state dict: {}".format(len(state_dict)))
# dump the state dict to a file
with open(state_dict_path, 'wb') as output:
pickle.dump(state_dict, output, pickle.HIGHEST_PROTOCOL) | def create_state_dict():
"""
fills the state dict with the white score values
:return:
"""
global state_dict
if len(state_dict) > 0:
return
# load the state dict form file if it is already present
if os.path.exists(state_dict_path):
with open(state_dict_path, 'rb') as input:
state_dict = pickle.load(input)
logger.debug("loaded the state dict from file")
return
logger.debug("start to fill the minimax state dict")
start_time = time.time()
board = tic_tac_toe.TicTacToeBoard()
# fill in the first state
state = board.state_id()
# go through the whole game
score = minimax(board, board.player, True)
state_dict[state] = score
end_time = time.time()
elapsed_time = end_time - start_time
logger.debug("elapsed time to fill the state dict: {}".format(elapsed_time))
logger.debug("size of the state dict: {}".format(len(state_dict)))
# dump the state dict to a file
with open(state_dict_path, 'wb') as output:
pickle.dump(state_dict, output, pickle.HIGHEST_PROTOCOL) |
Python | def minimax(board, player, fill_state_dict = False):
"""
optimally solves tic tac toe in every board position. this is an implementation of the
minimax algorithm. it fills the state dict with the seen states
:param board: the tic tac toe board
:param player: the current player
:return: the score of the current player
1: win
0: draw
-1: loss
"""
if board.terminal:
reward = board.reward()
if player == CONST.BLACK:
reward = -reward
return reward
move = -1
score = -2
for a in board.legal_actions():
board_clone = board.clone()
current_player = board_clone.player
board_clone.execute_action(a) # try the move
move_score = -minimax(board_clone, board_clone.player, fill_state_dict) # get the score for the opponent
# fill the state dict
if fill_state_dict:
white_score = move_score if current_player == CONST.WHITE else -move_score
state_number = board_clone.state_id()
state_dict[state_number] = white_score
if move_score > score:
score = move_score
move = a
if move == -1:
return 0
return score | def minimax(board, player, fill_state_dict = False):
"""
optimally solves tic tac toe in every board position. this is an implementation of the
minimax algorithm. it fills the state dict with the seen states
:param board: the tic tac toe board
:param player: the current player
:return: the score of the current player
1: win
0: draw
-1: loss
"""
if board.terminal:
reward = board.reward()
if player == CONST.BLACK:
reward = -reward
return reward
move = -1
score = -2
for a in board.legal_actions():
board_clone = board.clone()
current_player = board_clone.player
board_clone.execute_action(a) # try the move
move_score = -minimax(board_clone, board_clone.player, fill_state_dict) # get the score for the opponent
# fill the state dict
if fill_state_dict:
white_score = move_score if current_player == CONST.WHITE else -move_score
state_number = board_clone.state_id()
state_dict[state_number] = white_score
if move_score > score:
score = move_score
move = a
if move == -1:
return 0
return score |
Python | def play_minimax_games(net, game_count, mcts_sim_count, network_color):
"""
returns the error percentage of the optimal move prediction by the network
the network and the mcts are used to predict the move to play
:param net: the network
:param game_count: the number of games to play
:param mcts_sim_count: the number of monte carlo simulations
:param network_color: the color of the network
:return: the score of the network vs the minimax player
"""
mcts_list = [mcts.MCTS(tic_tac_toe.TicTacToeBoard()) for _ in range(game_count)]
player = CONST.WHITE
all_terminated = False
while not all_terminated:
# make a move with the az agent
if player == network_color:
# run all mcts simulations
mcts.run_simulations(mcts_list, mcts_sim_count, net, 0)
# paly the best move suggested by the mcts policy
for i_mcts_ctx, mcts_ctx in enumerate(mcts_list):
# skip terminated games
if mcts_ctx.board.is_terminal():
continue
policy = mcts_list[i_mcts_ctx].policy_from_state(mcts_ctx.board.state_id(), 0)
move = np.where(policy == 1)[0][0]
mcts_ctx.board.execute_action(move)
# make an optimal minimax move
else:
for mcts_ctx in mcts_list:
# skip terminated games
if mcts_ctx.board.is_terminal():
continue
move = mcts_ctx.board.minimax_move()
mcts_ctx.board.execute_action(move)
# swap the player
player = CONST.WHITE if player == CONST.BLACK else CONST.BLACK
# check if all games are terminated
all_terminated = True
for mcts_ctx in mcts_list:
if not mcts_ctx.board.is_terminal():
all_terminated = False
break
# extract the score from all boards
tot_score = 0
for mcts_ctx in mcts_list:
score = mcts_ctx.board.white_score() if network_color == CONST.WHITE else mcts_ctx.board.black_score()
tot_score += score
tot_score /= game_count
return tot_score | def play_minimax_games(net, game_count, mcts_sim_count, network_color):
"""
returns the error percentage of the optimal move prediction by the network
the network and the mcts are used to predict the move to play
:param net: the network
:param game_count: the number of games to play
:param mcts_sim_count: the number of monte carlo simulations
:param network_color: the color of the network
:return: the score of the network vs the minimax player
"""
mcts_list = [mcts.MCTS(tic_tac_toe.TicTacToeBoard()) for _ in range(game_count)]
player = CONST.WHITE
all_terminated = False
while not all_terminated:
# make a move with the az agent
if player == network_color:
# run all mcts simulations
mcts.run_simulations(mcts_list, mcts_sim_count, net, 0)
# paly the best move suggested by the mcts policy
for i_mcts_ctx, mcts_ctx in enumerate(mcts_list):
# skip terminated games
if mcts_ctx.board.is_terminal():
continue
policy = mcts_list[i_mcts_ctx].policy_from_state(mcts_ctx.board.state_id(), 0)
move = np.where(policy == 1)[0][0]
mcts_ctx.board.execute_action(move)
# make an optimal minimax move
else:
for mcts_ctx in mcts_list:
# skip terminated games
if mcts_ctx.board.is_terminal():
continue
move = mcts_ctx.board.minimax_move()
mcts_ctx.board.execute_action(move)
# swap the player
player = CONST.WHITE if player == CONST.BLACK else CONST.BLACK
# check if all games are terminated
all_terminated = True
for mcts_ctx in mcts_list:
if not mcts_ctx.board.is_terminal():
all_terminated = False
break
# extract the score from all boards
tot_score = 0
for mcts_ctx in mcts_list:
score = mcts_ctx.board.white_score() if network_color == CONST.WHITE else mcts_ctx.board.black_score()
tot_score += score
tot_score /= game_count
return tot_score |
Python | def train_step(self, batch, target_p, target_v):
"""
executes one training step of the neural network
:param batch: tensor with data [batchSize, nn_input_size]
:param target_p: policy target
:param target_v: value target
:return: policy loss, value loss
"""
# send the tensors to the used device
data = batch.to(config.training_device)
self.optimizer.zero_grad() # reset the gradients to zero in every epoch
prediction_p, prediction_v = self(data) # pass the data through the network to get the prediction
# create the label
criterion_v = nn.MSELoss()
# define the loss
loss_p = -torch.sum(target_p * torch.log(1e-8 + prediction_p), 1).mean()
loss_v = criterion_v(prediction_v, target_v)
loss = loss_p + loss_v
loss.backward() # back propagation
self.optimizer.step() # make one optimization step
return loss_p, loss_v | def train_step(self, batch, target_p, target_v):
"""
executes one training step of the neural network
:param batch: tensor with data [batchSize, nn_input_size]
:param target_p: policy target
:param target_v: value target
:return: policy loss, value loss
"""
# send the tensors to the used device
data = batch.to(config.training_device)
self.optimizer.zero_grad() # reset the gradients to zero in every epoch
prediction_p, prediction_v = self(data) # pass the data through the network to get the prediction
# create the label
criterion_v = nn.MSELoss()
# define the loss
loss_p = -torch.sum(target_p * torch.log(1e-8 + prediction_p), 1).mean()
loss_v = criterion_v(prediction_v, target_v)
loss = loss_p + loss_v
loss.backward() # back propagation
self.optimizer.step() # make one optimization step
return loss_p, loss_v |
Python | def update_scheduler(self, step_size):
"""
initializes a new scheduler, this method is needed when the size of the training data changes
:param step_size: step size of the cyclical learning rate
:return:
"""
self.scheduler = torch.optim.lr_scheduler.CyclicLR(
self.optimizer,
step_size_up=step_size,
base_lr=config.min_lr,
max_lr=config.max_lr,
cycle_momentum=False) | def update_scheduler(self, step_size):
"""
initializes a new scheduler, this method is needed when the size of the training data changes
:param step_size: step size of the cyclical learning rate
:return:
"""
self.scheduler = torch.optim.lr_scheduler.CyclicLR(
self.optimizer,
step_size_up=step_size,
base_lr=config.min_lr,
max_lr=config.max_lr,
cycle_momentum=False) |
Python | def train_cyclical_step(self, batch, target_p, target_v):
"""
executes one training step of the neural network with a cyclic learning rate
:param batch: tensor with data [batchSize, nn_input_size]
:param target_p: policy target
:param target_v: value target
:return: policy loss, value loss
"""
# send the tensors to the used device
data = batch.to(config.training_device)
self.optimizer.zero_grad() # reset the gradients to zero in every epoch
prediction_p, prediction_v = self(data) # pass the data through the network to get the prediction
# create the label
target_p = target_p.to(config.training_device)
target_v = target_v.to(config.training_device)
criterion_v = nn.MSELoss()
# define the loss
loss_p = - torch.sum(target_p * torch.log(1e-8 + prediction_p), 1).mean()
loss_v = criterion_v(prediction_v, target_v)
loss = loss_p + loss_v
loss.backward() # back propagation
# make one optimization step
self.optimizer.step()
self.scheduler.step()
return loss_p, loss_v | def train_cyclical_step(self, batch, target_p, target_v):
"""
executes one training step of the neural network with a cyclic learning rate
:param batch: tensor with data [batchSize, nn_input_size]
:param target_p: policy target
:param target_v: value target
:return: policy loss, value loss
"""
# send the tensors to the used device
data = batch.to(config.training_device)
self.optimizer.zero_grad() # reset the gradients to zero in every epoch
prediction_p, prediction_v = self(data) # pass the data through the network to get the prediction
# create the label
target_p = target_p.to(config.training_device)
target_v = target_v.to(config.training_device)
criterion_v = nn.MSELoss()
# define the loss
loss_p = - torch.sum(target_p * torch.log(1e-8 + prediction_p), 1).mean()
loss_v = criterion_v(prediction_v, target_v)
loss = loss_p + loss_v
loss.backward() # back propagation
# make one optimization step
self.optimizer.step()
self.scheduler.step()
return loss_p, loss_v |
Python | def state_id(self):
"""
uses the cantor pairing function to create one unique id for the state form the two integers representing the
board state
"""
# state = "{}_{}".format(self.position, self.disk_mask)
state = self.position + self.disk_mask
return state | def state_id(self):
"""
uses the cantor pairing function to create one unique id for the state form the two integers representing the
board state
"""
# state = "{}_{}".format(self.position, self.disk_mask)
state = self.position + self.disk_mask
return state |
Python | def execute_action(self, column):
"""
plays the passed move on the board
:param column: integer that defines the column in which the disk is played
:return:
"""
column = int(column)
# old_mask = self.disk_mask
self.position = self.position ^ self.disk_mask # get position of the opponent
self.disk_mask = self.disk_mask | (self.disk_mask + (1 << (column * 7)))
self.move_count += 1
self.check_win(self.position ^ self.disk_mask)
self.player = self.move_count % 2
if self.move_count == 42:
self.terminal = True | def execute_action(self, column):
"""
plays the passed move on the board
:param column: integer that defines the column in which the disk is played
:return:
"""
column = int(column)
# old_mask = self.disk_mask
self.position = self.position ^ self.disk_mask # get position of the opponent
self.disk_mask = self.disk_mask | (self.disk_mask + (1 << (column * 7)))
self.move_count += 1
self.check_win(self.position ^ self.disk_mask)
self.player = self.move_count % 2
if self.move_count == 42:
self.terminal = True |
Python | def mirror(self):
"""
returns a position that is mirrored on the y - axis
:return:
"""
mirrored_position = self.clone()
mirrored_position.position = self.mirror_board_number(self.position)
mirrored_position.disk_mask = self.mirror_board_number(self.disk_mask)
return mirrored_position | def mirror(self):
"""
returns a position that is mirrored on the y - axis
:return:
"""
mirrored_position = self.clone()
mirrored_position.position = self.mirror_board_number(self.position)
mirrored_position.disk_mask = self.mirror_board_number(self.disk_mask)
return mirrored_position |
Python | def mirror_board_number(self, number):
"""
mirrors the passed number representing a board
:param number: any number representing some board configuration (position, board mask, disk maksk etc)
:return:
"""
mirrored_number = 0
# left half of the board
for col in range((Config.board_width+1) // 2 - 1):
mirrored_number += (number & column_mask(col)) << ((Config.board_width - (2 * col + 1)) * (Config.board_height + 1))
# right half of the board
for col in range((Config.board_width+1) // 2 - 1):
mirrored_number += (number & column_mask(Config.board_width - col - 1)) >> ((Config.board_width - (2 * col + 1)) * (Config.board_height + 1))
# center row
if Config.board_width % 2 != 0:
col = Config.board_width // 2
mirrored_number += (number & column_mask(col))
return mirrored_number | def mirror_board_number(self, number):
"""
mirrors the passed number representing a board
:param number: any number representing some board configuration (position, board mask, disk maksk etc)
:return:
"""
mirrored_number = 0
# left half of the board
for col in range((Config.board_width+1) // 2 - 1):
mirrored_number += (number & column_mask(col)) << ((Config.board_width - (2 * col + 1)) * (Config.board_height + 1))
# right half of the board
for col in range((Config.board_width+1) // 2 - 1):
mirrored_number += (number & column_mask(Config.board_width - col - 1)) >> ((Config.board_width - (2 * col + 1)) * (Config.board_height + 1))
# center row
if Config.board_width % 2 != 0:
col = Config.board_width // 2
mirrored_number += (number & column_mask(col))
return mirrored_number |
Python | def from_board_matrix(self, board):
"""
creates the bit board from the passed board representation
:param board: games represented as one board
:return:
"""
self.disk_mask = 0
self.position = 0
count = 0
self.move_count = 0
for x in range(7):
for y in range(5, -1, -1):
if board[y, x]:
self.disk_mask += 1 << (count + x)
self.move_count += 1
if board[y, x] == CONST.WHITE + 1:
self.position += 1 << (count + x)
count += 1
self.player = self.move_count % 2
if self.player == CONST.BLACK:
self.position = self.position ^ self.disk_mask
# check the games states
self.check_win(self.position) | def from_board_matrix(self, board):
"""
creates the bit board from the passed board representation
:param board: games represented as one board
:return:
"""
self.disk_mask = 0
self.position = 0
count = 0
self.move_count = 0
for x in range(7):
for y in range(5, -1, -1):
if board[y, x]:
self.disk_mask += 1 << (count + x)
self.move_count += 1
if board[y, x] == CONST.WHITE + 1:
self.position += 1 << (count + x)
count += 1
self.player = self.move_count % 2
if self.player == CONST.BLACK:
self.position = self.position ^ self.disk_mask
# check the games states
self.check_win(self.position) |
Python | def from_position(self, position, disk_mask):
"""
creates a position from the integer representations
:param position: position of the current player
:param disk_mask: all disks that are set
:return:
"""
self.position = position
self.disk_mask = disk_mask
self.move_count = utils.popcount(disk_mask)
self.player = self.move_count % 2
# check the games states
self.check_win(self.position) | def from_position(self, position, disk_mask):
"""
creates a position from the integer representations
:param position: position of the current player
:param disk_mask: all disks that are set
:return:
"""
self.position = position
self.disk_mask = disk_mask
self.move_count = utils.popcount(disk_mask)
self.player = self.move_count % 2
# check the games states
self.check_win(self.position) |
Python | def check_win(self, position):
"""
checks if the current player has won the games
:param position: the position that is checked
:return:
"""
if self.four_in_a_row(position):
self.terminal = True
self.score = 1 if self.player == CONST.WHITE else -1 | def check_win(self, position):
"""
checks if the current player has won the games
:param position: the position that is checked
:return:
"""
if self.four_in_a_row(position):
self.terminal = True
self.score = 1 if self.player == CONST.WHITE else -1 |
Python | def four_in_a_row(self, position):
"""
checks if the passed player has a row of four
:param position: the position that is checked
:return:
"""
# vertical
temp = position & (position >> 1)
if temp & (temp >> 2):
return True
# horizontal
temp = position & (position >> 7)
if temp & (temp >> 14):
return True
# diagonal /
temp = position & (position >> 8)
if temp & (temp >> 16):
return True
# diagonal \
temp = position & (position >> 6)
if temp & (temp >> 12):
return True
# no row of 4 found
return False | def four_in_a_row(self, position):
"""
checks if the passed player has a row of four
:param position: the position that is checked
:return:
"""
# vertical
temp = position & (position >> 1)
if temp & (temp >> 2):
return True
# horizontal
temp = position & (position >> 7)
if temp & (temp >> 14):
return True
# diagonal /
temp = position & (position >> 8)
if temp & (temp >> 16):
return True
# diagonal \
temp = position & (position >> 6)
if temp & (temp >> 12):
return True
# no row of 4 found
return False |
Python | def column_mask(col):
"""
bitmask with all cells of the passed column
:param col: board column
:return:
"""
return ((1 << Config.board_height) - 1) << col * (Config.board_height + 1) | def column_mask(col):
"""
bitmask with all cells of the passed column
:param col: board column
:return:
"""
return ((1 << Config.board_height) - 1) << col * (Config.board_height + 1) |
Python | def net_prediction_error(net, test_set):
"""
returns the error percentage of the optimal move prediction by the network
only the network is used to predict the correct move
:param net: the network
:param test_set: the test set
:return: error percentage, mean squared value error
"""
tot_positions = test_set.shape[0] # test_set.shape[0] # the total number of positions in the test set
correct_predictions = 0 # the correctly predicted positions in the test set
tot_predictions = 0
avg_mse_value = 0 # to track the mean squared value error
batch_size = 512
batch_list = []
idx_list = []
board_list = []
for j in range(tot_positions):
# ignore losing positions
if test_set["weak_score"][j] < 0:
continue
# load the board
board = connect4.Connect4Board()
board.from_position(test_set["position"][j], test_set["disk_mask"][j])
board_list.append(board)
# get the white perspective
sample, _ = board.white_perspective()
batch_list.append(sample)
idx_list.append(j)
if len(batch_list) == batch_size or j == tot_positions - 1:
batch = torch.Tensor(batch_list).to(torch_device)
policy, value = net(batch)
for i_batch in range(policy.shape[0]):
_, move = policy[i_batch].max(0)
move = move.item()
# check if the move is part of the optimal moves
idx = idx_list[i_batch]
if str(move) in str(test_set["weak_moves"][idx]):
correct_predictions += 1
tot_predictions += 1
# value error
correct_value = test_set["weak_score"][idx]
net_value = value[i_batch].item()
mse_value = (correct_value - net_value)**2
avg_mse_value += mse_value
batch_list = []
idx_list = []
board_list = []
# calculate the prediction error
pred_error = (tot_predictions - correct_predictions) / tot_predictions * 100
avg_mse_value /= tot_predictions
return pred_error, avg_mse_value | def net_prediction_error(net, test_set):
"""
returns the error percentage of the optimal move prediction by the network
only the network is used to predict the correct move
:param net: the network
:param test_set: the test set
:return: error percentage, mean squared value error
"""
tot_positions = test_set.shape[0] # test_set.shape[0] # the total number of positions in the test set
correct_predictions = 0 # the correctly predicted positions in the test set
tot_predictions = 0
avg_mse_value = 0 # to track the mean squared value error
batch_size = 512
batch_list = []
idx_list = []
board_list = []
for j in range(tot_positions):
# ignore losing positions
if test_set["weak_score"][j] < 0:
continue
# load the board
board = connect4.Connect4Board()
board.from_position(test_set["position"][j], test_set["disk_mask"][j])
board_list.append(board)
# get the white perspective
sample, _ = board.white_perspective()
batch_list.append(sample)
idx_list.append(j)
if len(batch_list) == batch_size or j == tot_positions - 1:
batch = torch.Tensor(batch_list).to(torch_device)
policy, value = net(batch)
for i_batch in range(policy.shape[0]):
_, move = policy[i_batch].max(0)
move = move.item()
# check if the move is part of the optimal moves
idx = idx_list[i_batch]
if str(move) in str(test_set["weak_moves"][idx]):
correct_predictions += 1
tot_predictions += 1
# value error
correct_value = test_set["weak_score"][idx]
net_value = value[i_batch].item()
mse_value = (correct_value - net_value)**2
avg_mse_value += mse_value
batch_list = []
idx_list = []
board_list = []
# calculate the prediction error
pred_error = (tot_predictions - correct_predictions) / tot_predictions * 100
avg_mse_value /= tot_predictions
return pred_error, avg_mse_value |
Python | def mcts_prediction_error(net, test_set, mcts_sim_count, alpha_dirich, temp):
"""
returns the error percentage of the optimal move prediction by the network
the network and the mcts are used to predict the move to play
:param net: the network
:param test_set: the test set
:param mcts_sim_count: the number of monte carlo simulations
:param alpha_dirich: dirichlet noise parameter
:param temp: the temperature
:return: error percentage
"""
tot_positions = test_set.shape[0] # test_set.shape[0] # the total number of positions in the test set
correct_predictions = 0 # the correctly predicted positions in the test set
tot_predictions = 0
batch_size = 512
idx_list = []
mcts_list = []
for j in range(tot_positions):
# ignore losing positions
if test_set["weak_score"][j] < 0:
continue
# load the board
board = connect4.Connect4Board()
board.from_position(test_set["position"][j], test_set["disk_mask"][j])
mcts_list.append(MCTS(board))
# save the index
idx_list.append(j)
if len(mcts_list) == batch_size or j == tot_positions - 1:
# =========================================== execute the mcts simulations for all boards
mcts.run_simulations(mcts_list, mcts_sim_count, net, alpha_dirich)
# =========================================== get the policy from the mcts
for i_mcts_ctx, mcts_ctx in enumerate(mcts_list):
policy = mcts_list[i_mcts_ctx].policy_from_state(mcts_ctx.board.state_id(), temp)
move = np.argmax(policy)
# check if the move is part of the optimal moves
idx = idx_list[i_mcts_ctx]
if str(move) in str(test_set["weak_moves"][idx]):
correct_predictions += 1
tot_predictions += 1
idx_list = []
mcts_list = []
# calculate the prediction error
error = (tot_predictions - correct_predictions) / tot_predictions * 100
return error | def mcts_prediction_error(net, test_set, mcts_sim_count, alpha_dirich, temp):
"""
returns the error percentage of the optimal move prediction by the network
the network and the mcts are used to predict the move to play
:param net: the network
:param test_set: the test set
:param mcts_sim_count: the number of monte carlo simulations
:param alpha_dirich: dirichlet noise parameter
:param temp: the temperature
:return: error percentage
"""
tot_positions = test_set.shape[0] # test_set.shape[0] # the total number of positions in the test set
correct_predictions = 0 # the correctly predicted positions in the test set
tot_predictions = 0
batch_size = 512
idx_list = []
mcts_list = []
for j in range(tot_positions):
# ignore losing positions
if test_set["weak_score"][j] < 0:
continue
# load the board
board = connect4.Connect4Board()
board.from_position(test_set["position"][j], test_set["disk_mask"][j])
mcts_list.append(MCTS(board))
# save the index
idx_list.append(j)
if len(mcts_list) == batch_size or j == tot_positions - 1:
# =========================================== execute the mcts simulations for all boards
mcts.run_simulations(mcts_list, mcts_sim_count, net, alpha_dirich)
# =========================================== get the policy from the mcts
for i_mcts_ctx, mcts_ctx in enumerate(mcts_list):
policy = mcts_list[i_mcts_ctx].policy_from_state(mcts_ctx.board.state_id(), temp)
move = np.argmax(policy)
# check if the move is part of the optimal moves
idx = idx_list[i_mcts_ctx]
if str(move) in str(test_set["weak_moves"][idx]):
correct_predictions += 1
tot_predictions += 1
idx_list = []
mcts_list = []
# calculate the prediction error
error = (tot_predictions - correct_predictions) / tot_predictions * 100
return error |
Python | def net_vs_net_prediction(net1, net2, game_count, game_class):
"""
plays the two passed network against each other, in half of the games net1 is white and in the other half net2
is white. to get the policy only the network prediction is used without any mcts simulations. the move to play
is sampled from the policy distribution. playing deterministically makes no sense as the same games would just be
repeated over and over again
:param net1: network 1
:param net2: network 2
:param game_count: the number of games to play in total, half of the games are played as white and the other half as black
:param game_class: the class of the game
:return: score of net1, the score is in the range of 0-1 where:
0: loss
0.5: draw
1: win
"""
half_count = game_count // 2
board_wrapper_list = []
for i in range(2*half_count):
if i < half_count:
board_wrapper_list.append(BoardWrapper(game_class(), CONST.WHITE)) # net1 is white
else:
board_wrapper_list.append(BoardWrapper(game_class(), CONST.BLACK)) # net2 is white
all_terminated = False
while not all_terminated:
batch_list1 = []
batch_list2 = []
idx_list1 = []
idx_list2 = []
for idx, board_wrapper in enumerate(board_wrapper_list):
# skip finished games
if board_wrapper.board.is_terminal():
continue
# get the white perspective
sample, player = board_wrapper.board.white_perspective()
if player == CONST.WHITE:
if board_wrapper.white_network_number == 1:
batch_list1.append(sample)
idx_list1.append(idx)
else:
batch_list2.append(sample)
idx_list2.append(idx)
else:
if board_wrapper.white_network_number == 1:
batch_list2.append(sample)
idx_list2.append(idx)
else:
batch_list1.append(sample)
idx_list1.append(idx)
# get the policy form the network
if len(batch_list1) > 0:
batch1 = torch.Tensor(batch_list1).to(torch_device)
policy1, _ = net1(batch1)
policy1 = policy1.detach().cpu().numpy()
else:
policy1 = None
if len(batch_list2) > 0:
batch2 = torch.Tensor(batch_list2).to(torch_device)
policy2, _ = net2(batch2)
policy2 = policy2.detach().cpu().numpy()
else:
policy2 = None
if policy1 is not None:
for i_batch in range(policy1.shape[0]):
# set the illegal moves to 0
policy = policy1[i_batch]
idx = idx_list1[i_batch]
illegal_moves = board_wrapper_list[idx].board.illegal_actions()
policy[illegal_moves] = 0
# choose an action according to the probability distribution of all legal actions
policy /= np.sum(policy)
action = np.random.choice(len(policy), p=policy)
# execute the best legal action
board_wrapper_list[idx].board.execute_action(action)
if policy2 is not None:
for i_batch in range(policy2.shape[0]):
# set the illegal moves to 0
policy = policy2[i_batch]
idx = idx_list2[i_batch]
illegal_moves = board_wrapper_list[idx].board.illegal_actions()
policy[illegal_moves] = 0
# choose an action according to the probability distribution of all legal actions
policy /= np.sum(policy)
action = np.random.choice(len(policy), p=policy)
# execute the best legal action
board_wrapper_list[idx].board.execute_action(action)
# check if all boards are terminated
all_terminated = True
for board_wrapper in board_wrapper_list:
if not board_wrapper.board.is_terminal():
all_terminated = False
break
# calculate the score of network 1
score = 0
for board_wrapper in board_wrapper_list:
reward = (board_wrapper.board.reward() + 1) / 2
if board_wrapper.white_network_number == 1:
score += reward # net1 is white
else:
score += (1 - reward) # net1 is black
score = score / (2*half_count)
return score | def net_vs_net_prediction(net1, net2, game_count, game_class):
"""
plays the two passed network against each other, in half of the games net1 is white and in the other half net2
is white. to get the policy only the network prediction is used without any mcts simulations. the move to play
is sampled from the policy distribution. playing deterministically makes no sense as the same games would just be
repeated over and over again
:param net1: network 1
:param net2: network 2
:param game_count: the number of games to play in total, half of the games are played as white and the other half as black
:param game_class: the class of the game
:return: score of net1, the score is in the range of 0-1 where:
0: loss
0.5: draw
1: win
"""
half_count = game_count // 2
board_wrapper_list = []
for i in range(2*half_count):
if i < half_count:
board_wrapper_list.append(BoardWrapper(game_class(), CONST.WHITE)) # net1 is white
else:
board_wrapper_list.append(BoardWrapper(game_class(), CONST.BLACK)) # net2 is white
all_terminated = False
while not all_terminated:
batch_list1 = []
batch_list2 = []
idx_list1 = []
idx_list2 = []
for idx, board_wrapper in enumerate(board_wrapper_list):
# skip finished games
if board_wrapper.board.is_terminal():
continue
# get the white perspective
sample, player = board_wrapper.board.white_perspective()
if player == CONST.WHITE:
if board_wrapper.white_network_number == 1:
batch_list1.append(sample)
idx_list1.append(idx)
else:
batch_list2.append(sample)
idx_list2.append(idx)
else:
if board_wrapper.white_network_number == 1:
batch_list2.append(sample)
idx_list2.append(idx)
else:
batch_list1.append(sample)
idx_list1.append(idx)
# get the policy form the network
if len(batch_list1) > 0:
batch1 = torch.Tensor(batch_list1).to(torch_device)
policy1, _ = net1(batch1)
policy1 = policy1.detach().cpu().numpy()
else:
policy1 = None
if len(batch_list2) > 0:
batch2 = torch.Tensor(batch_list2).to(torch_device)
policy2, _ = net2(batch2)
policy2 = policy2.detach().cpu().numpy()
else:
policy2 = None
if policy1 is not None:
for i_batch in range(policy1.shape[0]):
# set the illegal moves to 0
policy = policy1[i_batch]
idx = idx_list1[i_batch]
illegal_moves = board_wrapper_list[idx].board.illegal_actions()
policy[illegal_moves] = 0
# choose an action according to the probability distribution of all legal actions
policy /= np.sum(policy)
action = np.random.choice(len(policy), p=policy)
# execute the best legal action
board_wrapper_list[idx].board.execute_action(action)
if policy2 is not None:
for i_batch in range(policy2.shape[0]):
# set the illegal moves to 0
policy = policy2[i_batch]
idx = idx_list2[i_batch]
illegal_moves = board_wrapper_list[idx].board.illegal_actions()
policy[illegal_moves] = 0
# choose an action according to the probability distribution of all legal actions
policy /= np.sum(policy)
action = np.random.choice(len(policy), p=policy)
# execute the best legal action
board_wrapper_list[idx].board.execute_action(action)
# check if all boards are terminated
all_terminated = True
for board_wrapper in board_wrapper_list:
if not board_wrapper.board.is_terminal():
all_terminated = False
break
# calculate the score of network 1
score = 0
for board_wrapper in board_wrapper_list:
reward = (board_wrapper.board.reward() + 1) / 2
if board_wrapper.white_network_number == 1:
score += reward # net1 is white
else:
score += (1 - reward) # net1 is black
score = score / (2*half_count)
return score |
Python | def mcts_info(self):
"""
returns the information needed for the next mcts simulations
:return: the mcts object
1 or 2 depending on the network to use
"""
if self.player1_color == 1:
if self.board.current_player() == CONST.WHITE:
return self.mcts_ctx1, 1
else:
return self.mcts_ctx2, 2
else:
if self.board.current_player() == CONST.WHITE:
return self.mcts_ctx1, 2
else:
return self.mcts_ctx2, 1 | def mcts_info(self):
"""
returns the information needed for the next mcts simulations
:return: the mcts object
1 or 2 depending on the network to use
"""
if self.player1_color == 1:
if self.board.current_player() == CONST.WHITE:
return self.mcts_ctx1, 1
else:
return self.mcts_ctx2, 2
else:
if self.board.current_player() == CONST.WHITE:
return self.mcts_ctx1, 2
else:
return self.mcts_ctx2, 1 |
Python | def net_vs_net_mcts(net1, net2, mcts_sim_count, temp, game_count, game_class):
"""
plays the two passed network against each other, in half of the games net1 is white and in the other half net2
is white. to get the policy mcts is used.
:param net1: network 1
:param net2: network 2
:param game_count: the number of games to play in total, half of the games are played as white and the other half as black
:param game_class: the class of the game
:return: score of net1, the score is in the range of 0-1 where:
0: loss
0.5: draw
1: win
"""
half_count = game_count // 2
mcts_ctx_wrapper_list = []
for i in range(2*half_count):
if i < half_count:
mcts_ctx_wrapper_list.append(MCTSContextWrapper(game_class(), 1)) # net1 is white
else:
mcts_ctx_wrapper_list.append(MCTSContextWrapper(game_class(), 2)) # net2 is white
all_terminated = False
while not all_terminated:
# prepare the mcts context lists
mcts_list1 = [] # mcts list where net1 needs to be used
mcts_list2 = [] # mcts list where net2 needs to be used
for idx, mcts_ctx_wrapper in enumerate(mcts_ctx_wrapper_list):
# skip finished games
if mcts_ctx_wrapper.board.is_terminal():
continue
mcts_ctx, net_number = mcts_ctx_wrapper.mcts_info()
if net_number == 1:
mcts_list1.append(mcts_ctx)
else:
mcts_list2.append(mcts_ctx)
# run the mcts simulations
mcts.run_simulations(mcts_list1, mcts_sim_count, net1, 0)
mcts.run_simulations(mcts_list2, mcts_sim_count, net2, 0)
# execute the move of the tree search
for i_mcts_ctx, mcts_ctx in enumerate(mcts_list1):
# skip terminated games
if mcts_ctx.board.is_terminal():
continue
# choose the action according to the probability distribution
policy = mcts_ctx.policy_from_state(mcts_ctx.board.state_id(), temp)
action = np.random.choice(len(policy), p=policy)
# execute the action on the board
mcts_ctx.board.execute_action(action)
for i_mcts_ctx, mcts_ctx in enumerate(mcts_list2):
# skip terminated games
if mcts_ctx.board.is_terminal():
continue
# choose the action according to the probability distribution
policy = mcts_ctx.policy_from_state(mcts_ctx.board.state_id(), temp)
action = np.random.choice(len(policy), p=policy)
# execute the action on the board
mcts_ctx.board.execute_action(action)
# check if all boards are terminated
all_terminated = True
for mcts_ctx_wrapper in mcts_ctx_wrapper_list:
if not mcts_ctx_wrapper.board.is_terminal():
all_terminated = False
break
# calculate the score of network 1
score = 0
for mcts_ctx_wrapper in mcts_ctx_wrapper_list:
reward = (mcts_ctx_wrapper.board.reward() + 1) / 2
if mcts_ctx_wrapper.player1_color == 1:
score += reward # net1 is white
else:
score += (1-reward) # net1 is white
score = score / (2*half_count)
return score | def net_vs_net_mcts(net1, net2, mcts_sim_count, temp, game_count, game_class):
"""
plays the two passed network against each other, in half of the games net1 is white and in the other half net2
is white. to get the policy mcts is used.
:param net1: network 1
:param net2: network 2
:param game_count: the number of games to play in total, half of the games are played as white and the other half as black
:param game_class: the class of the game
:return: score of net1, the score is in the range of 0-1 where:
0: loss
0.5: draw
1: win
"""
half_count = game_count // 2
mcts_ctx_wrapper_list = []
for i in range(2*half_count):
if i < half_count:
mcts_ctx_wrapper_list.append(MCTSContextWrapper(game_class(), 1)) # net1 is white
else:
mcts_ctx_wrapper_list.append(MCTSContextWrapper(game_class(), 2)) # net2 is white
all_terminated = False
while not all_terminated:
# prepare the mcts context lists
mcts_list1 = [] # mcts list where net1 needs to be used
mcts_list2 = [] # mcts list where net2 needs to be used
for idx, mcts_ctx_wrapper in enumerate(mcts_ctx_wrapper_list):
# skip finished games
if mcts_ctx_wrapper.board.is_terminal():
continue
mcts_ctx, net_number = mcts_ctx_wrapper.mcts_info()
if net_number == 1:
mcts_list1.append(mcts_ctx)
else:
mcts_list2.append(mcts_ctx)
# run the mcts simulations
mcts.run_simulations(mcts_list1, mcts_sim_count, net1, 0)
mcts.run_simulations(mcts_list2, mcts_sim_count, net2, 0)
# execute the move of the tree search
for i_mcts_ctx, mcts_ctx in enumerate(mcts_list1):
# skip terminated games
if mcts_ctx.board.is_terminal():
continue
# choose the action according to the probability distribution
policy = mcts_ctx.policy_from_state(mcts_ctx.board.state_id(), temp)
action = np.random.choice(len(policy), p=policy)
# execute the action on the board
mcts_ctx.board.execute_action(action)
for i_mcts_ctx, mcts_ctx in enumerate(mcts_list2):
# skip terminated games
if mcts_ctx.board.is_terminal():
continue
# choose the action according to the probability distribution
policy = mcts_ctx.policy_from_state(mcts_ctx.board.state_id(), temp)
action = np.random.choice(len(policy), p=policy)
# execute the action on the board
mcts_ctx.board.execute_action(action)
# check if all boards are terminated
all_terminated = True
for mcts_ctx_wrapper in mcts_ctx_wrapper_list:
if not mcts_ctx_wrapper.board.is_terminal():
all_terminated = False
break
# calculate the score of network 1
score = 0
for mcts_ctx_wrapper in mcts_ctx_wrapper_list:
reward = (mcts_ctx_wrapper.board.reward() + 1) / 2
if mcts_ctx_wrapper.player1_color == 1:
score += reward # net1 is white
else:
score += (1-reward) # net1 is white
score = score / (2*half_count)
return score |
Python | def execute_action(self, move):
"""
plays the passed move on the board
:param move: integer that defines the position to set the stone
:return:
"""
# if move not in self.legal_moves:
# print("move not in list")
# set the token
if self.player == CONST.WHITE:
self.white_player = self.white_player + (1 << move)
else:
self.black_player = self.black_player + (1 << move)
# check if the player won
self.check_win()
# swap the active player and calculate the legal moves
self.swap_players()
self.__calc_legal_moves__() | def execute_action(self, move):
"""
plays the passed move on the board
:param move: integer that defines the position to set the stone
:return:
"""
# if move not in self.legal_moves:
# print("move not in list")
# set the token
if self.player == CONST.WHITE:
self.white_player = self.white_player + (1 << move)
else:
self.black_player = self.black_player + (1 << move)
# check if the player won
self.check_win()
# swap the active player and calculate the legal moves
self.swap_players()
self.__calc_legal_moves__() |
Python | def illegal_actions(self):
"""
returns a list of illegal moves
:return:
"""
# define the mask with all disks
disk_mask = self.white_player ^ self.black_player
illegal_moves = []
for move in range(9):
if (1 << move) & disk_mask > 0:
illegal_moves.append(move)
return illegal_moves | def illegal_actions(self):
"""
returns a list of illegal moves
:return:
"""
# define the mask with all disks
disk_mask = self.white_player ^ self.black_player
illegal_moves = []
for move in range(9):
if (1 << move) & disk_mask > 0:
illegal_moves.append(move)
return illegal_moves |
Python | def from_board_matrix(self, board):
"""
creates the bit board from the passed board representation
:param board: games represented as one board
:return:
"""
white_board = board == CONST.WHITE
white_board = white_board.astype(int)
self.white_player = self.board_to_int(white_board)
black_board = board == CONST.BLACK
black_board = black_board.astype(int)
self.black_player = self.board_to_int(black_board)
# calculate all legal moves and disks to flip
self.__calc_legal_moves__()
# check the games states
self.swap_players()
self.check_win()
self.swap_players() | def from_board_matrix(self, board):
"""
creates the bit board from the passed board representation
:param board: games represented as one board
:return:
"""
white_board = board == CONST.WHITE
white_board = white_board.astype(int)
self.white_player = self.board_to_int(white_board)
black_board = board == CONST.BLACK
black_board = black_board.astype(int)
self.black_player = self.board_to_int(black_board)
# calculate all legal moves and disks to flip
self.__calc_legal_moves__()
# check the games states
self.swap_players()
self.check_win()
self.swap_players() |
Python | def int_to_board(self, number):
"""
creates the 3x3 bitmask that is represented by the passed integer
:param number: move on the board
:return: x3 matrix representing the board
"""
number = (number & 7) + ((number & 56) << 5) + ((number & 448) << 10)
byte_arr = np.array([number], dtype=np.uint32).view(np.uint8)
board_mask = np.unpackbits(byte_arr).reshape(-1, 8)[0:3, ::-1][:, 0:3]
return board_mask | def int_to_board(self, number):
"""
creates the 3x3 bitmask that is represented by the passed integer
:param number: move on the board
:return: x3 matrix representing the board
"""
number = (number & 7) + ((number & 56) << 5) + ((number & 448) << 10)
byte_arr = np.array([number], dtype=np.uint32).view(np.uint8)
board_mask = np.unpackbits(byte_arr).reshape(-1, 8)[0:3, ::-1][:, 0:3]
return board_mask |
Python | def board_to_int(self, mask):
"""
converts the passed board mask (3x3) to an integer
:param mask: binary board representation 3x3
:return: integer representing the passed board
"""
bit_arr = np.reshape(mask, -1).astype(np.uint32)
number = bit_arr.dot(1 << np.arange(bit_arr.size, dtype=np.uint32))
return int(number) | def board_to_int(self, mask):
"""
converts the passed board mask (3x3) to an integer
:param mask: binary board representation 3x3
:return: integer representing the passed board
"""
bit_arr = np.reshape(mask, -1).astype(np.uint32)
number = bit_arr.dot(1 << np.arange(bit_arr.size, dtype=np.uint32))
return int(number) |
Python | def check_win(self):
"""
checks if the current player has won the games
:return:
"""
if self.three_in_a_row(self.player):
self.terminal = True
self.score = 1 if self.player == CONST.WHITE else -1 | def check_win(self):
"""
checks if the current player has won the games
:return:
"""
if self.three_in_a_row(self.player):
self.terminal = True
self.score = 1 if self.player == CONST.WHITE else -1 |
Python | def three_in_a_row(self, player):
"""
checks if the passed player has a row of three
:param player: the player for which 3 in a row is checked
:return:
"""
board = self.white_player if player == CONST.WHITE else self.black_player
# horizontal check
if board & 7 == 7 or board & 56 == 56 or board & 448 == 448:
return True
# vertical check
if board & 73 == 73 or board & 146 == 146 or board & 292 == 292:
return True
# diagonal check /
if board & 84 == 84:
return True
# diagonal check \
if board & 273 == 273:
return True
# nothing found
return False | def three_in_a_row(self, player):
"""
checks if the passed player has a row of three
:param player: the player for which 3 in a row is checked
:return:
"""
board = self.white_player if player == CONST.WHITE else self.black_player
# horizontal check
if board & 7 == 7 or board & 56 == 56 or board & 448 == 448:
return True
# vertical check
if board & 73 == 73 or board & 146 == 146 or board & 292 == 292:
return True
# diagonal check /
if board & 84 == 84:
return True
# diagonal check \
if board & 273 == 273:
return True
# nothing found
return False |
Python | def minimax_move(self):
"""
returns the optimal minimax move, if there are more than one optimal moves, a ranodm one is
picked
:return:
"""
# get the white score for all legal moves
score_list = np.empty(len(self.legal_moves_list))
for idx, move in enumerate(self.legal_moves_list):
board_clone = self.clone()
board_clone.execute_action(move)
state = board_clone.state_id()
white_score = minimax.state_dict.get(state)
score_list[idx] = white_score
# find the indices of the max score for white and the min score for black
if self.player == CONST.WHITE:
move_indices = np.argwhere(score_list == np.amax(score_list))
else:
move_indices = np.argwhere(score_list == np.amin(score_list))
move_indices = move_indices.squeeze(axis=1)
best_moves = np.array(self.legal_moves_list)[move_indices]
best_move = np.random.choice(best_moves, 1)
return int(best_move) | def minimax_move(self):
"""
returns the optimal minimax move, if there are more than one optimal moves, a ranodm one is
picked
:return:
"""
# get the white score for all legal moves
score_list = np.empty(len(self.legal_moves_list))
for idx, move in enumerate(self.legal_moves_list):
board_clone = self.clone()
board_clone.execute_action(move)
state = board_clone.state_id()
white_score = minimax.state_dict.get(state)
score_list[idx] = white_score
# find the indices of the max score for white and the min score for black
if self.player == CONST.WHITE:
move_indices = np.argwhere(score_list == np.amax(score_list))
else:
move_indices = np.argwhere(score_list == np.amin(score_list))
move_indices = move_indices.squeeze(axis=1)
best_moves = np.array(self.legal_moves_list)[move_indices]
best_move = np.random.choice(best_moves, 1)
return int(best_move) |
Python | def clone(self):
"""
returns a new board with the same state
:return:
"""
board = copy.deepcopy(self)
return board | def clone(self):
"""
returns a new board with the same state
:return:
"""
board = copy.deepcopy(self)
return board |
Python | def current_player(self):
"""
returns the current player, needs to be CONST.WHITE or CONST.BLACK
:return:
"""
pass | def current_player(self):
"""
returns the current player, needs to be CONST.WHITE or CONST.BLACK
:return:
"""
pass |
Python | def symmetry_count():
"""
returns the number of symmetries that are created by symmetric_boards(). the symmetry count is always 1 larger
than the size of the list returned by symmetric_boards(). if there is no symmetry this count should be 1
:return:
"""
return 1 | def symmetry_count():
"""
returns the number of symmetries that are created by symmetric_boards(). the symmetry count is always 1 larger
than the size of the list returned by symmetric_boards(). if there is no symmetry this count should be 1
:return:
"""
return 1 |
Python | def white_perspective(self):
"""
returns the board from the white perspective. If it is white's move the normal board representation is returned.
if it is black's move the white and the black pieces are swapped.
:return: the matrix representation of the board
the current player (CONST.WHITE or CONST.BLACK)
"""
pass | def white_perspective(self):
"""
returns the board from the white perspective. If it is white's move the normal board representation is returned.
if it is black's move the white and the black pieces are swapped.
:return: the matrix representation of the board
the current player (CONST.WHITE or CONST.BLACK)
"""
pass |
Python | def state_id(self):
"""
returns a unique state id of the current board
:return:
"""
pass | def state_id(self):
"""
returns a unique state id of the current board
:return:
"""
pass |
Python | def illegal_actions(self):
"""
returns a list of all illegal actions, this list could be calculated from the legal actions but
sometimes there are faster implementations available to find all illegal actions
:return:
"""
pass | def illegal_actions(self):
"""
returns a list of all illegal actions, this list could be calculated from the legal actions but
sometimes there are faster implementations available to find all illegal actions
:return:
"""
pass |
Python | def training_reward(self):
"""
returns the reward for training, this is normally the same method as self.reward()
:return:
"""
pass | def training_reward(self):
"""
returns the reward for training, this is normally the same method as self.reward()
:return:
"""
pass |
Python | def main_az(game_class):
"""
trains an agent using the AlphaZero algorithm
:param game_class: class of the implemented games
:return:
"""
# The logger
utils.init_logger(logging.DEBUG, file_name="log/app.log")
logger = logging.getLogger('main_training')
# set the random seed
random.seed(a=None, version=2)
np.random.seed(seed=None)
# create the training data directory
Path(config.save_dir).mkdir(parents=True, exist_ok=True)
# create the storage object
training_data = data_storage.load_data()
# create the agent
network = networks.ResNet()
agent = alpha_zero_learning.Agent(network)
if training_data.cycle == 0:
logger.debug("create a new agent")
training_data.save_data(agent.network) # save the generation 0 network
if config.use_initial_data:
logger.debug("fill the experience buffer with some initial data")
agent.experience_buffer.fill_with_initial_data() # add training examples of untrained network
else:
# load the current network
logger.debug("load an old network")
agent.network = training_data.load_current_net()
agent.experience_buffer = training_data.experience_buffer
start_training = time.time()
for i in range(training_data.cycle, config.cycles, 1):
###### self play and update: create some games data through self play
logger.info("start playing games in cycle {}".format(i))
avg_moves_played = agent.play_self_play_games(game_class, training_data.network_path)
training_data.avg_moves_played.append(avg_moves_played)
logger.debug("average moves played: {}".format(avg_moves_played))
###### training, train the training network and use the target network for predictions
logger.info("start updates in cycle {}".format(i))
loss_p, loss_v = agent.nn_update(i)
training_data.policy_loss.append(loss_p)
training_data.value_loss.append(loss_v)
logger.debug("policy loss: {}".format(loss_p))
logger.debug("value loss: {}".format(loss_v))
###### save the new network
logger.info("save check point to file in cycle {}".format(i))
training_data.cycle += 1
training_data.experience_buffer = agent.experience_buffer
training_data.save_data(agent.network)
end_training = time.time()
training_time = end_training - start_training
logger.info("elapsed time whole training process {}".format(training_time))
# save the results
np.save("games/checkers/results/value_loss.npy", np.array(training_data.value_loss))
np.save("games/checkers/results/policy_loss.npy", np.array(training_data.policy_loss))
np.save("games/checkers/results/avg_moves.npy", np.array(training_data.avg_moves_played))
# set the style of the plot
plt.style.use('seaborn-dark-palette')
# plot the value training loss
fig1 = plt.figure(1)
plt.plot(training_data.value_loss)
axes = plt.gca()
axes.grid(True, color=(0.9, 0.9, 0.9))
plt.title("Average Value Training Loss")
plt.xlabel("Generation")
plt.ylabel("Value Loss")
fig1.show()
# plot the training policy loss
fig2 = plt.figure(2)
plt.plot(training_data.policy_loss)
axes = plt.gca()
axes.grid(True, color=(0.9, 0.9, 0.9))
plt.title("Average Policy Training Loss")
plt.xlabel("Generation")
plt.ylabel("Policy Loss")
fig2.show()
# plot the average number of moves played in the self-play games
fig3 = plt.figure(3)
plt.plot(training_data.avg_moves_played)
axes = plt.gca()
axes.grid(True, color=(0.9, 0.9, 0.9))
plt.title("Average Moves in Self-Play Games")
plt.xlabel("Generation")
plt.ylabel("Move Count")
fig3.show()
plt.show() | def main_az(game_class):
"""
trains an agent using the AlphaZero algorithm
:param game_class: class of the implemented games
:return:
"""
# The logger
utils.init_logger(logging.DEBUG, file_name="log/app.log")
logger = logging.getLogger('main_training')
# set the random seed
random.seed(a=None, version=2)
np.random.seed(seed=None)
# create the training data directory
Path(config.save_dir).mkdir(parents=True, exist_ok=True)
# create the storage object
training_data = data_storage.load_data()
# create the agent
network = networks.ResNet()
agent = alpha_zero_learning.Agent(network)
if training_data.cycle == 0:
logger.debug("create a new agent")
training_data.save_data(agent.network) # save the generation 0 network
if config.use_initial_data:
logger.debug("fill the experience buffer with some initial data")
agent.experience_buffer.fill_with_initial_data() # add training examples of untrained network
else:
# load the current network
logger.debug("load an old network")
agent.network = training_data.load_current_net()
agent.experience_buffer = training_data.experience_buffer
start_training = time.time()
for i in range(training_data.cycle, config.cycles, 1):
###### self play and update: create some games data through self play
logger.info("start playing games in cycle {}".format(i))
avg_moves_played = agent.play_self_play_games(game_class, training_data.network_path)
training_data.avg_moves_played.append(avg_moves_played)
logger.debug("average moves played: {}".format(avg_moves_played))
###### training, train the training network and use the target network for predictions
logger.info("start updates in cycle {}".format(i))
loss_p, loss_v = agent.nn_update(i)
training_data.policy_loss.append(loss_p)
training_data.value_loss.append(loss_v)
logger.debug("policy loss: {}".format(loss_p))
logger.debug("value loss: {}".format(loss_v))
###### save the new network
logger.info("save check point to file in cycle {}".format(i))
training_data.cycle += 1
training_data.experience_buffer = agent.experience_buffer
training_data.save_data(agent.network)
end_training = time.time()
training_time = end_training - start_training
logger.info("elapsed time whole training process {}".format(training_time))
# save the results
np.save("games/checkers/results/value_loss.npy", np.array(training_data.value_loss))
np.save("games/checkers/results/policy_loss.npy", np.array(training_data.policy_loss))
np.save("games/checkers/results/avg_moves.npy", np.array(training_data.avg_moves_played))
# set the style of the plot
plt.style.use('seaborn-dark-palette')
# plot the value training loss
fig1 = plt.figure(1)
plt.plot(training_data.value_loss)
axes = plt.gca()
axes.grid(True, color=(0.9, 0.9, 0.9))
plt.title("Average Value Training Loss")
plt.xlabel("Generation")
plt.ylabel("Value Loss")
fig1.show()
# plot the training policy loss
fig2 = plt.figure(2)
plt.plot(training_data.policy_loss)
axes = plt.gca()
axes.grid(True, color=(0.9, 0.9, 0.9))
plt.title("Average Policy Training Loss")
plt.xlabel("Generation")
plt.ylabel("Policy Loss")
fig2.show()
# plot the average number of moves played in the self-play games
fig3 = plt.figure(3)
plt.plot(training_data.avg_moves_played)
axes = plt.gca()
axes.grid(True, color=(0.9, 0.9, 0.9))
plt.title("Average Moves in Self-Play Games")
plt.xlabel("Generation")
plt.ylabel("Move Count")
fig3.show()
plt.show() |
Python | def load_data():
"""
loads the training data from the state file
:return:
"""
# create a new storage object
if not os.path.exists(storage_path):
logger.info("create a new data storage object")
if not os.path.exists(network_dir):
os.makedirs(network_dir)
shutil.rmtree(network_dir)
os.makedirs(network_dir)
return TrainingData()
# load an old storage object with the current training data
with open(storage_path, 'rb') as input:
training_data = pickle.load(input)
return training_data | def load_data():
"""
loads the training data from the state file
:return:
"""
# create a new storage object
if not os.path.exists(storage_path):
logger.info("create a new data storage object")
if not os.path.exists(network_dir):
os.makedirs(network_dir)
shutil.rmtree(network_dir)
os.makedirs(network_dir)
return TrainingData()
# load an old storage object with the current training data
with open(storage_path, 'rb') as input:
training_data = pickle.load(input)
return training_data |
Python | def net_to_device(net, device):
"""
sends the network to the passed device
:param net: the network to transfer into the cpu
:param device: the device to which the network is sent
:return:
"""
net_path = "{}/temp_net.pt".format(temp_dir)
# ensure that the temp dir exists and is empty and
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
os.makedirs(temp_dir)
# put the model on the gpu
if device.type == "cuda":
torch.save(net, net_path)
cuda_net = torch.load(net_path, map_location='cuda')
shutil.rmtree(temp_dir)
return cuda_net
# put the model on the cpu
if device.type == "cpu":
torch.save(net, net_path)
cpu_net = torch.load(net_path, map_location='cpu')
shutil.rmtree(temp_dir)
return cpu_net
logger.error("device type {} is not known".format(device.type))
return None | def net_to_device(net, device):
"""
sends the network to the passed device
:param net: the network to transfer into the cpu
:param device: the device to which the network is sent
:return:
"""
net_path = "{}/temp_net.pt".format(temp_dir)
# ensure that the temp dir exists and is empty and
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
os.makedirs(temp_dir)
# put the model on the gpu
if device.type == "cuda":
torch.save(net, net_path)
cuda_net = torch.load(net_path, map_location='cuda')
shutil.rmtree(temp_dir)
return cuda_net
# put the model on the cpu
if device.type == "cpu":
torch.save(net, net_path)
cpu_net = torch.load(net_path, map_location='cpu')
shutil.rmtree(temp_dir)
return cpu_net
logger.error("device type {} is not known".format(device.type))
return None |
Python | def load_net(net_path, device):
"""
loads the network to the passed device
:param net_path: the path of the network to load
:param device: the device to which the network is loaded
:return:
"""
# put the model on the gpu
if device.type == "cuda":
gpu_net = torch.load(net_path, map_location='cuda')
return gpu_net
# put the model on the cpu
if device.type == "cpu":
cpu_net = torch.load(net_path, map_location='cpu')
return cpu_net | def load_net(net_path, device):
"""
loads the network to the passed device
:param net_path: the path of the network to load
:param device: the device to which the network is loaded
:return:
"""
# put the model on the gpu
if device.type == "cuda":
gpu_net = torch.load(net_path, map_location='cuda')
return gpu_net
# put the model on the cpu
if device.type == "cpu":
cpu_net = torch.load(net_path, map_location='cpu')
return cpu_net |
Python | def weak_sample_size(data_set):
"""
returns the number of weak samples in the passed data set
:param data_set: csv data set
:return:
"""
sample_count = 0
for i in range(data_set.shape[0]):
if data_set["weak_score"][i] >= 0:
sample_count += 1
return sample_count | def weak_sample_size(data_set):
"""
returns the number of weak samples in the passed data set
:param data_set: csv data set
:return:
"""
sample_count = 0
for i in range(data_set.shape[0]):
if data_set["weak_score"][i] >= 0:
sample_count += 1
return sample_count |
Python | def create_training_set(data_set):
"""
creates the pytorch data set from the passed csv data set
:param data_set: csv data set
:return:
"""
# parse the data set
states = []
values = []
policies = []
for i in range(data_set.shape[0]):
if data_set["weak_score"][i] >= 0:
# state
board = connect4.BitBoard()
position = data_set["position"][i]
disk_mask = data_set["disk_mask"][i]
board.from_position(position, disk_mask)
state, _ = board.white_perspective()
states.append(state)
# values
value = data_set["weak_score"][i]
values.append(value)
# policy
policy = Config.action_count * [0]
move_str = data_set["weak_moves"][i]
moves = move_str.split('-')
probability = 1 / len(moves)
for move in moves:
policy[int(move)] = probability
policies.append(policy)
return Dataset(states, values, policies) | def create_training_set(data_set):
"""
creates the pytorch data set from the passed csv data set
:param data_set: csv data set
:return:
"""
# parse the data set
states = []
values = []
policies = []
for i in range(data_set.shape[0]):
if data_set["weak_score"][i] >= 0:
# state
board = connect4.BitBoard()
position = data_set["position"][i]
disk_mask = data_set["disk_mask"][i]
board.from_position(position, disk_mask)
state, _ = board.white_perspective()
states.append(state)
# values
value = data_set["weak_score"][i]
values.append(value)
# policy
policy = Config.action_count * [0]
move_str = data_set["weak_moves"][i]
moves = move_str.split('-')
probability = 1 / len(moves)
for move in moves:
policy[int(move)] = probability
policies.append(policy)
return Dataset(states, values, policies) |
Python | def exec_simulation(self, board, alpha_dirich=0):
"""
executes one Monte-Carlo Tree search simulation. the simulation always starts a the rootk node and ends
when a leaf node is reached. this is a games state from which no simulation (playout) was started so far.
if the leaf node is a terminal state, the reward is returned. if the leaf node is not a terminal node
the value and the policy are estimated with the neural network. the value is the result of the simulation.
if a node is reached with known value and policy the move (action) with the highest upper confidence bound
is chosen. the upper confidence bound increases with larger probability and if the moves was not chose often
in previous simulation. the upper confidence bound holds the balance between exploreation and exploitation.
:param board: represents the games
:param alpha_dirich: alpha parameter for the dirichlet noise that is added to the root node probabilities
:return: the board if it needs to be analyzed by the network or None if the simulation
completed
"""
self.states.clear()
self.players.clear()
self.actions.clear()
while True:
s = board.state_id()
self.states.append(s)
player = board.current_player()
self.players.append(player)
# check if we are on a leaf node (state form which no simulation was played so far)
if s not in self.P:
# return the board for the network evaluation
return board
# add dirichlet noise to the root node
legal_actions = board.legal_actions()
p_s = self.P[s]
if alpha_dirich > 0:
p_s = np.copy(p_s)
alpha_params = alpha_dirich * np.ones(len(legal_actions))
dirichlet_noise = np.random.dirichlet(alpha_params)
p_s[legal_actions] = 0.75 * p_s[legal_actions] + 0.25 * dirichlet_noise
# normalize the probabilities again
p_s /= np.sum(p_s)
# set the dirichlet noise to 0 in order to only add it to the root node
alpha_dirich = 0
# choose the action with the highest upper confidence bound
max_ucb = -float("inf")
action = -1
for a in legal_actions:
if (s, a) in self.Q:
u = self.Q[(s, a)] + config.c_puct * p_s[a] * math.sqrt(self.N_s[s]) / (1 + self.N_sa[(s, a)])
else:
u = config.c_puct * p_s[a] * math.sqrt(self.N_s[s] + 1e-8) # avoid division by 0
if u > max_ucb:
max_ucb = u
action = a
self.N_s[s] += 1
self.actions.append(action)
board = board.clone()
board.execute_action(action)
# check if the games is terminal
if board.is_terminal():
v = board.training_reward()
self.finish_simulation(board, v)
return None | def exec_simulation(self, board, alpha_dirich=0):
"""
executes one Monte-Carlo Tree search simulation. the simulation always starts a the rootk node and ends
when a leaf node is reached. this is a games state from which no simulation (playout) was started so far.
if the leaf node is a terminal state, the reward is returned. if the leaf node is not a terminal node
the value and the policy are estimated with the neural network. the value is the result of the simulation.
if a node is reached with known value and policy the move (action) with the highest upper confidence bound
is chosen. the upper confidence bound increases with larger probability and if the moves was not chose often
in previous simulation. the upper confidence bound holds the balance between exploreation and exploitation.
:param board: represents the games
:param alpha_dirich: alpha parameter for the dirichlet noise that is added to the root node probabilities
:return: the board if it needs to be analyzed by the network or None if the simulation
completed
"""
self.states.clear()
self.players.clear()
self.actions.clear()
while True:
s = board.state_id()
self.states.append(s)
player = board.current_player()
self.players.append(player)
# check if we are on a leaf node (state form which no simulation was played so far)
if s not in self.P:
# return the board for the network evaluation
return board
# add dirichlet noise to the root node
legal_actions = board.legal_actions()
p_s = self.P[s]
if alpha_dirich > 0:
p_s = np.copy(p_s)
alpha_params = alpha_dirich * np.ones(len(legal_actions))
dirichlet_noise = np.random.dirichlet(alpha_params)
p_s[legal_actions] = 0.75 * p_s[legal_actions] + 0.25 * dirichlet_noise
# normalize the probabilities again
p_s /= np.sum(p_s)
# set the dirichlet noise to 0 in order to only add it to the root node
alpha_dirich = 0
# choose the action with the highest upper confidence bound
max_ucb = -float("inf")
action = -1
for a in legal_actions:
if (s, a) in self.Q:
u = self.Q[(s, a)] + config.c_puct * p_s[a] * math.sqrt(self.N_s[s]) / (1 + self.N_sa[(s, a)])
else:
u = config.c_puct * p_s[a] * math.sqrt(self.N_s[s] + 1e-8) # avoid division by 0
if u > max_ucb:
max_ucb = u
action = a
self.N_s[s] += 1
self.actions.append(action)
board = board.clone()
board.execute_action(action)
# check if the games is terminal
if board.is_terminal():
v = board.training_reward()
self.finish_simulation(board, v)
return None |
Python | def finish_simulation(self, board, value_white, policy=None):
"""
ends one monte-carlo simulation with the terminal games value of the network evaluation
:param board: the board
:param value_white: the simulated value from the white perspective
:param policy: the policy if the simulation requires network inference
:return:
"""
if policy is not None:
s = board.state_id()
self.P[s] = policy
# ensure that the summed probability of all valid moves is 1
self.P[s][board.illegal_actions()] = 0
total_prob = np.sum(self.P[s])
if total_prob > 0:
self.P[s] /= total_prob # normalize the probabilities
else:
# the network did not choose any legal move, make all moves equally probable
print("warning: network probabilities for all legal moves are 0, choose a equal distribution")
legal_moves = board.legal_actions()
self.P[s][legal_moves] = 1 / len(legal_moves)
self.N_s[s] = 0
# back up the tree by updating the Q and the N values
for i in range(len(self.actions)):
# flip the value for the black player since the games is always viewed from the white perspective
v_true = value_white if self.players[i] == CONST.WHITE else -value_white
s = self.states[i]
a = self.actions[i]
if (s, a) in self.Q:
self.Q[(s, a)] = (self.N_sa[(s, a)] * self.Q[(s, a)] + v_true) / (self.N_sa[(s, a)] + 1)
self.N_sa[(s, a)] += 1
else:
self.Q[(s, a)] = v_true
self.N_sa[(s, a)] = 1 | def finish_simulation(self, board, value_white, policy=None):
"""
ends one monte-carlo simulation with the terminal games value of the network evaluation
:param board: the board
:param value_white: the simulated value from the white perspective
:param policy: the policy if the simulation requires network inference
:return:
"""
if policy is not None:
s = board.state_id()
self.P[s] = policy
# ensure that the summed probability of all valid moves is 1
self.P[s][board.illegal_actions()] = 0
total_prob = np.sum(self.P[s])
if total_prob > 0:
self.P[s] /= total_prob # normalize the probabilities
else:
# the network did not choose any legal move, make all moves equally probable
print("warning: network probabilities for all legal moves are 0, choose a equal distribution")
legal_moves = board.legal_actions()
self.P[s][legal_moves] = 1 / len(legal_moves)
self.N_s[s] = 0
# back up the tree by updating the Q and the N values
for i in range(len(self.actions)):
# flip the value for the black player since the games is always viewed from the white perspective
v_true = value_white if self.players[i] == CONST.WHITE else -value_white
s = self.states[i]
a = self.actions[i]
if (s, a) in self.Q:
self.Q[(s, a)] = (self.N_sa[(s, a)] * self.Q[(s, a)] + v_true) / (self.N_sa[(s, a)] + 1)
self.N_sa[(s, a)] += 1
else:
self.Q[(s, a)] = v_true
self.N_sa[(s, a)] = 1 |
Python | def policy_from_state(self, s, temp):
"""
returns the policy of the passed state id. it only makes sense to call this methods if a few
monte carlo simulations were executed previously.
:param s: state id of the board
:param temp: the temperature
:return: vector containing the policy value for the moves
"""
counts = [self.N_sa[(s, a)] if (s, a) in self.N_sa else 0 for a in range(config.tot_actions)]
# in order to learn something set the probabilities of the best action to 1 and all other action to 0
if temp == 0:
action = np.argmax(counts)
probs = [0] * config.tot_actions
probs[action] = 1
return np.array(probs)
else:
counts = [c ** (1. / temp) for c in counts]
probs = [c / float(sum(counts)) for c in counts]
return np.array(probs) | def policy_from_state(self, s, temp):
"""
returns the policy of the passed state id. it only makes sense to call this methods if a few
monte carlo simulations were executed previously.
:param s: state id of the board
:param temp: the temperature
:return: vector containing the policy value for the moves
"""
counts = [self.N_sa[(s, a)] if (s, a) in self.N_sa else 0 for a in range(config.tot_actions)]
# in order to learn something set the probabilities of the best action to 1 and all other action to 0
if temp == 0:
action = np.argmax(counts)
probs = [0] * config.tot_actions
probs[action] = 1
return np.array(probs)
else:
counts = [c ** (1. / temp) for c in counts]
probs = [c / float(sum(counts)) for c in counts]
return np.array(probs) |
Python | def next_mcts_policy(self, board, mcts_sim_count, net, temp, alpha_dirich):
"""
uses the search tree that was already built to find the mcts policy
:param board: the board of which the policy should be calculated
:param mcts_sim_count: the number of mcts simulations
:param net: the network
:param temp: the temperature
:param alpha_dirich: the dirichlet parameter alpha
:return:
"""
self.board = board
mcts_list = [self]
run_simulations(mcts_list, mcts_sim_count, net, alpha_dirich)
policy = mcts_list[0].policy_from_state(mcts_list[0].board.state_id(), temp)
return policy | def next_mcts_policy(self, board, mcts_sim_count, net, temp, alpha_dirich):
"""
uses the search tree that was already built to find the mcts policy
:param board: the board of which the policy should be calculated
:param mcts_sim_count: the number of mcts simulations
:param net: the network
:param temp: the temperature
:param alpha_dirich: the dirichlet parameter alpha
:return:
"""
self.board = board
mcts_list = [self]
run_simulations(mcts_list, mcts_sim_count, net, alpha_dirich)
policy = mcts_list[0].policy_from_state(mcts_list[0].board.state_id(), temp)
return policy |
Python | def run_simulations(mcts_list, mcts_sim_count, net, alpha_dirich):
"""
runs a bunch of mcts simulations in parallel
:param mcts_list: list containing all the mcts objects
:param mcts_sim_count: the number of mcts simulations to perform
:param net: the network that is used for evaluation
:param alpha_dirich: the dirichlet parameter alpha
:return:
"""
batch_list = []
leaf_board_list = len(mcts_list) * [None]
for sim in range(mcts_sim_count):
batch_list.clear()
for i_mcts_ctx, mcts_ctx in enumerate(mcts_list):
# skip finished games
if mcts_ctx.board.is_terminal():
leaf_board_list[i_mcts_ctx] = None
continue
# execute one simulation
leaf_board = mcts_list[i_mcts_ctx].exec_simulation(mcts_ctx.board, alpha_dirich)
leaf_board_list[i_mcts_ctx] = leaf_board
if leaf_board is not None:
batch, _ = leaf_board.white_perspective()
batch_list.append(batch)
# pass all samples through the network
if len(batch_list) > 0:
batch_bundle = torch.Tensor(batch_list).to(config.evaluation_device)
policy, value = net(batch_bundle)
policy = policy.detach().cpu().numpy()
# finish the simulation of the states that need a result from the network
i_sample = 0
for i_mcts_ctx in range(len(mcts_list)):
leaf_board = leaf_board_list[i_mcts_ctx]
if leaf_board is not None:
# get the value from the white perspective
value_white = value[i_sample].item() if leaf_board.current_player() == CONST.WHITE else -value[i_sample].item()
# finish the simulation with the simulation with the network evaluation
mcts_list[i_mcts_ctx].finish_simulation(leaf_board, value_white, policy[i_sample])
i_sample += 1 | def run_simulations(mcts_list, mcts_sim_count, net, alpha_dirich):
"""
runs a bunch of mcts simulations in parallel
:param mcts_list: list containing all the mcts objects
:param mcts_sim_count: the number of mcts simulations to perform
:param net: the network that is used for evaluation
:param alpha_dirich: the dirichlet parameter alpha
:return:
"""
batch_list = []
leaf_board_list = len(mcts_list) * [None]
for sim in range(mcts_sim_count):
batch_list.clear()
for i_mcts_ctx, mcts_ctx in enumerate(mcts_list):
# skip finished games
if mcts_ctx.board.is_terminal():
leaf_board_list[i_mcts_ctx] = None
continue
# execute one simulation
leaf_board = mcts_list[i_mcts_ctx].exec_simulation(mcts_ctx.board, alpha_dirich)
leaf_board_list[i_mcts_ctx] = leaf_board
if leaf_board is not None:
batch, _ = leaf_board.white_perspective()
batch_list.append(batch)
# pass all samples through the network
if len(batch_list) > 0:
batch_bundle = torch.Tensor(batch_list).to(config.evaluation_device)
policy, value = net(batch_bundle)
policy = policy.detach().cpu().numpy()
# finish the simulation of the states that need a result from the network
i_sample = 0
for i_mcts_ctx in range(len(mcts_list)):
leaf_board = leaf_board_list[i_mcts_ctx]
if leaf_board is not None:
# get the value from the white perspective
value_white = value[i_sample].item() if leaf_board.current_player() == CONST.WHITE else -value[i_sample].item()
# finish the simulation with the simulation with the network evaluation
mcts_list[i_mcts_ctx].finish_simulation(leaf_board, value_white, policy[i_sample])
i_sample += 1 |
Python | def mcts_policy(board, mcts_sim_count, net, temp, alpha_dirich):
"""
calculates the mcts policy with a fresh tree search for one board state
:param board: the board of which the policy should be calculated
:param mcts_sim_count: the number of mcts simulations
:param net: the network
:param temp: the temperature
:param alpha_dirich: the dirichlet parameter alpha
:return: policy vector for all next moves
"""
mcts_list = [MCTS(board)]
run_simulations(mcts_list, mcts_sim_count, net, alpha_dirich)
policy = mcts_list[0].policy_from_state(mcts_list[0].board.state_id(), temp)
return policy | def mcts_policy(board, mcts_sim_count, net, temp, alpha_dirich):
"""
calculates the mcts policy with a fresh tree search for one board state
:param board: the board of which the policy should be calculated
:param mcts_sim_count: the number of mcts simulations
:param net: the network
:param temp: the temperature
:param alpha_dirich: the dirichlet parameter alpha
:return: policy vector for all next moves
"""
mcts_list = [MCTS(board)]
run_simulations(mcts_list, mcts_sim_count, net, alpha_dirich)
policy = mcts_list[0].policy_from_state(mcts_list[0].board.state_id(), temp)
return policy |
Python | def _construct_profiling_options(self):
"""
Construct profiling options to determine which profiling data should be collected.
"""
profile_memory = "off"
if self._profile_memory:
profile_memory = "on"
fp_point = os.environ.get("PROFILING_FP_START", "")
bp_point = os.environ.get("PROFILING_BP_END", "")
profiling_options = {
"output": self._output_path,
"fp_point": fp_point,
"bp_point": bp_point,
"training_trace": "on",
"task_trace": "on",
"aic_metrics": "ArithmeticUtilization",
"aicpu": "on",
"profile_memory": profile_memory
}
return profiling_options | def _construct_profiling_options(self):
"""
Construct profiling options to determine which profiling data should be collected.
"""
profile_memory = "off"
if self._profile_memory:
profile_memory = "on"
fp_point = os.environ.get("PROFILING_FP_START", "")
bp_point = os.environ.get("PROFILING_BP_END", "")
profiling_options = {
"output": self._output_path,
"fp_point": fp_point,
"bp_point": bp_point,
"training_trace": "on",
"task_trace": "on",
"aic_metrics": "ArithmeticUtilization",
"aicpu": "on",
"profile_memory": profile_memory
}
return profiling_options |
Python | def _parse_parameter_for_ascend(self, **kwargs):
"""Parse parameter in Proflier when the device target is Ascend."""
optypes_not_deal = kwargs.pop("optypes_not_deal", "Variable")
if not isinstance(optypes_not_deal, str):
raise TypeError("The parameter optypes_not_deal must be str.")
self._filt_optype_names = optypes_not_deal.split(",") if optypes_not_deal else []
job_dir = kwargs.pop("ascend_job_id", "")
if job_dir:
job_dir = validate_and_normalize_path(job_dir)
if not os.path.exists(job_dir):
msg = f"Invalid ascend_job_id: {job_dir}, Please pass the absolute path of the JOB dir"
logger.critical(msg)
raise ValueError(msg)
self._output_path, _ = os.path.split(job_dir)
self.start_profile = kwargs.pop("start_profile", True)
if not isinstance(self.start_profile, bool):
raise TypeError("The parameter start_profile must be bool.")
self._profile_communication = kwargs.pop("profile_communication", False)
if not isinstance(self._profile_communication, bool):
raise TypeError("The parameter profile_communication must be bool.")
if self._profile_communication:
hccl_option = {"output": self._output_path, "task_trace": "on"}
os.environ['PROFILING_OPTIONS'] = json.dumps(hccl_option)
self._profile_memory = kwargs.pop("profile_memory", False)
if not isinstance(self._profile_memory, bool):
raise TypeError("The parameter profile_memory must be bool")
if kwargs:
logger.warning("There are invalid params which don't work.")
task_sink = os.getenv("GRAPH_OP_RUN")
if task_sink and task_sink == "1":
logger.warning("Profiling is not supported when task is not sink.") | def _parse_parameter_for_ascend(self, **kwargs):
"""Parse parameter in Proflier when the device target is Ascend."""
optypes_not_deal = kwargs.pop("optypes_not_deal", "Variable")
if not isinstance(optypes_not_deal, str):
raise TypeError("The parameter optypes_not_deal must be str.")
self._filt_optype_names = optypes_not_deal.split(",") if optypes_not_deal else []
job_dir = kwargs.pop("ascend_job_id", "")
if job_dir:
job_dir = validate_and_normalize_path(job_dir)
if not os.path.exists(job_dir):
msg = f"Invalid ascend_job_id: {job_dir}, Please pass the absolute path of the JOB dir"
logger.critical(msg)
raise ValueError(msg)
self._output_path, _ = os.path.split(job_dir)
self.start_profile = kwargs.pop("start_profile", True)
if not isinstance(self.start_profile, bool):
raise TypeError("The parameter start_profile must be bool.")
self._profile_communication = kwargs.pop("profile_communication", False)
if not isinstance(self._profile_communication, bool):
raise TypeError("The parameter profile_communication must be bool.")
if self._profile_communication:
hccl_option = {"output": self._output_path, "task_trace": "on"}
os.environ['PROFILING_OPTIONS'] = json.dumps(hccl_option)
self._profile_memory = kwargs.pop("profile_memory", False)
if not isinstance(self._profile_memory, bool):
raise TypeError("The parameter profile_memory must be bool")
if kwargs:
logger.warning("There are invalid params which don't work.")
task_sink = os.getenv("GRAPH_OP_RUN")
if task_sink and task_sink == "1":
logger.warning("Profiling is not supported when task is not sink.") |
Python | def analyse(self):
"""
Collect and analyse performance data, called after training or during training. The example shows above.
"""
if Profiler._has_analysed:
msg = "Do not analyze twice in the profiler."
raise RuntimeError(msg)
Profiler._has_analysed = True
_environment_check()
self._cpu_profiler.stop()
self._md_profiler.stop()
self._md_profiler.save(self._output_path)
if self._device_target and self._device_target == "GPU":
self._gpu_analyse()
elif self._device_target and self._device_target == "Ascend":
self._ascend_analyse()
logger.info("Profiling: all the data have been analyzed.") | def analyse(self):
"""
Collect and analyse performance data, called after training or during training. The example shows above.
"""
if Profiler._has_analysed:
msg = "Do not analyze twice in the profiler."
raise RuntimeError(msg)
Profiler._has_analysed = True
_environment_check()
self._cpu_profiler.stop()
self._md_profiler.stop()
self._md_profiler.save(self._output_path)
if self._device_target and self._device_target == "GPU":
self._gpu_analyse()
elif self._device_target and self._device_target == "Ascend":
self._ascend_analyse()
logger.info("Profiling: all the data have been analyzed.") |
Python | def _ascend_analyse(self):
"""Collect and analyse ascend performance data"""
self._rank_size = 1
if self._profile_communication and not GlobalComm.INITED:
self._profile_communication = False
if GlobalComm.INITED:
self._rank_size = get_group_size()
release()
if (not self.start_profile) or self._has_started:
self._ascend_profiler.stop()
else:
msg = "The profiler has not start, so can not stop."
logger.info(msg)
self._ascend_profiler.finalize()
job_id = self._get_profiling_job_id()
logger.info("Profiling: job id is %s ", job_id)
source_path = os.path.join(self._output_path, job_id)
# parse hwts.log.data.45.dev file, and get task profiling data
hwts_output_filename = self._hwts_output_filename_target + self._rank_id + ".txt"
hwts_output_filename = os.path.join(self._output_path, hwts_output_filename)
source_path = validate_and_normalize_path(source_path)
hwts_output_filename = validate_and_normalize_path(hwts_output_filename)
hwtslog_parser = HWTSLogParser(source_path, hwts_output_filename)
logger.info("Profiling: analyzing hwts data.")
hwtslog_parser.execute()
# parse Framework file, and get the relation of op and tasks
framework_parser = FrameworkParser(job_id, self._dev_id, self._rank_id, self._output_path)
logger.info("Profiling: analyzing framework data.")
framework_parser.parse()
op_task_dict = framework_parser.to_task_id_full_op_name_dict()
if not op_task_dict:
logger.error("Profiling: fail to parse framework files.")
return
# get op compute time from hwts data and framework data, write output_op_compute_time.txt
opcompute_output_filename = self._opcompute_output_filename_target + self._rank_id + ".txt"
opcompute_output_filename = os.path.join(self._output_path, opcompute_output_filename)
opcompute_output_filename = validate_and_normalize_path(opcompute_output_filename)
optime_parser = OPComputeTimeParser(
hwts_output_filename, opcompute_output_filename,
op_task_dict, self._output_path, self._rank_id
)
logger.info("Profiling: analyzing the operation compute time.")
optime_parser.execute()
# parse DATA_PREPROCESS.dev.AICPU file, write output_data_preprocess_aicpu_x.txt
output_data_preprocess_aicpu = self._aicpu_op_output_filename_target + self._rank_id + ".txt"
output_data_preprocess_aicpu = os.path.join(self._output_path, output_data_preprocess_aicpu)
output_data_preprocess_aicpu = validate_and_normalize_path(output_data_preprocess_aicpu)
aicpu_data_parser = DataPreProcessParser(source_path, output_data_preprocess_aicpu)
logger.info("Profiling: analyzing the data preprocess data.")
aicpu_data_parser.execute()
# Parsing minddata AICPU profiling
logger.info("Profiling: analyzing the minddata AICPU data.")
MinddataParser.execute(source_path, self._output_path, self._rank_id)
# parse minddata pipeline operator and queue
try:
pipeline_parser = MinddataPipelineParser(self._output_path, self._rank_id, self._output_path)
logger.info("Profiling: analyzing the minddata pipeline operator and queue.")
pipeline_parser.parse()
except ProfilerException as err:
logger.warning(err.message)
# Analyze minddata information
try:
md_analyzer = MinddataProfilingAnalyzer(self._output_path, self._rank_id, self._output_path)
logger.info("Profiling: analyzing the minddata information.")
md_analyzer.analyze()
except ProfilerException as err:
logger.warning(err.message)
# analyse op compute time info
try:
logger.info("Profiling: analyzing the operation compute time.")
self._analyser_op_info()
except ProfilerException as err:
logger.warning(err.message)
# analyse step trace info
points = None
is_training_mode_flag = False
try:
logger.info("Profiling: analyzing the step trace data.")
points, is_training_mode_flag = self._analyse_step_trace(source_path, framework_parser)
except ProfilerException as err:
logger.warning(err.message)
# analyse timeline info
try:
logger.info("Profiling: analyzing the timeline data.")
self._analyse_timeline(aicpu_data_parser, optime_parser, source_path)
except (ProfilerIOException, ProfilerFileNotFoundException, RuntimeError) as err:
logger.warning('Fail to write timeline data: %s', err)
# analyse memory usage info
if self._profile_memory:
try:
logger.info("Profiling: analyzing the memory usage info.")
self._analyse_memory_usage(points)
except (ProfilerIOException, ProfilerFileNotFoundException, ProfilerRawFileException) as err:
logger.warning(err.message)
# analyse hccl profiler info
if self._profile_communication:
try:
logger.info("Profiling: analyzing the hccl profiler info.")
self._analyse_hccl_info()
except (ProfilerIOException, ProfilerFileNotFoundException, ProfilerRawFileException) as err:
logger.warning(err.message)
# get op FLOPs from aicore.data.x.slice.0 file, and compute FLOPS, write output_op_flops_x.txt
flops_parser = FlopsParser(source_path, self._output_path, op_task_dict,
self._dev_id, self._rank_id, is_training_mode_flag)
logger.info("Profiling: analyzing the operation FLOPs.")
flops_parser.execute() | def _ascend_analyse(self):
"""Collect and analyse ascend performance data"""
self._rank_size = 1
if self._profile_communication and not GlobalComm.INITED:
self._profile_communication = False
if GlobalComm.INITED:
self._rank_size = get_group_size()
release()
if (not self.start_profile) or self._has_started:
self._ascend_profiler.stop()
else:
msg = "The profiler has not start, so can not stop."
logger.info(msg)
self._ascend_profiler.finalize()
job_id = self._get_profiling_job_id()
logger.info("Profiling: job id is %s ", job_id)
source_path = os.path.join(self._output_path, job_id)
# parse hwts.log.data.45.dev file, and get task profiling data
hwts_output_filename = self._hwts_output_filename_target + self._rank_id + ".txt"
hwts_output_filename = os.path.join(self._output_path, hwts_output_filename)
source_path = validate_and_normalize_path(source_path)
hwts_output_filename = validate_and_normalize_path(hwts_output_filename)
hwtslog_parser = HWTSLogParser(source_path, hwts_output_filename)
logger.info("Profiling: analyzing hwts data.")
hwtslog_parser.execute()
# parse Framework file, and get the relation of op and tasks
framework_parser = FrameworkParser(job_id, self._dev_id, self._rank_id, self._output_path)
logger.info("Profiling: analyzing framework data.")
framework_parser.parse()
op_task_dict = framework_parser.to_task_id_full_op_name_dict()
if not op_task_dict:
logger.error("Profiling: fail to parse framework files.")
return
# get op compute time from hwts data and framework data, write output_op_compute_time.txt
opcompute_output_filename = self._opcompute_output_filename_target + self._rank_id + ".txt"
opcompute_output_filename = os.path.join(self._output_path, opcompute_output_filename)
opcompute_output_filename = validate_and_normalize_path(opcompute_output_filename)
optime_parser = OPComputeTimeParser(
hwts_output_filename, opcompute_output_filename,
op_task_dict, self._output_path, self._rank_id
)
logger.info("Profiling: analyzing the operation compute time.")
optime_parser.execute()
# parse DATA_PREPROCESS.dev.AICPU file, write output_data_preprocess_aicpu_x.txt
output_data_preprocess_aicpu = self._aicpu_op_output_filename_target + self._rank_id + ".txt"
output_data_preprocess_aicpu = os.path.join(self._output_path, output_data_preprocess_aicpu)
output_data_preprocess_aicpu = validate_and_normalize_path(output_data_preprocess_aicpu)
aicpu_data_parser = DataPreProcessParser(source_path, output_data_preprocess_aicpu)
logger.info("Profiling: analyzing the data preprocess data.")
aicpu_data_parser.execute()
# Parsing minddata AICPU profiling
logger.info("Profiling: analyzing the minddata AICPU data.")
MinddataParser.execute(source_path, self._output_path, self._rank_id)
# parse minddata pipeline operator and queue
try:
pipeline_parser = MinddataPipelineParser(self._output_path, self._rank_id, self._output_path)
logger.info("Profiling: analyzing the minddata pipeline operator and queue.")
pipeline_parser.parse()
except ProfilerException as err:
logger.warning(err.message)
# Analyze minddata information
try:
md_analyzer = MinddataProfilingAnalyzer(self._output_path, self._rank_id, self._output_path)
logger.info("Profiling: analyzing the minddata information.")
md_analyzer.analyze()
except ProfilerException as err:
logger.warning(err.message)
# analyse op compute time info
try:
logger.info("Profiling: analyzing the operation compute time.")
self._analyser_op_info()
except ProfilerException as err:
logger.warning(err.message)
# analyse step trace info
points = None
is_training_mode_flag = False
try:
logger.info("Profiling: analyzing the step trace data.")
points, is_training_mode_flag = self._analyse_step_trace(source_path, framework_parser)
except ProfilerException as err:
logger.warning(err.message)
# analyse timeline info
try:
logger.info("Profiling: analyzing the timeline data.")
self._analyse_timeline(aicpu_data_parser, optime_parser, source_path)
except (ProfilerIOException, ProfilerFileNotFoundException, RuntimeError) as err:
logger.warning('Fail to write timeline data: %s', err)
# analyse memory usage info
if self._profile_memory:
try:
logger.info("Profiling: analyzing the memory usage info.")
self._analyse_memory_usage(points)
except (ProfilerIOException, ProfilerFileNotFoundException, ProfilerRawFileException) as err:
logger.warning(err.message)
# analyse hccl profiler info
if self._profile_communication:
try:
logger.info("Profiling: analyzing the hccl profiler info.")
self._analyse_hccl_info()
except (ProfilerIOException, ProfilerFileNotFoundException, ProfilerRawFileException) as err:
logger.warning(err.message)
# get op FLOPs from aicore.data.x.slice.0 file, and compute FLOPS, write output_op_flops_x.txt
flops_parser = FlopsParser(source_path, self._output_path, op_task_dict,
self._dev_id, self._rank_id, is_training_mode_flag)
logger.info("Profiling: analyzing the operation FLOPs.")
flops_parser.execute() |
Python | def start(self):
"""Used for Ascend, start profiling."""
if not self._has_started:
self._has_started = True
else:
msg = "The profiler has already started."
logger.error(msg)
raise RuntimeError(msg)
self._ascend_profiler.start()
self._start_time = int(time.time() * 10000000)
logger.info("Profiling: start time: %d", self._start_time) | def start(self):
"""Used for Ascend, start profiling."""
if not self._has_started:
self._has_started = True
else:
msg = "The profiler has already started."
logger.error(msg)
raise RuntimeError(msg)
self._ascend_profiler.start()
self._start_time = int(time.time() * 10000000)
logger.info("Profiling: start time: %d", self._start_time) |
Subsets and Splits